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Concepts of Transmission and Dynamics

M. ELIZABETH HALLORAN

Transmission from one host to another is fun-
damental to the survival strategy of most in-
fectious agents. Each microbe has its own life
cycle, modes of transmission, population dy-
namics, evolutionary pressures, and molecu-
lar and immunologic interaction with its host.
The transmission cycle may involve a particu-
lar insect or other vector, and consequently its
ecology. Studies and interventions need to take
the particular transmission, dynamics, and bi-
ology of each infectious agent into account.

Some underlying principles of transmis-
sion and dynamics, however, are common to
many infectious diseases. These principles
are captured in a wide variety of mathemat-
ical and statistical models. Since the human
host population is the ecological niche for
the infectious agent, some of the principles
come from general theories of populations,
evolution, and ecology (see Burnet and
White 1972, McNeill 1976). Other prin-
ciples have their origins in infectious disease
epidemiology.

Many different questions motivate quanti-
tative transmission models. A few examples
follow.
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® What is the probability that transmission
will occur after a susceptible host is ex-
posed to infection? How do transmission
dynamics and interventions influence the
evolution of a microbe? How do different
models of transmission influence our
thinking? How do different assumptions
about human contact patterns influence
the design and analysis of field studies?

¢ Under what conditions will an epidemic
occur? Will an infectious agent become
established in a population and either per-
sist or die out? Will a microbe establish it-
self within a host and avoid immune sur-
veillance and clearance?

¢ What interventions can prevent an epi-

demic or eliminate endemic transmission?
What interventions will reduce transmis-
sion and by how much? What will the
long-term effects of an intervention be in
a population? What is the best interven-
tion type and resource allocation strate-
gy? What ts the optimal timing? How do
different subpopulations influence trans-
mission of an infectious agent and choice
of intervention strategies?
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When the appropriate data are available,
the models can be used to estimate quantities
of interest to answer the above questions.

How we think about the transmission dy-
namics of an infectious agent within a host
population influences how we design and in-
terpret epidemiologic studies. It can influ-
ence our choice of interventions. Mixing
structures, contact patterns, and subpopula-
tions can affect both transmission dynamics
and the results of studies. In this chapter, we
consider some basic principles and simple
models of transmission and population dy-
namics of infectious diseases. We focus on
aspects of transmission and dynamics that
have consequences for the design of studies
and interpretation of results.

STATES OF INFECTION
WITHIN A HOST

The natural history of infection within a
host can be described with reference to ei-
ther infectiousness or disease (Fig. 4-1).
Both time lines begin with the successful in-
fection of the susceptible host by the mi-
crobe. The natural history of infectiousness
includes the latent period, the time interval
from infection to becoming infectious, and

the infectious period, during which time the
host could infect another host or vector.
Eventually the host becomes noninfectious,
either by clearing the infection, possibly de-
veloping immunity, or by death. The host
can also become noninfectious while still
harboring the microbe. The host may be-
come an infectious carrier if he or she re-
covers from disease but remains infectious
(i.e., asymptomatically infected).

The natural history of disease in the in-
fected host includes the incubation period,
the time from infection to symptomatic dis-
ease, and the symptomatic period. The
probability of developing symptomatic dis-
ease after becoming infected is the patho-
genicity of the interaction of the microbe
with the host. Eventually the host leaves the
symptomatic state, either by recovering from
the symptoms or by death. If the microbe has
provoked an autoimmune response in the
host, symptoms can continue even after the
microbe is cleared. An inapparent case or
silent infection is a successful infection that
does not produce symptoms in the host. In-
apparent cases can be infectious.

While the disease process and its associat-
ed time line are important to the infected
person and to a physician, the dynamics of
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Figure 4-1. Natural history time lines for infection and disease.
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infectiousness are important for propaga-
tion of the microbe and for public health.
The relation of the two time lines to one an-
other is specific to each microbe and can
have important implications for study de-
sign, modeling, and public health.

For example, Elveback and colleagues
(1976) developed an influenza model that
distinguished between illness and infection
attack rates. The infected people become in-
fectious, but only a fraction of them develop
overt disease. In many studies of infectious
agents, it is easier to use overt disease as the
outcome, rather than infection, since infec-
tion may be difficult to ascertain. If many
infections are inapparent, however, using
overt disease would result in an underesti-
mate of the level of exposure to infection in
the population. Estimation of the incuba-
tion and latent periods can be difficult be-
cause the time of infection as well as the
onset of infectiousness are often difficult to
observe.

Human immunodeficiency virus (HIV)
poses a particular problem for public health
because the virus has a short latent period
and a long incubation period. A person in-
fected with HIV can infect many people
before symptoms develop. Plasmodium fal-
ciparum, one of the organisms that causes
human malaria, has an incubation period of
about 14 days, but the infective stages do
not appear until about 10 days after the first

Infectious
host

microbe

contact

symptoms. Thus early treatment of symp-
toms with a drug that also kills or prevents
infective stages could have an important ef-
fect on transmission. In chickenpox, the la-
tent period is about two days shorter than
the incubation period. Thus by the time
symptoms appear, a child can infect many
other children. Keeping children with symp-
tomatic chickenpox out of school might not
have a large effect on transmission. Gonor-
rhea infection in women is often asympto-
matic, so women often go untreated. In men,
the infection is often quite painful, leading
them to seek treatment. Thus the duration of
infectiousness tends to be shorter in men than
in women for reasons related to the different
time lines of disease in men and women.

TRANSMISSION MODELS

One measure of the success of an infectious
agent is how effectively it is transmitted. The
transmission probability p is the probability
that, given a contact between an infective
source and a susceptible host, successful
transfer of the microbe will occur so that the
susceptible host becomes infected (Fig. 4-2).
The transmission probability is a key quan-
tity both in epidemiology and in infectious
disease models. There are many different
ways of modeling the probability of becom-
ing infected upon repeated exposure to infec-
tion. We consider the simple binomial model

Susceptible
host

Transmission probability depends on:
o Type and definition of contact
e Microbe
e Infectious host
e Susceptible host

Figure 4-2. Transmission from an infective to a susceptible host during contact.
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of transmission for discrete contacts and,
briefly, a simple model in continuous time.

Binomial Models of Probability
of Infection

The binomial model of transmission can
help answer several questions. What is the
effect of an intervention in a population?
How do we interpret our assumptions about
how a risk factor or intervention affects the
transmission probability? How well is one
infectious agent transmitted compared to
another? When the appropriate data are
available from field studies, the binomial
model is often used to estimate the trans-
mission probability.

The basic idea of the binomial model is
that exposure to infection occurs in discrete
contacts and that each contact is independ-
ent of another. We define p as the transmis-
sion probability during a contact between a
susceptible person and an infectious person
or other source of infection, such as an in-
fectious mosquito. Then the probability that
the susceptible person will not be infected
during the contact is ¢ = 1 — p. The quanti-
ty q is called the escape probability. For ex-
ample, if the transmission probability for
herpes simplex is p = 0.30, then the escape
probability for one contactis g = 1 — p
= 0.70. If a susceptible person makes # con-
tacts with infectious people, then, assuming
all contacts are equally infectious, the prob-
ability of escaping infection from all the »
contacts is g = (1 — p)™. The probability of
being infected after # contacts with infec-
tivesisl —g*"=1— (1 —p).

Suppose a person has six successive sexu-
al contacts with someone who has genital
herpes (Fig. 4-3A). What is ithe probabili-
ty that the person will have become infected
after six contacts? In this example, n = 6.
The calculation proceeds by first calculating
the probability that the susceptible person
will escape infection from all six contacts.
Then this number is subtracted from one to
get the probability that the person is infect-
ed at least once. If the probability of escap-
ing infection from the first exposure is
q = 0.7, then the probability of escaping in-
fection from the second exposure is the

probability of escaping the first one times
the probability of escaping the second:
g X g = 0.7 X 0.7 = 0.49. The probability
of escaping infection from the third contact
is similarly the probability of escaping in-
fection from the first two contacts times
the probability of escaping infection from
the third: g X g = 0.49 X 0.7 = 0.34. The
probability of escaping infection from six
successive contacts is 0.7¢ = 0.12. The prob-
ability of becoming infected at least once is
1-(1-p)"=1-(0.7)°=0.88.

We have made an important assumption
here. We assumed that each successive con-
tact was not affected by any of the previous
contacts. That is, the person did not develop
immunity or become more susceptible as
time went on. We also assumed that all of
the contacts had the same risk of transmis-
sion. These assumptions may not be ful-
filled. If so, the assumptions can easily be
changed and a more complicated form of
the binomial model developed.

In a different problem, suppose a suscep-
tible child attends school one day where six
of the children simultaneously have influen-
za. What is the probability of becoming in-
fected (Fig. 4-3B)? Assume that the proba-
bility of becoming infected from one contact
with one child with influenza is p = 0.3.
Proceeding as before, the probability of es-
caping infection from one child is g = 0.7.
Now we can calculate the probability of
being infected from all six children, with a
0.7¢ = 0.12, so the probability of being in-
fected on that day at school is 1 — ¢¢ = 0.88.

Although the answers for the two ex-
amples are numerically the same, in the sec-
ond example we made a different biological
assumption than in the first. In the example
of influenza at school, we assumed that each
of the six simultaneous exposures to infec-
tion is the same, and that each additional
child with influenza increases the probabili-
ty of being infected independent of how
many other infective children are present.
The contacts and exposures to infection are
assumed to operate the same as if they were
successive and independent. The assump-
tion of independence is commonly used in
the binomial model, whether contacts are si-
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Figure 4-3A. The probability of infection with six consecutive contacts.
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Figure 4-3B. The probability of infection with six simultaneous contacts.

multaneous or successive. For instance, this
assumption is at the heart of the Reed-Frost
model discussed later.

