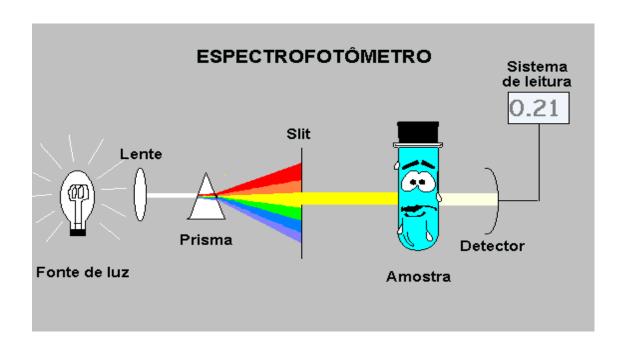

Métodos Instrumentais de Análise Determinação de Zinco por Espectrofotometria de Absorção Atômica

Etapas de Análise Química


- 1. Coleta de amostra: amostragem;
- 2. Preparo da amostra;
- 3. Preparo do extrato;
- 4. Análise do analito/composto de interesse.
 - Gravimetria;
 - Volumetria;
 - Instrumental ou Físico-químico.

Método Instrumental: utilização de um equipamentoespectrofotometria de absorção molecular (na região do visível)

 Determinação de Fósforo (P- macronutriente) em extrato de solo.


Espectrofotometria de absorção molecular

- Ocorre a nível molecular (radiação absorvida por moléculas);
- Excita elétrons da ultima camada.

Espectroscopia atômica: <u>fotometria de emissão de</u> <u>chama</u> e espectrometria de absorção atômica

Fotometria de Emissão de Chama: Determinação de Potássio (K-macronutriente) em extrato de fertilizante.

Fonte de Energia: Chama

Propano e butano (1900° C ~800KJ mol -1

- Ocorre a nível atômico (emissão atômica);
- Excita elétrons da última camada, para elementos facilmente excitáveis, com 1 ou 2 elétrons na última camada (Família ou Grupo IA e IIA).

	M ⁺ (g) ↔ M ⁺ *(g)	(excitação do íon)
	$M(g) \leftrightarrow M^*(g)$	(excitação do aerossol)
ama	MX(g)	(vaporização do líquido)
Em direção a chama	MX(I)	(fusão do cristal)
ireção	MX(s)	(vaporização do solvente)
Em d	MX(I)	(formação aerossol)
	MX(I)	(solução contendo analito)

Espectroscopia atômica: fotometria de emissão de chama e <u>espectrometria de absorção</u> <u>atômica</u>

 <u>Aula de Hoje</u>: Determinação do <u>Zinco</u> em fertilizantes por espectrofotometria de absorção atômica.

- Zinco: é um micronutriente muito importante para o desenvolvimento de funções bioquímicas (regulador de crescimento, hormônios, formação dos pólen, manutenção e integridade das membranas, etc).
- Sintomas nas plantas: folhas pequenas com formato distorcido, aglomerações de folhas, ou seja menos qualidade e rendimento.

O Zinco

Exemplo de fertilizante:

Sulfato de zinco: ZnSO4

- Formas absorvidas pela planta: Zn²⁺
- Forma incorporada no metabolismo vegetal: Zn²⁺

O Zinco

- Função na planta: ativação enzimática e inúmeros processos metabólicos (síntese de proteínas, carboidratos, hormônios)
- Teores médios na planta: 20 50 mg kg⁻¹
- **Deficiência:** reticulado entre as folhas novas

Citrus com deficiência de Zn

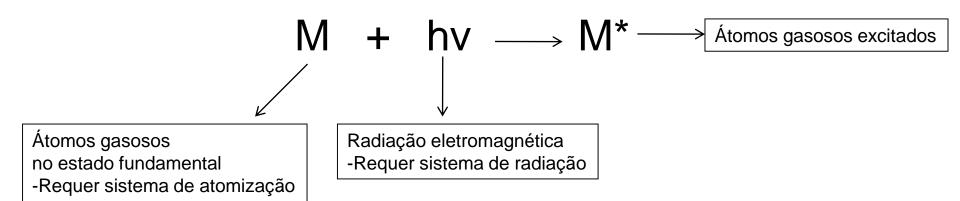
Morango com deficiência de Zn

Soja com deficiência de Zn

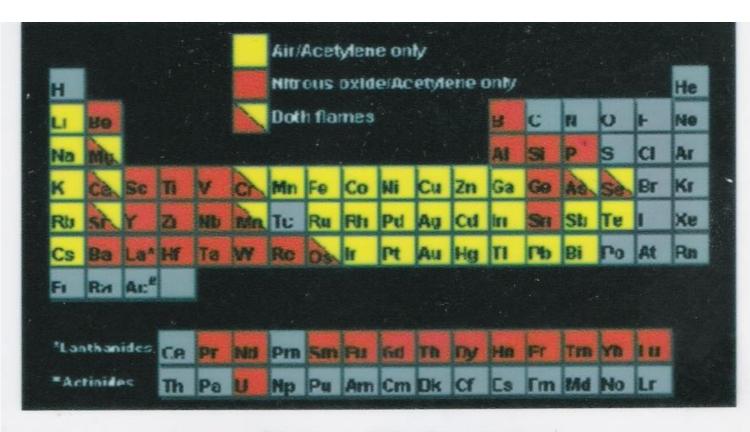
Espectrometria de absorção atômica

 O princípio fundamental envolve medida da <u>absorção da radiação eletromagnética</u>, por átomos gasosos.