What if, however, biologically we think
that once there is one infectious child in a
classroom, then the room is saturated with
infectious particles? Then adding more in-
fectious children to the school will not in-
crease the probability of becoming infected.
We need to change our expression for the
probability of becoming infected. If p is the
probability of becoming infected from one
infected person at school, theng =1~ pis
again the escape probability from exposure
to one infected. In contrast to the previous
model, however, the probability of becom-
ing infected from exposure to two or more
infectives at the same time is still p and the
escape probability is still g = 1 — p. Under
these biologic assumptions, the probability
of becoming infected from one child with in-
fluenza on one day is p = 0.3, and the proba-
bility of becoming infected from simultane-
ous exposure to six children with influenza

on one day is also p = 0.3. The Greenwood
model {Greenwood 1931) makes the as-
sumption that the probability of infection
on a given day does not change with in-
creased number of infectives. The assump-
tion is seldom used in practice, however. We
could make assumptions between the two
extremes, but there are generally not enough
data to support using more complex models.
As discussed in Chapter 5, Overview of
Study Design, the binomial model is useful
in estimating the transmission probability if
data are available on the number of poten-
tially infectious contacts that susceptibles in
a study population make as well as the num-
ber of susceptibles who become infected.

Other Transmission Models

Another way to model the probability of
becoming infected is simply to multiply
the number of contacts with infectives (7)
times the transmission probability (p), #p.
In the previous example of herpes, however,
np = 6 X 0.3 = 1.8. Since probabilities have
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to lie between 0 and 1, this approach obvi-
ously has limits. In particular, either » or p,
or both need to be small. Another common-
ly used expression for the probability of not
becoming infected is e~". So, the probabili-
ty of becoming infected is 1 — ¢, In the
herpes example above, then, the probability
of not becoming infected is 76%0-3 = ¢~18 =
0.17 and for becoming infected is 1 — ¢™18
= 0.83. Comparing this with the probabili-
ty of being infected calculated from the bi-
nomial model, 0.88, we note that they are
similar but not identical.

In the herpes example, the transmission
probability is high, and the product of #p is
large. If the transmission probability is much
smaller or the contact rate is much smaller,
or both, then the three methods for calcu-
lating the probability of becoming infected
give similar answers. Suppose again that
there are six infectious contacts in one day,
but that the transmission probability of the
infection in question is just p = 0.001. Then
using the binomial model, the probability of
becoming infected is 1 — (1 — p)* =1 —
(.999)¢ = 0.00599. Using the exponential
expression, the probability of becoming in-
fected is 1 — exp(—6 X 0.001) = 0.00598,
and based on the simple expression, np = 6
X 0.001 = 0.006. There is a little difference
in the answers. In this example, the calcu-
lated np makes sense as the probability of
becoming infected. The two simpler ap-
proaches are sometimes used as approxima-
tions for the binomial model. They are gen-
erally less time consuming to compute than
the binomial model, which can be anissue in
complex models. However, as we have just
demonstrated, the approximation will not
always be good. If used for estimation, all
three models require the same data. In gen-
eral, it is good to use the binomial model if
feasible.

Continuous Models for Probabilitiy
of Infection

The binomial model assumes discrete con-
tacts or discrete units of time. Another ap-
proach to modeling the probability of be-
coming infected assumes that contacts occur

in continuous time. This approach is usual-
ly based on the contact rate per unit time,
which we denote by c. Thus ¢p is the proba-
bility of being infected per unit time if all the
contacts are with infectious persons. Analo-
gous to the discrete model, the expressions
exp(-cp) and 1 — exp(-cp) are the probabil-
ities of escaping infection or becoming in-
fected per unit time, respectively. If the expo-
sure occurs over some time period Az, then
the probabilities of escape or of infection are
exp(-cpAt) and 1 — exp(-cpAt), respectively.
The data needed for using this approach to
estimate the transmission probability are
the contact rate with infectives per unit time,
the time interval, and the infection status of
each person in the study.

Contacts with Persons of Unknown
Infection Status

Sometimes contacts are made with persons
or sources of unknown infection status. We
denote the probability that an individual
with whom a contact is made is infectious by
P. Then the probability of being infected
from a contact of unknown infection status is
p = pP. The quantity p is not a transmission
probability in the strict sense, but an infec-
tion probability. The probability of escaping
infection from contact with someone of un-
known infection statusis 1 — p = 1 — pP.
Under the binomial model, the probability
of becoming infected after # such contacts is
1—(1=pPyr=1-(1 - p).

Suppose as in the genital herpes example
above that p = 0.3 but that the contacts are
with six individuals of unknown infection
status. If the individuals are randomly cho-
sen from a population where the prevalence
of genital herpes is P = 0.4, then the proba-
bility of being infected after six contacts is
1—(1-0.3X0.4)=0.54.

An analogous expression for the infection
probability can be developed for the contin-
uous time model. The probability of being
infected per unit time is the incidence rate or
hazard rate of infection. An expression for
the incidence rate, I, as a function of the con-
tact rate, the transmission probability, and
the prevalence is I = ¢pP. This expression
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for the incidence rate as a function of preva-
lence is a fundamental relation of dependent
happenings (Ross 1916) in infectious dis-
eases, discussed in more detail in Chapter 3,
Overview of Study Design. The probability
of escaping infection within some period of
time At is exp(-cpPAt), and of being infect-
ed is 1 — exp(-cpPAt). At the population
level, the probability of becoming infected
in some period of time is closely related to
the incidence proportion.

These examples show some of the op-
tions and subtleties inherent in different
approaches to modeling the transmission
process.

Modeling Risk Factors for the
Transmission Probability

How do risk factors or interventions play a
role in the probability of becoming infected
during a contact between an infectious per-
son and a susceptible person? How does the
choice of models affect our answer? Sup-
pose we are doing a study of a vaginal foam
to prevent genital herpes transmission. We
believe that the vaginal foam reduces the
probability of transmission per sex act by
80%. We might formulate our binomial
model so that foam reduces the transmission
probability, p, by 80% in everyone who uses
it and at every sex act with an infective.
Then the transmission probability in people
using foam, py,,., would be 20% of that in
people not using it, so that pg,, = 0.20p.
Since the factor 0.20 multiplies the baseline
p, we are assuming that the foam has a mul-
tiplicative effect on the transmission proba-
bility. The protection is not complete, since
the people using foam still have a transmis-
sion probability of 0.20p. Thus, a multi-
plicative effect is sometimes called leaky, be-
cause it denotes only partial protection,
allowing microbes to get through the de-
fense. Note that we have also assumed that
the effect is the same in everyone and for
every contact.

Suppose we want to evaluate the effect of
using vaginal foam in a study population of
2000 sexual partnerships, where one part-
ner is infected in each partnership. Half of
the partnerships use foam, the other half do

not. We decide to use the incidence propor-
tion ratio at the end of the study to estimate
the relative risk of infection with and with-
out foam. The first study we conduct is one
month long and each partnership has exact-
ly five contacts during that time. If p = 0.235,
then py,,,, = 0.20 X 0.25 = 0.05. What s the
expected incidence proportion at the end of
one month?

In the group not using vaginal foam,
the probability of becoming infected is
1—-(1—-p)Y=1-0.75°=0.76, so the ex-
pected number of infections in that group is
1000 people X 0.76 = 760. In the group
using foam, the probability of becoming in-
fectedis1 — (1 —0.05)*=1-0.95°=0.23,
so the expected number of infections in
that group is 1000 people X 0.23 = 230.
The incidence proportion ratio we would
expect to see at the end of one month is
(230/1000)/(760/1000) = 0.30. The inci-
dence proportion ratio, 0.30, is not equal to
the multiplicative effect of the foam on the
transmission probability, 0.20. The efficacy
of the vaginal foam based on the incidence
proportion ratio would be estimated to be
1-10.30 = 0.70, not 1 — 0.20 = 0.80, the
efficacy per single contact.

What happens to the incidence pro-
portion ratio if we continue the study for
two months? Suppose that after two
months, each partnership has had exactly
ten sexual contacts. Now the expected
number of infections in the control group
is (1 — .75 X 1000 = 943, while
in the group using vaginal foam, it is
(1 —0.95"% X 1000 = 401. We expect to see
an incidence proportion ratio after two
months of (401/1000)/(943/1000) = 0.43.
The incidence proportion ratio has in-
creased from 0.30 to 0.43. The efficacy ap-
pears to be 0.57, not 0.70, as it would after
one month, or 0.80, for a single contact. The
intervention seems less efficacious after two
months even though the effect of the vaginal
foam on the transmission probability has
not waned.

As the number of exposures in the two
groups increase, the incidence proportion
ratio will continue to increase toward one as
it did from one month (five contacts) to two
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months (ten contacts total), and efficacy will
appear to decrease. Eventually everyone in
both groups will become infected under the
multiplicative assumption if they are exposed
often enough. This illustrates the meaning
of a multiplicative or leaky model at the
transmission probability level. In principle,
people can still become infected if exposed
often enough. A different model might as-
sume that vaginal foam protected 80% of the
users completely, while 20% not at all. In this
situation, at least 80% of the 1000 people
using foam in the study would never become
infected. This illustrates the difference be-
tween assuming a multiplicative model
where the effect is the same for everyone and
assuming a heterogeneous distribution of
protection. Smith and colleagues (1984) and
Halloran and associates (1991, 1992) pro-
vide further discussion of this point.

Suppose we use the model in continuous
time developed earlier, and we assume that
the protective effect has the same multiplica-
tive effect on the transmission probability. In
this partner study the contacts are all poten-
tially infectious, P = 1, thus I(2);,,,, = 0.20cp.
Using this expression, the incidence rate
ratio will be 0.20, giving the same answer
as the multiplicative effect on the transmis-
sion probability. The expected incidence
proportions in the two groups are not the
same as those obtained using the binomial
model. For the nonfoam group, the proba-
bility of being infected after one month is
1 — exp(—35 X 0.25) = 0.713 and for the
foamgroupitis 1 — exp(—5 X 0.05) = 0.221,
so the expected number of infections is 221
in the group using vaginal foam and 713
in the nonfoam group. The number of ex-
pected infections is different than calcu-
lated above from the discrete binomial
model. The incidence proportion ratio is
(221/1000)/(713/1000) = 0.31 after one
month, which is similar though not identical
to that calculated above.

In summary, there are three important
points: (1) The binomial model of infection
is widely used in practice. (2) There are dif-
ferences between assuming that a contact
process occurs discretely or that it occurs in
continuous time. It is not possible to say that

one approach is better than the other. They
are simply different, and sometimes produce
different answers. (3) The effect of a risk fac-
tor at the level of the transmission proba-
bility might be different from the apparent
effect that will be estimated if using the inci-
dence rate ratio or the incidence proportion
ratio. Care should be taken to be precise in
interpreting estimated relative risks.

BASIC REPRODUCTIVE NUMBER

Another key quantity in infectious diseases
is the basic reproductive number, Ry, pro-
nounced “are-zero” or “are-nanght.” The
concept comes from general population the-
ory. Understanding R, is important for pub-
lic health applications and for describing the
population biology of a parasite in a popu-
lation of hosts. For small microbes such as
viruses and bacteria, also called micropara-
sitic diseases in the population biology liter-
ature, R, is defined as the expected number
of new infectious hosts that one infectious
host will produce during his or her infec-
tious period in a large population that is
completely susceptible. R does not include
the new cases produced by the secondary
cases, or cases further down the chain. It
also does not include secondary cases who
do not become infectious.

For example, if R, = 6 for mumps in a
human population, then one infectious per-
son in that population would be expected to
produce six new secondary infectious cases
if the population were completely suscep-
tible. If the infectious person produced three
additional cases who were not infectious, R,
would still be 6.

For microparasitic infections, R is the
product of the contact rate ¢, the duration of
infectiousness d, and the transmission prob-
ability per contact with the infectious per-
son, p. The average number of contacts made
by an infectious person is the product of the
contact rate and the duration of infectious-
ness—cd. The number of new infections
produced by one infective during his or her
infectious period is the product of the num-
ber of contacts in that time interval and the
transmission probability per contact:
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number
of transmission  duration of
R, = contacts X probability X infectiousness = cpd.
per unit  per contact
time

As presented here, the expression assumes
that everyone who gets infected becomes in-
fectious. A term could be included for the
probability of becoming infectious after in-
fection. The simplest assumption is that the
recovery rate, 7, is constant. Then the dura-
tion of infectiousness equals the reciprocal
of the rate of recovery from the infectious-
ness, that is d = 1/r. Another expression for
R, is then Ry = cp/r.

R, summarizes many important aspects
of an infectious agent in a host population in
one quantity. It allows comparison of seem-
ingly disparate diseases from the viewpoint
of population biology. A value of R, is not
specific to a microbe, but to a microbe pop-
ulation within a particular host population
at a particular time. Contact rates relevant
for respiratory transmission will be lower in
rural areas than in more densely populated
urban areas. So, for example, we expect the
R, of mumps to be lower in rural than in
urban areas. The R, of malaria may be low
during the season of low mosquito density
but high during the season in which mos-
quitoes are plentiful. The R, of HIV in a sex-
ually active population of single people
might be much higher than it is in a popula-
tion of fairly monogamous married couples.

R, is dimensionless. It represents the num-
ber of new infectious cases per index infec-
tious case (i.e., referent or original case).
Without further information about the
magnitude of the quantities composing R,
we cannot conclude much about the time
frame of an epidemic, the transmissibility of
the microbe, or the contact rate. R, is about
2 to 3 for influenza in some populations and
also about 2 to 3 for HIV in some popula-
tions. Influenza has a relatively high trans-
mission probability and short duration of
infectiousness. The influenza virus spreads
on a different time scale than HIV, which has
a low transmission probability and longer
duration of infectiousness. If we were to
know only that R, = 3 for both, then we

would know that they both could easiliy
produce epidemics, but we would not be
able to draw conclusions about the relative
time frames of the two. For that, we require
further information.

The R, for indirectly transmitted diseases
depends on the product of the two compo-
nents of transmission. Indirectly transmit-
ted diseases are those in which an infectious
agent is transmitted between two different
host populations. An example is the vector-
borne disease malaria, which is transmitted
from humans to mosquitoes and back to
humans.

The definition of R, assumes that all con-
tacts are with susceptibles. In real popula-
tions, however, people are often immune to
a parasite. Under these circumstances, the
expected number of new cases produced by
an infectious person is less than R, and is
called the effective reproductive number,
denoted by R. If x is the proportion of a ran-
domly mixing, homogeneous population
that is susceptible, R is the product of R,
times the proportion x of the contacts made
with susceptibles:

R = Ryx. (1)

Suppose that R, = 3 for influenza in a pop-
ulation and that one-half of the population
is immune. Then the effective reproductive
number for influenza is R = 3 X 0.5 = 1.5.
A case of influenza would produce on aver-
age only 1.5 new secondary cases rather
than 3 in this population.

R, and Public Health

Under what conditions will an epidemic
occur? In general, for an epidemic to occur
in a susceptible population, R, must be
greater than one. If R is less than one, an
average case will not reproduce itself, so a
microbe will not spread. Since R, is an aver-
age, a particular infectious person could pro-
duce more than one infective case, even when
R, islessthan 1, so there may be a small clus-
ter of cases. We would not, however, expect
a self-sustaining outbreak.

When a microbe has established itself and
is endemic so that, over time, the average in-
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cidence does not change, then each infec-
tious case must be producing on average one
infectious case, that is, replacing itself. Other-
wise the average incidence would either be
increasing or decreasing. Thus at equilibri-
um, on average, R = 1.

How might we reduce or eliminate an in-
fectious agent from a host population? If we
want to reduce transmission so that the mi-
crobe will die out, then we must keep the av-
erage number of secondary cases produced
by one infectious case below 1, R is less than
1. Suppose that R, = 3 for genital herpes in
a population. To prevent an epidemic, we
would need to decrease the contact rate by
more than a factor of three. Alternatively, if
vaginal foam reduced the transmission
probability by 80%, then R, would be re-
duced to 0.2 X 3 = 0.6 if everybody used it.
Thus, an epidemic might effectively be pre-
vented either by reducing the contact rate or
by use of an effective vaginal foam. Suppose
that without treatment, an average case of
tuberculosis is infectious for one year. If an
average case produces five other cases, then
Ry = 5. By using active case detection, it
might be possible to find cases in the first
month of being infectious and treat with an-
tibiotics. If the treated cases become nonin-
fectious within two weeks after beginning
treatment, then they would be infectious on
average for only six weeks rather than 52
weeks. The R, would be reduced to about
(6/52) X 5 =0.6.

What fraction, f, of the population do we
need to vaccinate to produce enough im-
mune people so that the infective people will
not each be able to infect on average one
other person? If the fraction of susceptibles
is low enough, the probability that an infec-
tive host has contact with a susceptible host
before recovering will be very low. The mi-
crobe will not be able to persist. Suppose
that a vaccine confers complete and lifelong
immunity in everyone who is immunized. If
fis the fraction vaccinated before the age of
first infection, then 1 — f would be the max-
imum fraction of the population that is sus-
ceptible, not taking into account additional
immune people who have already had the
disease. Substituting 1 — f for x in expres-

sion (1) for R, in principle, we need to vac-
cinate a fraction f such that

RZRO(l_f)<1:

to eliminate transmission. The fraction that
needs to be immunized to eliminate trans-
mission is

f>1-(1/R).

Assume that R, = 3 for influenza in a pop-
ulation. Under the assumption of random
mixing, the fraction that needs to be im-
munized before the age of first infection is
f=1-(1/Ry) =1~ (1/3) = 0.67. A higher
R, requires immunization of a higher frac-
tion to eliminate transmission (Fig. 4-4).

In the preceding example, we assumed
that vaccination conferred complete protec-
tion, However, an intervention might pro-
vide only partial protection, such as the
example of using vaginal foam that we pre-
sented. In that example, protection was just
80%. A vaccine might provide only partial
protection and be just 90% or even 50%
efficacious. If in the influenza example the
transmission probability per contact in the
vaccinated people is reduced by 90%, then
the probability of infection in the vaccinat-
ed is just the factor 8 = 0.10 of that in the
unvaccinated. If R, = 3.0 and everyone is
vaccinated, then R = 0.10 X R, = 0.30.
The vaccine might be successful in prevent-
ing the spread of influenza. If the protec-
tive efficacy is just 0.50, however, then
8 = 0.50. Even if everyone is vaccinated,
R = 0.50 X 3.0 = 1.50. Since R is greater
than 1, we would not expect to eliminate
transmission with this vaccine.