 Muito utilizada para quantificar elementos (metais, semi-metais e alguns não-metais) em diversas amostras (biológicas, ambientais, alimentos, agrárias etc).


- A fotometria de emissão e a espectrometria de absorção atômica, estão relacionadasambas se utilizam de uma <u>chama</u> para atomização.
- Fotometria de Emissão:
- Átomos— absorvem energia— átomos excitados---retornam ao estado fundamental — devolvem energia como radiação luminosa (emissão de energia)-MEDIÇÃO NO EQUIPAMENTO.

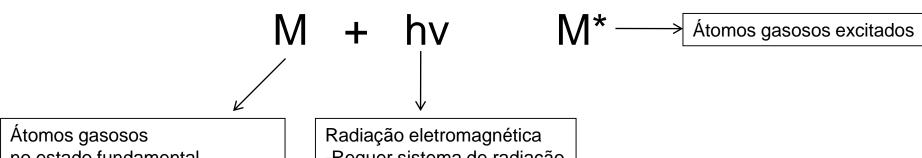
Espectrometria de Absorção Atômica:


 Na chama---produção de átomos---excitação pela energia emitida por uma fonte de radiação luminosa.

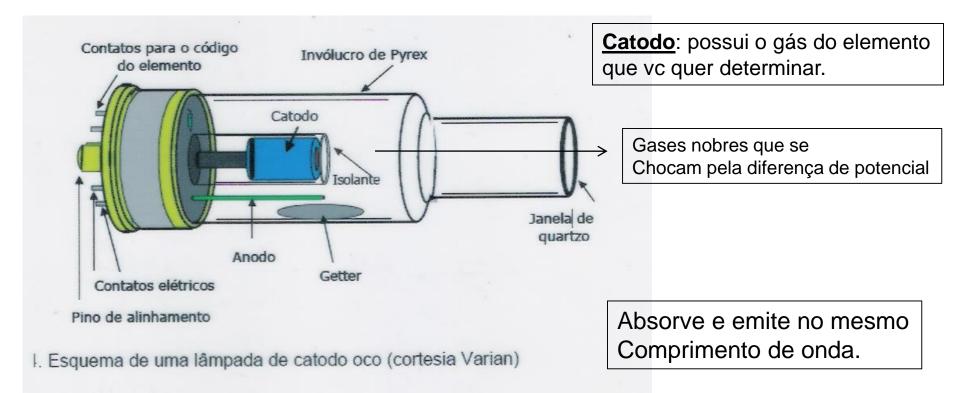
Espectrometria de Absorção Atômica:

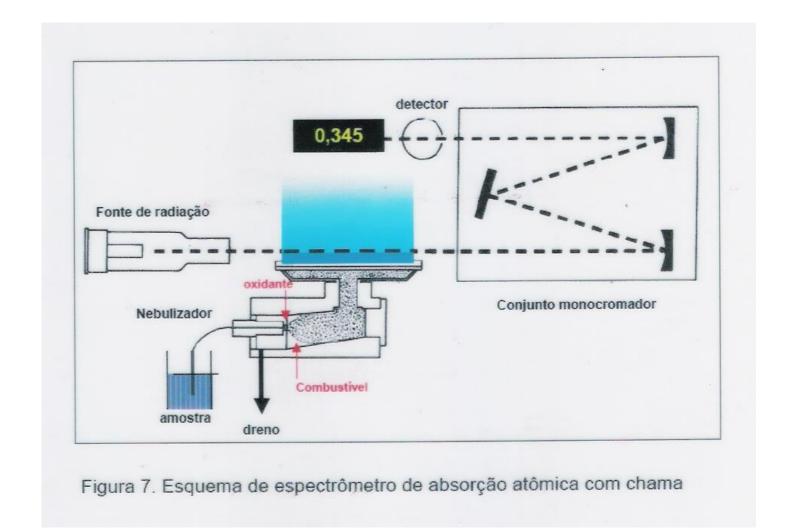
 Técnica analítica que se baseia na absorção de radiações nas regiões do ultravioleta visível do espectro eletromagnético por átomos gasosos no estado fundamental.