In the preceding example, we assumed
that the intervention had the same effect on
everyone. An intervention might reduce the
transmissin probability, the contact rate, or
the duration of infection the same in every-
one. As mentioned earlier, though, a risk
factor or intervention may have different ef-
fects in different people. A vaccine might
completely protect some people but fail
completely in others. Then the expression
for R takes into account the heterogeneities.
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Figure 4-4. The fraction, f, of a population needed to be vaccinated with a completely protective
vaccine to eliminate transmission as a function of R, the basic reproductive number,

In a simple example, suppose that a vac-
cine completely protects a proportion, b, of
those who are vaccinated, while it fails in the
remainder, 1 — 4, of the individuals who re-
ceive it. Suppose that, again, a fraction, f, of
the population is vaccinated. Then the frac-
tion of the population protected by immu-
nization is #f,and R = Ry(1 — bf). Then the
fraction of the population that needs to be
immunized to eliminate transmission is

1 — (1/Ry)
f>—.

Assume as in the preceding influenza
example that R; = 3. Assume that the
vaccination fails completely in the fraction
1 — b = 0.15 while conferring complete and
long-lasting protection in the other fraction
b = 0.85. The fraction, f, that must be vac-
cinated to eliminate transmission increases to

_1—(1/Ry) _ 0.67
f= b ~0.85

=0.79.

If the vaccine fails in 40% of the vaccinated
people, then the fraction that must be vacci-
nated is 0.67/0.60 > 1.0. With such a vac-
cine at the high failure rate, elimination of
transmission would not be possible even if
everyone were vaccinated.

HERD IMMUNITY

Herd immunity describes the collective im-
munological status of a population of hosts,
as opposed to an individual organism, with
respect to a given microbe (Anderson and
May 1982). Herd immunity of a population
can be high if many people have been immu-
nized or have recovered from infection with
immunity, or be low if most people are sus-
ceptible. If x is the proportion susceptible in
expression (1), then (1 — x}, the proportion
immune, gives some measure of the herd im-
munity. For any given microbe and host
population, as herd immunity increases, R
will decrease.

Seroprevalence of protective antibodies
against an infectious agent is a measure of
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herd immunity. In Figure 4-35, the age-
specific seroprevalences, that is, proportions
of people with anti-hepatitis A virus (HAV)
IgG and anti-hepatitis E virus (HEV) IgG
in a collection of communities in Vietnam
(Hau et al. 1999) are plotted. Seroprevalence
of anti-HAV IgG rises very quickly with age,
essentially reaching 1.00. The seropreva-
lence of anti-HEV IgG, on the other hand, is
very low. The area under the histograms, ad-
justed for the varying sizes of the age groups,
can be regarded as the level of herd immu-
nity. The herd immunity for HAV is high and
that for HEV is low. On average, 97% versus
16% of the people have antibodies against
the two diseases. There is concern that the
population is susceptible to an outbreak of
HEV. Fine (1993) reviews herd immunity.

COMPARING INTERVENTIONS

We can also use the basic reproductive num-
ber to help choose among intervention stra-
tegies. Which intervention strategy has the
largest effect on R,? Given how much each
intervention costs, which has the greatest
effect for the amount of money spent? How

100

does our choice of model for R, affect our
conclusions?

Historically, the concept of R, played an
important role in the choice of malaria inter-
vention campaigns. In malaria, several inter-
ventions can be used against the vector, ano-
pheline mosquitoes. Mosquitoes lay their
eggs in water, and the hatched larvae need to
breathe at the water surface. Thus either
draining breeding pools or putting oil on the
water surface will reduce the number of lar-
vae that grow to adult mosquitoes. Some vec-
tor mosquitoes will bite nonhuman animals
as well as humans. By increasing the number
of nonhuman animals available for mosqui-
toes to bite, the biting rate (i.e., contact rate)
on humans will be decreased. Often malar-
ia mosquito vectors tend to bite people in-
doors, then rest on the walls while they ex-
crete some of the blood fluid. This behavior
makes spraying walls with insecticides a
useful intervention. How can we derive an
expression for R, for malaria, then use it to
compare intervention strategies? What dif-
ferent aspects of the transmission cycle go
into the expression?

Malaria is an indirectly transmitted dis-
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Figure 4-5. Age-specific prevalences of anti-HEV and anti-HAV immunoglobulin G in Vietnam.

Source: Hau et al. 1999
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ease in that it is transmitted from human to
human via female anopheline mosquitoes.
We can also say it is transmitted from mos-
quito to mosquito via the human. Thus, the
R, expression is composed of two parts, the
part from mosquito to human and the part
from human to mosquito. We need the con-
tact rates from mosquitoes to humans and
from humans to mosquitoes, the two trans-
mission probabilities, and the duration of
infectiousness in mosquitoes and humans
(Fig. 4—6; Table 4-1).

The expression for R, depends on the
model we choose for a disease, that is, what
components of the life cycle that we include.
We consider here two simple models based on
the early Ross (1911) and Ross-Macdonald
{Macdonald 1957) models {see Aron and
May 1982). We assume the humans become
infected and infectious at some rate depend-
ing on the mosquito biting rate and trans-
mission probability, then recover at some
rate, 7, without developing immunity. We do
not include birth or death of humans in our
expression. The duration of infectiousness
of humans is 1/r.

Mosquitoes become infected by biting in-
fective humans. The mortality rate, w, of
mosquitoes is assumed to be independent of

whether they are infected. Mosquitoes do
not recover from malaria, so the duration of
infectiousness is the reciprocal of the death
rate, 1/, The factor, b, is the transmission
probability to humans per bite by an infec-
tious mosquito, and c¢ is the transmission
probability to mosquito from an infective
human.

To get expressions for the two contact
rates, we define the quantity, 4, as the num-
ber of bites per unit time on humans by a
single female mosquito, or the contact rate
for female mosquitoes with humans per unit
time. The quantity a is a composite of the
rate at which mosquitoes take blood meals
and the proportion of those blood meals
that are taken on humans. We assume that
there is some constant number, M, of female
mosquitoes and a constant number, N, of
humans, so that the number of female mos-
quitoes per human host is m = M/N. The
factor, ma = aM/N, is the rate of bites re-
ceived by one human per unit time.

The component ac/r represents the part of
R, of mosquitoes being infected by humans.
The component mab/|. represents the part
of R, of humans becoming infected by mos-
quitoes. Both components have the form of
contact rate times transmission probability

Ross Model
mab _ac
» __ ma?bc
————— R, = m

Ross Macdonald Model

mabe M

m _ac
S

7

_ ma’bce ™
R, = mabce™”
n

Figure 4-6. R, expression for two different malaria models.
Source: Mosquito image used with permission from the American Museum of Natural History.
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Table 4-1 Quantities for the Ry for Malaria

Term Meaning

N the size of the human population

M the size of the female mosquito population

m = M/N, the number of female mosquitoes per human host

a the rate of biting on humans by a single mosquito (number of bites per unit time)
b the transmission probability from an infective mosquito to a human

(2]

~

the recovery rate for humans

n the mortality rate for mosquitoes

the transmission probability from an infective human to a mosquito

T the latent period of the malaria parasite in the mosquito

times duration of infection. The basic re-
productive number for the simple Ross
model is

_ ma*bc
r m o

As an example, suppose that the transmis-
sion probabilities b = ¢ = 0.1, M = 1,000,000
mosquitoes, N = 1000 humans, 2 = 0.1 bites
on human per day, p = 0.1 per day, and
r = 0.004 per day. Then R, = 250, very high
indeed.

This original simple model by Ross does
not include the latent period (or external in-
cubation period) in the mosquito. The latent
period of the malaria parasite in mosquitoes
is an important component, because it is on
the order of the life expectancy of the mos-
quito. Thus a large proportion of the mos-
quitoes who become infected never become
infective before they die. In the late 1940s,
George Macdonald (1957) added the latent
period of malaria in the mosquito to the
model. If 7 (pronounced “tau”) is the latent
period of the malaria parasite in the mos-
quito, the probability of a mosquito surviv-
ing the latent period to become infectious
without dying is e 7. The expression for R,
for the expanded Ross-Macdonald model is

ac , mabe ™™ _ ma® bce™™
R, = - X m = ™ .

Suppose that the latent period 7 = 10
days and that the other quantities have the
same values as above. Then using the Ross-

Macdonald model, R, = 92.0, considerably
lower than the R, calculated above. Thus
the expression for R, and the underlying
model can influence the value obtained
for R,.

The Ross-Macdonald R, played an im-
portant role in the decision of the World
Health Organization to launch the malaria
eradication campaign in the 1950s. This
eradication campaign was based on spray-
ing the insecticide DDT on the insides of
houses to kill the mosquitoes resting after
taking a blood meal, drastically increasing
the mortality rate of mosquitoes, p. Inter-
ventions up until that time had been aimed
at decreasing the number of female mosqui-
toes, M, thus 2, the number of female mos-
quitoes per human, by draining breeding
pools or spraying water with oil. Another
intervention was to add animals to the envi-
ronment, so that the mosquitoes might bite
the animals instead of the humans. This
would reduce g, the rate of biting on humans
by a single mosquito.