Atomização com chama

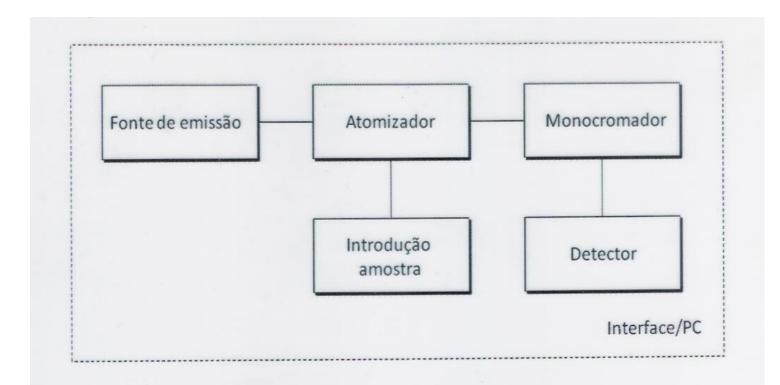


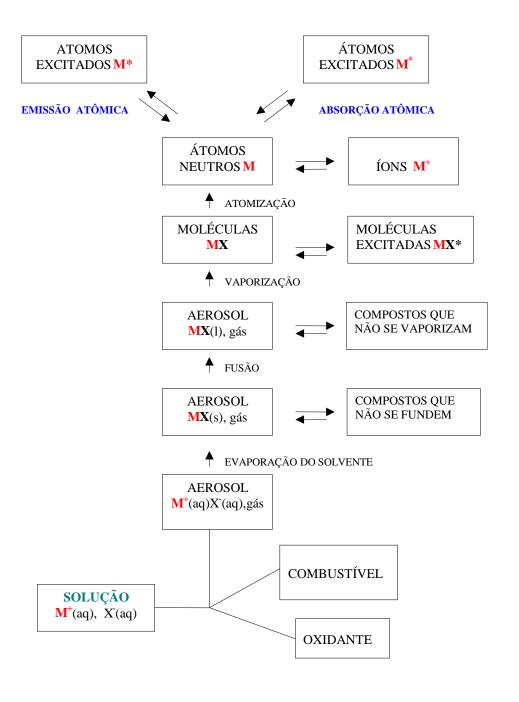
- ar/C₂H₂ ~ 30 elementos
- N₂O/C₂H₂ ~ 68 elementos


Atomização com chama


Fuel	Oxidant	Temperatures, °C	Maximum Burning Velocity (cm s ⁻¹)
Natural gas	Air	1700-1900	39-43
Natural gas	Oxygen	2700-2800	370-390
Hydrogen	Air	2000-2100	300-440
Hydrogen	Oxygen	2550-2700	900-1400
Acetylene	Air	2100-2400	158-266
Acetylene	Oxygen	3050-3150	1100-2480
Acetylene	Nitrous oxide	2600-2800	285

Espectrometria de Absorção Atômica:




no estado fundamental -Requer sistema de atomização -Requer sistema de radiação

Monocromador: tem função de selecionar uma determinada linha do espectro de emissão do elemento que está sendo analisado.

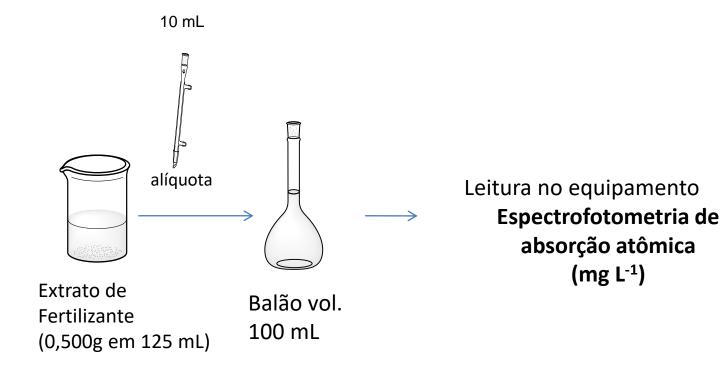
Título: Determinação do teor de Zn em fertilizantes por espectrofotometria de absorção atômica.

Procedimentos

1. Estabelecimento da curva analítica:

- **1.1.** Fazer a leitura das soluções padrão de concentração 0; 0,40; 0,80; 1,20 e 1,60 mg L^{-1} de Zn.
- 1.2. Observar o traçado da curva no aparelho.
- **1.3.**O resultado apresentado no aparelho será em mg L⁻¹ de Zn.

- 2. Preparo do extrato (Etapas já realizadas em aula anterior)
- **2.1.** Pesar 0,5000g de amostra de fertilizante, adicionar 125 ml de HCl. Agitar por 15 minutos, e transferir para frasco seco e limpo.


3. Determinação do teor de zinco em amostras de fertilizantes

- 3.1. Transferir 10 mL do extrato de fertilizante (da aula anterior) com uma pipeta volumétrica para balão volumétrico de 100 mL.
- 3.2. Completar o volume do balão volumétrico com água destilada e homogeneizar;
- 3.3.Fazer a leitura da concentração presente no extrato (no balão de 100 mL) em mg L⁻¹ após a calibração do aparelho com a curva padrão.

Resultados

Calcular a porcentagem de Zn presente no fertilizante.

Aula Prática