By seeing how these three quantities, .,
M, and a, enter into R, it is possible to get
an idea which type of intervention would
have the strongest effect. By inspection, M in
ma, enters linearly into R,. Because the bit-
ing rate of the mosquito is included twice,
the squared power of @ enters R, The life ex-
pectancy of the mosquito also enters twice
into R, once linearly, and then exponential-
ly. If the number of mosquitoes is reduced by
one-half, R, will just decrease by a factor of
two. If 4 is reduced by one-half, R, will de-
crease by a factor of four, If p is increased by
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a factor of two, the decrease in R, will be by
a factor greater than four.

Continuing the preceding example, sup-
pose interventions change the parameters
M, a, or p by factors of 2. If the abundance
of mosquitoes is reduced to M = 500,000,
then R, = 46.3. If the biting rate is reduced
to @ = 0.05, then Ry = 23.2. If the mortali-
ty rate of the mosquitoes increases by a fac-
tor of 2 to w = 0.2, then R, = 16.9. Thus in-
creasing the mortality rate, thereby reducing
the life expectancy of the mosquito, has the
strongest effect on R,,. The goal of the eradi-
cation program was to decrease R, < 1. In
this example, to reduce R, so that it is less
than 1, then . must be increased to some-
what more than 0.4, for a life expectancy of
about 2.5 days. Thus mortality of the mos-
quito needs to be increased by a factor of 4.
The abundance of mosquitoes would have
to be reduced by a factor of at least 92, how-
ever, to reduce R, below 1. We leave it as an
exercise for the reader to calculate the
changes in R if the same interventions were
used under the simple Ross model rather
than the Ross-Macdonald model.

The prior calculations show how the Ross-
Macdonald model could have a strong in-
fluence in embarking on the eradication cam-
paign. Other factors, such as the beginning
of the appearance of insecticide resistance,
also put pressure on the campaign. The
eradication campaign was abandoned in the
late 1960s. After that time the goal was to
achieve a new host-parasite balance. More
complex models of malaria were developed
that included immunity and superinfection
(Dietz et al. 1974, Struchiner et al. 1989,
Halloran et al. 1989). These models allow
modeling of the effect of vaccination.

Factors contributing to malaria epidem-
ics can also be understood using the Ross-
Macdonald expression. The mortality rate of
mosquitoes depends heavily on the weather.
In particular, mosquitoes live longer in high-
er humidity. Also, the latent period, or ex-
trinsic cycle, of the malaria parasite within
the mosquito depends on the temperature.
Thus increased humidity would reduce .,
increasing R,,. Similarly, high temperatures
would reduce 7, also increasing R,,.

In this section we have shown that the
computed value of R, depends on whatis in-
cluded in the model. Also, the effect of in-
terventions can be compared using R, but
conclusions will also depend on what is in-
cluded in the model.

EVOLUTIONARY USES OF R,

R can be used to quantify evolutionary con-
cepts. Virulence is a measure of the speed
with which an organism kills an infected
host. We denote the disease-dependent death
rate, or virulence, by a. If 7 is the recovery
rate from infectiousness, and « the viru-
lence, then the duration of infectiousness is
d = 1/(r + a) and Ry = ¢p/{r + a). Since R,
is a function of the time spent in the infective
state, R, could decrease as virulence increas-
es. If the microbe is highly virulent so that it
kills its host quickly, then R, could be less
than 1, and the microbe will die out. For ex-
ample, suppose that the microbe does not
kill the host and that the host usually recov-
ers from infectiousness in about d = 10 days.
Thenr = 0.1 per day. If R, = 3.0 for this dis-
ease, then cp = rR; = 0.1 X 3.0 = 0.3. If in-
stead the microbe kills the host on average
in a little over three days when the host does
not recover first, then o = 0.3 per day, and
R, = 0.3/(0.1 + 0.3) = 0.75. In this case
R, < 1, so the microbe will not be success-
ful. If, on the other hand, the microbe kills
the host only after about 10 days on average
when the host does not recover first, then
R, = 0.3/(0.1 + 0.1) = 1.5. In this case,
R, > 1. Viewed in this way, there is evolu-
tionary pressure on microbes to become less
virulent and to develop a more benign rela-
tion to the host.

In some diseases, hosts become more in-
fectious when they become sicker, so the
transmission probability increases at the
same time that virulence increases. Thus, R,
could increase as virulence increases, put-
ting evolutionary pressure on the agent to in-
crease virulence. The balance depends on the
particular microbe. In the above example,
suppose that even though the microbe kills
the host on average after about three days,
the transmission probability, p, also increases
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by a factor of two. Then R, = (c X 2p)/
(r+ @) = (2 X 0.3)/(0.1 + 0.3) = 1.5. In this
case, R is greater than 1, so we would ex-
pect the microbe to be successful. The in-
creased virulence was offset by the increased
transmission probability to keep R, > 1.

The case fatality rate is the probability of
dying from a disease before recovering or
dying of something else. In the notation used
here, the case fatality rate is a/(r + o) (ig-
nores other death causes). If virulence is o =
0.3 per day, and the recovery rate is r = 0.1
per day, then the expected case fatality rate
is 0.3/(0.1 + 0.3) = 0.75. This means that
75% of the people die before recovering. As
virulence increases, the case fatality rate in-
creases.

R, IN MACROPARASITIC DISEASES

The concept of R, comes from general pop-
ulation theory and refers to the expected
number of reproducing offspring that one
reproducing member of the population will
produce in the absence of overcrowding.
With larger parasites such as worms, called
macroparasites, we define R to be the ex-
pected number of mature female offspring
that one female will produce in her lifetime.
This contrasts with the definition of R, for
microparasites, or microbes, which refers to
the number of new infectious hosts pro-
duced by one infectious host.

For example, the disease schistosomiasis is
caused by large, sexually reproducing worms
called schistosomas that can live for over
two decades within a human host. If a fe-
male schistosoma worm has an Ry =2 in a
population of human hosts and an interme-
diate host population of snails, then the av-
erage female schistosoma produces two ma-
ture female worms. Most of the thousands
of eggs produced by the adult female do not
survive passage through the environment
and the intermediate snail hosts to establish
themselves in another human host. The two
new successful worms could be in one new
human host, or in two different hosts. The
Ry = 2 refers to the number of worms, not
to the number of hosts. There are some fur-
ther complexities in calculating thresholds,

because there must be at least one male
worm in the human host for the female to
reproduce.

What is important in designing interven-
tions against macroparasitic diseases? The
total number of parasites in a host is often
more important than whether a host is in-
fected, because the level of morbidity of a
host can be associated with the number of
parasites the host carries, or parasite bur-
den. Some hosts can have very heavy infec-
tion, that is many worms, while others have
very light infection. Chemotherapy that tar-
gets people with heavy parasite loads could
have a greater effect on transmission and
morbidity than untargeted therapy.

CAVEATS

The previous sections demonstrate that R, is
a conceptually useful measure that provides
a summary of several aspects of an infectious
disease. However, the simple relations de-
scribed earlier usually do not hold. Hetero-
geneities in the contact rates, transmission
probabilities, and infectious periods pro-
duce different R;s in different subgroups. If
members of a group who live near each
other are not immunized, then it is possible
for transmission to occur in that group, even
when transmission has been eliminated in
other segments of the population. The con-
tact rate can increase locally if people move
into crowded conditions, such as into college
dormitories, military barracks, or refugee
camps. Especially when transmission is ten-
uous or near elimination, heterogeneities
can play an important role in determining
whether a microbe can persist in a popula-
tion. Anderson and May (1991) present an
extensive overview of R,. R, is a relatively
static concept. Further understanding of in-
fectious diseases in populations requires
study of transmission dynamics.

DYNAMICS OF INFECTION
IN A POPULATION

Under some circumstances an infectious
agent will invade and establish itself in a sus-
ceptible host population, with an ensuing
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epidemic, then die out again. Some infec-
tious agents will invade, however, and after
an initial epidemic, persist. They become en-
demic, with either fairly stable, possibly sea-
sonal transmission, or other epidemic pat-
terns. In addition to the consderations of R,
described above, under what conditions
might persistence or dying out happen?

CONTACT PROCESS AND
RANDOM MIXING

To describe the spread of an infectious agent
in a human population, we need to describe
how the human hosts and any vectors con-
tact each other in some way that the infec-
tious agent can be spread. There are differ-
ent ways to think about how individuals in
populations make contact. One is that peo-
ple behave like gas molecules with the rate
of contact being determined by density. If
people were pressed more closely together,
as in an urban environment, they would
contact each other more often than if they
were less densely distributed, as in a rural
environment. Hence, for diseases such as
measles, influenza, or mumps that spread by
airborne or droplet transmission, popula-

tion density plays a role in determining the
value of R,. Alternatively, contacts can be
selected, such as in sexual contacts or injec-
tion of intravenous drugs. In this case, R, is
determined more by social behavior. In
many cases, both density and social choice
will play a role in determining contact rates
and mixing patterns.

Regardless of how contacts arise, the sim-
plest assumption about the contact pattern
in a population is that of random mixing.
Figure 4-7 schematically represents ran-
dom mixing, with the figures being evenly
distributed in the space. Under the assump-
tion of random mixing, every person has an
equal chance of making contact with each
other person. Consequently, every person
also has an equal chance of being exposed to
infection because every person is equally
likely to make contact with an infectious per-
son. The assumption of equal exposure to in-
fection of people in the comparison groups,
and whether it is valid, is important in many
studies of interventions and risk factors af-
fecting susceptibility. As in the prior discus-
sion, we denote by ¢ the constant contact
rate that does not change over time in a ran-
domly mixing population.

RTOA R
%K@x
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R

A

Figure 4-7. Random mixing. Solid figures denote infective
people. Open figures denote susceptible people.
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STATES OF THE HOST POPULATION

Suppose we choose to model an infectious
disease by allowing people in the human
population to pass through three different
states (Fig. 4-8A,B). They start out suscep-
tible, denoted by X, then become infected
and infectious, denoted by Y, after which
they recover with immunity, denoted by Z.
Models of this type of infection process are
called SIR models for susceptible, infected,
recovered or removed. Other examples in-
clude SIS models, in which people recover
without immunity to become susceptible
again, and SIRS models, in which people ac-
quire immunity, but lose it again to become
susceptible. We use the notation XYZ here,
rather than SIR, because we use I for inci-
dence rate and R for incidence proportion.
If these are the only three states possible,
then each person in a population of N indi-
viduals is in one of these three states, where
X(z) is the number of susceptible people at
time #, Y(¢) is the number of infectives, and
Z(t) is the number of immunes. This simple
model ignores the latent and incubation pe-
riods, and assumes that infection, disease,
and infectiousness occur simultaneously.
This model could be a simplified representa-
tion of influenza, measles, or chickenpox.
There are two ways to enter and two ways

Y
cp—
N
A: Closed X
population Susceptible Infection
B: Open
population
Susceptible

to leave a population. Individuals can enter
a population by being born into it or immi-
grating. Individuals can leave a population
by dying or emigrating. In a closed popula-
tion, there are no births, immigration, deaths,
or emigration. We first consider a closed pop-
ulation of N initially susceptible people who
are assumed to be mixing randomly with
contact rate ¢ (Fig. 4—8A). The population
is analogous to a closed cohort. Initially, at
time ¢ = 0, everyone in the population is in
the susceptible state X.

DYNAMICS OF AN EPIDEMIC

Suppose that a microbe such as an influenza
virus is introduced into a closed population,
so that one person enters the infectious state,
Y (Fig. 4-9). Alternatively, an infectious per-
son or several infectious persons besides the
N initially susceptible might enter the popu-
lation. Here we consider a simple determin-
istic, mass mixing model of the spread of in-
fection. A deterministic, non-chaotic, model
always gives the same answer and usually
solves equations for populations rather than
for discrete individuals.

The infection spreads from the first infec-
tive to the average number R, of suscep-
tibles. If people recover at the rate 7, then
they are infectious on average for the time

Y
Infective

Figure 4 -8A,B. Transmission model for an infectious disease in a host population. The three com-
partments represent susceptible (X), infective (Y), and immune (Z) hosts at time z. The total host
population is of size N = X + Y + Z. Susceptible hosts become infected at an incidence rate (force
of infection) of cpY/N, where c is the contact rate, p is the transmission probability, and Y/N is
the prevalence of infective hosts at time £. The rate of recovery is r. Arrows represent transitions

in and out of compartments.
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Figure 4-9. Comparison of the spread of an infectious disease in a closed or open population. The
infectious agent is introduced into a population of N susceptibles. Susceptible people become in-
fected and infectious, then develop immunity. Top left: Epidemic in a closed population, low R,
The epidemic dies out before all susceptibles become infected. Top right: Epidemic in a closed pop-
ulation, higher R,. Everyone becomes infected during the epidemic. There are no infectives left as
the epidemic dies out. Bottom left: Epidemic followed by endemic persistence in an open popula-
tion, low R,. The infectious agent does not die out due to the supply of new susceptibles. Preva-
lence of susceptibles, infectives, and immune people is in dynamic equilibrium. The number of new
incident cases is steady. Bottom right: Epidemic followed by endemic persistence in an open pop-

ulation, high R,
Source: Halloran, 1998.

period d = 1/r. If R, > 1, the epidemic is ex-
pected to spread. The first infective eventu-
ally recovers with immunity into state Z,
while the infection spreads from those he or
she infected to more susceptibles. In Figure
4 -9, the number of infectives, Y(¢), initially
increases. As the epidemic spreads, the num-
ber of susceptibles, X(z), decreases, while
the number of people with immunity, Z(z),
begins to increase. Incidence and prevalence
of infection will increase until the number of
susceptibles available becomes a limiting fac-
tor. Then the number of new cases and the
prevalence begin to decrease until the mi-

crobe dies out and no people are left in the
infective compartment, Y(#). A microbe in a
closed population where people recover with
long-lasting immunity will inevitably die
out, because the key to persistence in a host
population is a continuous supply of suscep-
tibles. The susceptibles can be produced ei-
ther by births or immigration into the pop-
ulation, or by recovery without immunity or
by waning of immunity after it is acquired.
In this example of a closed population, how-
ever, no new susceptibles are produced.

The dynamics of the epidemic are de-
scribed by three differential or difference
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equations that express the rate of change of
the number of people in each of the three
states. The rate at time f at which people leave
the susceptible compartment X and become
infected is simply the incidence rate, I{t}, or
similarly the hazard rate or force of infection.
The prevalence of infectives at time ¢, P(¢),
is the number of infectious people, Y(¢), di-
vided by the size of the population N, or
Y(2)/N. The expression for the incidence rate
as a function of prevalence in the epidemic
is

Y
I(t) = cpP(t) = cp %

This is the dependent happening expres-
sion discussed in Chapter 5. The change in
the number of susceptibles, the population-
at-risk to become infected, AX(#), per small
interval of time, A, at time # equals the inci-
dence rate, I(z), times the size of the popula-
tion-at-risk, X(¢). The change in the number
of infectives, AY(2), is the difference between
the number of new infections and the num-
ber of infectives developing immunity. The
number of infectives developing immunity
in the time interval At is the change in the
number of immunes, AZ(z). The three dif-
ference equations for the epidemic model
are then

change in susceptibles:

%ﬁt) = —I(HX(H) = —CP%X(’:)’

change in infectives:

AY®) . Y(@)
Ar PN

X(t) — rY(z),

change in immunes:

AZ(1)
At

= rY(z).

More commonly, differential equations are
used, but we avoid the notation here.

We can associate aspects of the epidemic
process with common epidemiologic meas-
ures. An estimate of the incidence rate, I(t),

estimates cp Y(¢)/N. A cross-sectional study
to estimate prevalence, P(¢), of current in-
fection would yield an estimate of Y(z)/N.
The number of new infections in an interval
of time estimates [cp Y(2)/N]X(¢) At, the inci-
dence rate times the number at risk for the
event times the time interval. The epidemic
process of a disease producing long-lasting
immunity in a closed population is always
either increasing or decreasing. An impor-
tant consequence for conducting studies in
epidemics in closed populations is that there
is no stationary state of the disease process.
Thus epidemiologic methods, study designs,
or analytic methods that assume stationari-
ty of the disease process are not applicable
under epidemic conditions.

The epidemic process also depends on the
population biology. Since R, is the product
of the contact rate, the transmission proba-
bility, and the infectious period, in this
model, R, = ¢p/r. The expected number of
new cases per infective host decreases from
R, to R = Ryx, where x = X(¢)/N, the pro-
portion still susceptible at time ¢. The epi-
demic peaks and begins to decrease when R
is less than 1, so that X(#)/N is less than 1/R,,
that is, when the proportion of the popula-
tion still susceptible becomes less than the
reciprocal of the basic reproductive number.
Not all the susceptibles need to become in-
fected before the microbe dies out. The
greater R, the fewer susceptibles will be left
when the epidemic peaks and the fewer sus-
ceptibles will be left at the end of the epi-
demic (Fig. 4-10). Thus the incidence pro-
portion, or attack rate, after an epidemic
provides information on Ry, If an interven-
tion reduced some aspect of Ry, then the in-
tervention would result in the epidemic
peaking when a greater proportion of the
population was still susceptible, and fewer
people would become infected before the
epidemic died out.

TRANSMISSION IN AN
OPEN POPULATION

An open population can have people enter-
ing, leaving, or both. In an open population,
the susceptibles form a dynamic cohort with
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Figure 4-10. The attack rate as a function of the
basic reproductive number, R,

the population-at-risk changing over time
(see Fig. 4~8B). In an open population, if
the replenishment of susceptibles is fast
enough compared with the dynamics of the
microbe, then the microbe will not neces-
sarily die out. The microbe can invade the
population, establish itself, persist, and be-
come endemic. It is possible, however, that
the microbe will die out if the replenishment
of susceptibles is not fast enough in com-
parison to the spread of immunity to the mi-
crobe. Microbes can persist by hopping
from one population to another, then re-
turning to one where the susceptibles have
had time to replenish themselves.

When a disease is first introduced into a
population, there will be a period when the
dynamics are not stationary. As stated in the
section, Dynamics of an Epidemic, epidemi-
ologic methods that assume stationarity of
the disease process cannot be used during
the epidemic phase. If the infectious agent
has achieved a dynamic equilibrium, how-
ever, then some relations might be applica-
ble. An open population with a dynamic co-
hort at risk for infection is amenable to
many of the study designs regularly used in
dynamic cohorts. In choosing study designs
and methods of analysis, we need to consid-
er whether the dynamics of transmission are
at equilibrium or changing over time.

WITHIN HOST DYNAMICS

The dynamics of the infectious agent within
a host also can be described by dynamic

models (Antia et al. 1996, 1998, Pilyugin et
al. 1997). These models describe the inter-
action of the microbe with the immune cells
or antibodies that might attack it, and its
target cells within the host. Similar concepts
from population theory are used to model
the within-host dynamics of the infectious
agent and to model the infectious agent cir-
culating in the human population. For ex-
ample, R for a virus within a host describes
the number of new viral particles success-
fully produced by one virus particle. The va-
rious immune compartments such as T cells,
B cells, and memory cells can be included in
the dynamic models.

Chain Binomial Models

The deterministic, mass action, dynamic
models described above are useful for ex-
ploring scientific and biologic questions.
However, they have not been used much for
estimating quantities of interest. Chain bi-
nomial models are dynamic models devel-
oped from the simple binomial model by
assuming that infection spreads from indi-
vidual to individual in populations in dis-
crete units (i.e., individual “links” of the
chain) of time, producing infection chains
governed by the binomial (i.e., dichotomous
outcomes such as yes/no or newly infected/
not newly infected) probability distribution.
The expected distribution of infections in a
collection of populations after several units
of time can be calculated from the chained,
that is, sequential, application of the bino-
mial model. The Reed-Frost and Greenwood
models are examples of chain binomial
models. As mentioned before, the Reed-Frost
model assumes that exposure to two or more
infectious people at the same time are inde-
pendent exposures. The Greenwood model
assumes that exposure to two or more infec-
tious people at the same time is equivalent to
exposure to one infectious person.

As a simple example of the Reed-Frost
chain binomial model, consider spread of in-
fection in a group of three individuals, where
one person is initially infected and the other
two are initially susceptible (Table 4 -2). We
assume that the initial infective is no longer
infective after the first time unit. In the first
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Table 4-2 Chain Binomial Reed-Frost Model in Groups of Size 3 with 1 Initial

Infective and 2 Susceptibles

Chain Chain Probability atp =04 atp = 0.7 Total Infected
150 q? 0.360 0.090 1
15150 2pq? 0.288 0.126 2
1-1-1 2p%q 0.192 0.294 3
152 p? 0.160 0.490 3
Total 1 1.00 1.00

time unit, one of three things can happen:
neither of the susceptibles will become in-
fected; both of them will become infected; or
just one of them will become infected. The
probability that neither becomes infected is
the probability that both escape infection,
or g*. In this case, the chain ends, so the
probability of this chain is g% If both sus-
ceptibles become infected in the first time
unit, the chain also ends. The probability of
both becoming infected from the first expo-
sure is p2.

The probability that one person becomes
infected while the other does not is pg. Since
this can happen two ways, then the proba-
bility of just one being infected in the first
time unit is 2pq. If one of the susceptibles be-
comes infected in the first time unit, then this
person is the new infective who can expose
the last remaining susceptible. Exposure of
the last remaining susceptible can result in
two possible outcomes. Either the suscepti-
ble becomes infected or does not, with prob-
abilities p and q, respectively. The chained
probabilities then are 2pg X p = 2p?q and
2pg X g = 2pq?, respectively.

In Table 4-2 the chain probabilities are
calculated for two different values of p,
p = 0.4andp = 0.7. If we were to have 1000
groups of size three with one initial infec-
tive, at p = 0.4 we would expect 360 groups
to have just one infected, 288 to have two in-
fected, and 192 + 160 = 352 to have three
infected at the end. Similarly, at p = 0.7, we
would expect 90, 126, and 784, respective-
ly. Note that there are two different chains
by which all three people become infected. If
we were not able to observe the actual chains,
we would not know which path the chain
had taken. In this case, we would have only

final value data, that is, data on how many
were infected in each household at the end.
This is also called the final size distribution.

The R, in this model, assuming that the
duration of infectiousness is one time unit,
or d = 1, is R, = pN, or sometimes
R, = p(N — 1), if there is one initial infec-
tive. In this example, if p = 0.4, then
Ry = 04 X 2 = 08.If p = 0.7, then
Ry = 0.7 X 2 = 1.4.In deterministic models,
if Ry > 1, the epidemic will always take off.
If Ry < 1, the epidemic will never take off.
An index that makes more sense in the prob-
abilistic world is the probability that the epi-
demic will not take off.

The probability that an epidemic will not
spread from the initially infected people is
called the probability of no spread, denoted
by P,.. It can be calculated from the trans-
mission probability p, or escape probability,
g = 1 — p, the number of initially infected
people in the population Y, and the number
of initially susceptible people X,,.

The probability that a susceptible person
escapes infection from all Y, initial infec-
tives is ¢ 7°. The probability that all X, of the
susceptible people escape infection from all
of the infectives is P, = (g¥°)*°. In the above
example, with p = 0.4, the probability of no
spread is P, = (0.61)2 = 0.36. Withp = 0.7,
P,. = (0.3Y)? = 0.09. The terms minor and
major epidemics distinguish situations in
which there is little spread from the initial in-
fectives from situations in which an epidem-
ic gains momentum and is self-sustaining.

Chain binomial models can be used to es-
timate the transmission probability from
data gathered on each generation of infec-
tion or from the final distribution of infec-
tives within a collection of households or
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other small transmission units after an epi-
demic has occurred. Abbey (1952), Bailey
(1957), and Becker (1989) discuss chain bi-
nomial models. An important assumption
of the simple version of the Reed-Frost
model is that the households or mixing
groups are each independent of one anoth-
er. Below we present an extension of the
model that allows for interaction outside of
the households within the community.

Stochastic Models

Stochastic models, which incorporate ele-
ments of chance, are commonly used in in-
fectious disease modeling (Chiang 1980).
For example, the Reed-Frost model can be
simulated using a random number genera-
tor at each step for each person to decide
whether an exposed person becomes infect-
ed. In contrast, in deterministic (i.e., non-
stochastic), mass action models, fractions of
apopulation are assigned to a particular state
at any given time. In general, stochastic sim-
ulation models are useful for generating
simulated data with variability so that meth-
ods of analysis can be used and compared.
Stochastic computer simulations are espe-
cially useful in helping to design studies and
to develop new methods of analysis (see, for
example, Golm et al. 1999 or Longini et al.
1999). Deterministic models do not gener-
ate variability but can be used to understand
properties of the transmission system.

In a staged Markov model, individuals
rather than populations move through states.
Whether a person moves to the next state in
a given time unit has a certain probability
and is random. The Markov property means
that the probability of moving to the next
state is independent of the time already
spent in the current state. The relation be-
tween the stochastic formulation of epidem-
ic models and the deterministic formulation
has been studied in detail. In many situa-
tions, the deterministic model gives an aver-
age of the behavior of the stochastic model.
However, more situations lead to extinction
of infection in stochastic models than in de-
terministic models.

Complex Dynamic Models and Simulation

Many questions of interest require more com-
plex models than we can present here. What
are the age-related changes in infection and
disease? What is the advantage of using a tar-
geted versus an untargeted strategy? Will nat-
ural immunity wane if transmission is too
low? If many people are vaccinated, the in-
cidence of infection will decrease, so that the
average age of infection in the susceptibles
will increase. Some diseases, such as mumps,
chickenpox, and rubella, are more serious if
acquired at older ages. Thus the number of
total cases could decrease owing to a vacci-
nation program at the same time that the
number of serious cases would increase. For
example, rubella is a mild disease in children,
but it can result in congenital defects if a preg-
nant woman becomes infected. If many, but
not all, young people are vaccinated, then
transmission will be reduced. The people who
were not vaccinated will acquire rubella at a
later age than if no one was vaccinated (Knox
1980, Ukkonen and von Bonsdorff 1988).
Thus it is possible that the number of babies
born with congenital defects could increase,
even though fewer people contract rubella.
A similar concern about introducing vari-
cella vaccination in the United States was
raised. The question was whether vaccina-
tion, especially if the fraction vaccinated was
not high, could increase the number of pri-
mary chickenpox cases in older age groups
who have more severe morbidity. Halloran
and colleagues (1994) studied several differ-
ent scenarios and found that likely vaccina-
tion would not result in more severe cases.
Models including age (Schenzle 1984} and
mixing structures are required to study com-
plex questions such as this one. The general
rule is that a model has to contain the char-
acteristics related to the question you are ask-
ing or you cannot get an answer. Anderson
and May (1991) provide an extensive over-
view of deterministic models to study dynam-
ics of infectious disease and interventions.
Several caveats should be kept in mind in
considering the results of complex models
and computer simulations. Regardless of
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how complex the model is, it is always a sim-
plification of reality. Someone made choices
in choosing what would be included in the
model. These choices affect the results pro-
duced by the model. Models are excellent at
forcing us to make both our assumptions and
our ignorance explicit. Often, too few data
are available to estimate the parameters, and
the results usually underestimate the uncer-
tainty of the knowledge. Regardless of these
caveats, models are very useful in sharpening
our thinking and especially in gaining quali-
tative understanding of complex processes.

USING DYNAMIC CONCEPTS
TO INTERPRET STUDIES

We now illustrate how understanding the
transmission dynamics of an infection can
help interpret the results of a study. Two hy-
pothetical investigators who conducted sep-
arate studies of gonorrhea in a heterosexual
population of men and women come to dif-
ferent conclusions. The subscript 7 and f
denote men and women, respectively. The
first investigator conducted a study in clinics
using a sound sampling scheme with good
ascertainment. The results showed that the
incidence rate and number of new clinical

Prevalence Prevalence
in > In

women men
Incidence Prevalence
in oc in

women men
Incidence _Prevalence
in oc In

men women

cases of gonorrhea are higher in men than
women, I, > I. The investigator concluded
that gonorrhea is a greater problem in men
than women. The second investigator con-
ducted a population-based study that was
also well designed, and found that the pre-
valence of gonorrhea infection is higher in
women than in men, P;> P,,. She concluded
that the problem is greater in women. How
can transmission concepts help us think
about this paradox (Fig. 4-11)?

Assume that gonorrhea transmission has
been fairly constant over a period of time in
this population. Women can be infected with
gonorrhea for a long time before they de-
velop symptoms, whereas men develop
symptoms quickly and go for treatment.
Thus the infectious period in men is shorter
than in women, d,, is less than d;. Generally
the transmission probability from females
to males is lower than that from males to fe-
males. However, to make this point as sim-
ply as possible, we assume here that they are
equal, so that p;,, = p,,- = p. Assume that the
population has an equal number of men and
women, N,, = N; = N, that the rate of new
partners (contact rate) is the same in both,
¢ = ¢4 = ¢, and that men and women mix
randomly with the opposite sex.

therefore Incidence in men
> is greater than
incidence in
women

Figure 4-11. Relation of incidence rate and prevalence of gonorrhea in men and women.
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Prevalence of infection in women is high-
er than in men, largely because the duration
is longer, so there is a greater number of sus-
ceptible men than women who are at risk to
become new cases (1 — P,,) > (1 — P)). Sus-
ceptible men make the same number of con-
tacts per unit time and have the same trans-
mission probability as the women, but their
contact pool, the women, has a higher
prevalence of infection, so the incidence rate
is higher in the men, I, = cpP;> ¢pP,, = L.
The combined effect in the men of a higher
incidence rate and a greater proportion of
susceptibles results in a higher number of
new cases in men than in women. If we were
to conduct a study in a clinic based on inci-
dence rate or number of new cases, we would
conclude that the problem is more serious
in men. If we were to conduct a prevalence
study in the population, we might think the
problem is more pronounced in women.
The males and females are related through
the dynamic transmission process, and the
paradox is resolved.

If we can reduce the population preva-
lence in women, for example, by shortening
the duration of infection by early detection
and treatment (Thomas et al. 1998, 1999), it
would reduce the incidence rate in men, and
consequently the prevalence in men. This, in
turn, will reduce the incidence rate in women,
and consequently contribute further to de-
creasing the prevalence in women. The de-
pendence of events in infectious diseases re-
sults in interventions having greater overall
effects than would be expected from just the
direct effects in the individuals receiving the
intervention. We leave it as an exercise for
the reader to develop an expression for the
basic reproductive number for this situation.
What would happen to the rate of new part-
nerships (contact rate) c;and c,,, if there were
twice as many men as women? Consider
what would happen if the transmission prob-
ability from men to women, p,,, were twice
as high as that from women to men, py,.

NONRANDOM MIXING

We conclude this chapter by considering
some more ideas on contact processes and

patterns within populations. Contact pat-
terns play a central role in determining trans-
mission and exposure to infection. Most
populations do not mix randomly but are
composed of different types of small trans-
mission units or subpopulations that mix
with their own members differently than
with other subpopulations. The groups
could be sexual behavior groups, different
age groups within a school, or households in
a community. Individuals may belong to
several different mixing groups, including
families, schools, and neighborhoods. Qur
scientific questions and the purpose of our
investigation will determine in large part
how we choose to think about the structure
of the population and how the individuals
and groups within it mix. Are we modeling
the long-term effects of intervention? Do we
want a mode] of transmission that allows us
to estimate meaningful parameters from the
data we collect? Are we interested in under-
standing social networks?

Transmission Units within Populations

So far we have considered two possible mix-
ing patterns. One was random mixing in a
large population. The other, in the context
of the chain binomial model, was a collec-
tion of small populations that mixed ran-
domly within themselves but did not inter-
act with one another (Fig. 4-12A). Now we
consider a combination of the two with a
larger population being composed of small-
er transmission units. Individuals mix with
the others in their own transmission units in
one way and with members of the commu-
nity who belong to other small transmission
units in a different way. The transmission
units could be households, sexual partner-
ships, schools, workplaces, or day care cen-
ters, for example (Fig. 4-12B,C,D).

In the simplest case, an individual belongs
to one small transmission unit and interacts
randomly with the others in the population.
For example, a person may be in a steady
but nonmonogamous sexual partnership
and so have contact with the partner but
also sexual contact with other individuals in
the community at large. As another exam-
ple, a person may have contact in a family
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Figure 4-12A and B. A: Independent transmission units. B: Transmission units within a com-
munity.
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Figure 4-12C and D. C: Nonmonogamous sexual partnerships with contacts in the community.
D: Contact patterns in a community of households in four neighborhoods with one school.
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household, but also within the community
at large. When we define the community
structure in this way, it allows that a suscep-
tible individual can become infected if ex-
posed to an infected person within the
household as well as the possibility of being
infected in the community at large during
the course of an epidemic or over the dura-
tion of a study. Longini and Koopman (1982)
formulated a model that contains both the
probability of being infected within a house-
hold and within the community at large.
This model can be used for studying trans-
mission in sexual partnerships by assuming
that the households are all of size two. We
can allow for the fact that some people do
not have steady sexuval partners by allowing
for singles (households of size one) as well as
partnerships. This is the basis of the model
for the augmented study design discussed in
Chapter 5.

Subpopulations

Rather than small transmission units, we
may think of a population as divided into
large subgroups that mix more with their
own members than with other groups. For
example, we may observe two large com-
munities that have little interchange be-
tween them. Alternatively, we may divide a
population into two differently sexually ac-
tive subgroups that have some contact with
each other.

In a population composed of two mixing
groups, group 1 and group 2 (Fig. 4-13),
the contact pattern is described by a mixing
matrix that has the same number of rows and
columns as the number of mixing groups.
The entries in the matrix represent the con-
tact rates of individuals within and between
the groups. The contact rate of individuals of

Contact rate
Within group 1

group j with individuals of group i (4,j = 1,2)
is denoted by ¢;. The mixing pattern of two
groups is represented by the matrix,

(1
€21 €22

On the diagonals are the contact rates with-
in groups, ¢;; and ¢,,. The entries ¢;, and ¢,;
off the diagonals represent the contact rates
between the groups corresponding to that
row and column.

R, will be higher in the group with the
higher contact rate, assuming that the trans-
mission probability and infectious period
are the same in both groups. If an epidemic
occurs and there is contact between the two
groups, the epidemic in the group with the
higher contact rates will help drive the epi-
demic in the group with the lower rates. The
group with the higher R; would serve as a
core population for transmission. Thomas
and Tucker (1995) have reviewed this and
other concepts of core groups for sexually
transmitted diseases. The existence of a core
group has consequences for intervention
programs. It may be easy to reduce the av-
erage R, for the whole population below 1,
while R, in the core population remains
above 1, so that transmission will persist. In
infectious diseases, the chain is only as weak
as its strongest link.

Hethcote and York (1984) examined dif-
ferent strategies for reducing gonorrhea,
taking into account sex workers who acted
as a core group and their contacts within the
general population. They found that an in-
tervention program generally needs to be tar-
geted at the subpopulation with the higher
Ry, in this case, the core population of sex

Group 2

Contact rate
Within group 2

Figure 4-13. Mixing pattern of two groups in a population.
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workers, to have most effect. In general,
when planning interventions in situations
with heterogeneous transmission or levels of
infection, targeting therapy or prevention to
the groups with the highest transmission or
levels of infection is often most effective in
reducing infection in the population at large.
In the section, R in Macroparasitic Diseases,
we mentioned that often a small proportion
of the population has a very heavy parasite
burden. This is another example in which
targeting the therapy enhances the effective-
ness of the intervention.

Another approach to describing contact
patterns is social networks of people (Morris
and Kretzschmar 1997, Koopman et al.
2000). In this approach contacts are made
through pair-formation and dissociation
processes. The approach also allows that
several people can be in contact with each
other during an interval of time, and then
dissociate. The transmission patterns pro-
duced by this concurrency of contacts and
the resulting networks can be compared to
transmission in which all contacts are se-
quential. In general, epidemic spread is
more rapid if several people can make con-
tact simultaneously.

Like much else in infectious diseases, con-
tact patterns are often difficult to determine
and usually are not measured. When con-
ducting studies in infectious diseases where
transmission plays a role, it is important to
formulate explicitly the underlying assump-
tions that are being made with respect to
contact patterns and exposure to infection.
Since groups with different contact rates
and mixing patterns could have different
exposure to infection, consideration of the
contact patterns could be important for in-
terpreting measures of effect. Failure to take
into account unequal exposure to infection
in the groups being compared can produce
biased estimates of effect. In Chapter 5, we
demonstrate how differential contact rates
can affect estimates of effect.

SUMMARY

Several principles of transmission and dy-
namics are common to many infectious dis-

eases. These include the transmission prob-
ability, the basic reproductive number, con-
ditions for an epidemic, and the role of con-
tact and mixing patterns. The transmission
probability is a measure of the ability of a
microbe to spread from an infected to a sus-
ceptible host during a contact. The binomi-
al model of transmission is widely used to
quantify transmission concepts and to esti-
mate the transmission probability. The basic
reproductive number, R, describes the po-
tential of a microbe to spread in a popula-
tion. Dynamic models are used to under-
stand the spread of infection and the role of
interventions over time. Assumptions about
mixing and contact patterns influence the
interpretation of epidemiologic studies in
infectious diseases.

Dr. Halloran was partially supported in writing this
chapter by NIH grants R01-AI32042 and RO1-
AT40846. The mosquito image was used with permis-
sion from the American Museum of Natural History.
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