PRO5970 - Métodos de
Otimizacao Nao
Linear

Celma de Oliveira Ribeiro
2023



Optimization models
Main components
Decision variables: x

Objective function: f(x) (measure of the solution “quality”)
Constraints: g(x) <0 or h(x) =0
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According to Linearity
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According to variables

Discrete

Optimization problems

Continuous ]




Parameter randomness

Deterministic optimization ]

Optimization problems

Stochastic optimization




e objective and constraint functions f;(z,w) depend on optimization
Parameter randomness variable  and a random variable w
e w models

— parameter variation and uncertainty
— random variation in implementation, manufacture, operation

Optimization problems e value of w is not known, but its distribution is

e goal: choose = so that

— constraints are satisfied on average, or with high probability
— objective is small on average, or with high probability

Stochastic optimization
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Unconstrained ]

f(:C) _ e:c1+3rcg—0.1 + €x1—3:c2—0.1 + 6—:51—0.1
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According to the constraints

maximize xqxo
subjectto x5 + 4x5 = 1

Non linear programming

Equality constraints ]

Constrained

minimize f(xq1,xp) = a:% -+ x% + x120 — 311
subjectto x1,z0 >0

Inequality ]
constraints




According to the convexity (NLP)

Non convex https://www.sfu.ca/~ssurjano/optimization.html

Non linear programming

Equality constraints J

Inequality J
constraints

Unconstrained J




Our main focus

Non linear optimization problems




Table 1.1 Classification of optimization problems

Classification criterion

Optimization problem

Features

Mature of objective function
and/or constraints

Linear Linear objective function and
constraints

Monlinear MNonlinear objective unction
and/or constraints

Convex Convex objective function and
feasible set

Quadratic Cuadratic objective function
and linear constraints

Stochastic Probabilistically determined

problem variables and/or
parameters

Deterministic

Decision variables andfor
parameters are known

accurately
MNon smooth Either objective function or the
constraints, or both, are not
differentiable
MNature of the search space Discrete Discrete decision variables
Continuous Real decision variables

Mixed integer

Both real and integer decision
variables

Mature of the optimization
problem

Dynamic

Objective function varying
with time

Multi-objective

More than one objective
function

Single-objective

Exactly one objective function

Existence of constraints

Constrained

At least one constraint is
involved

Unconstrained

Mo constraints

SpringerBriefs in Applied Sciences and Technology
Computational Intelligence

Jagdish Chand Bansal - Prathu Bajpai -
Anjali Rawat - Atulya K. Nagar

Sine Cosine Algorithm
for Optimization




Table 1.1 Classification of optimization problems

Classification criterion Optimization problem Features
Mature of objective function Linear Linear objective function and
and/or constraints constraints

Monlinear MNonlinear objective unction
and/or constraints

Convex Convex objective function and
feasible set

Quadratic Cuadratic objective function
and linear constraints _

Stochastic Probabilistically determined
problem variables and/or
parameters

Deterministic Decision variables andfor
parameters are known
accurately

MNon smooth Either objective function or the
constraints, or both, are not
differentiable

SpringerBriefs in Applied Sciences and Technology
Computational Intelligence

Jagdish Chand Bansal - Prathu Bajpai -
Anjali Rawat - Atulya K. Nagar

MNature of the search space Discrete Discrete decision variables

Continuous Real decision variables

Mixed integer Both real and integer decision
variables
Mature of the optimization Dynamic Objective function varying
problem with time
Multi-objective More than one objective
function
Single-objective Exactly one objective function
Existence of constraints Constrained At least one constraint is
involved Sine Cosine Algorithm
Unconstrained No constraints
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Optimization methods

Traditional ] [ Stochastic




Optimization methods

Traditional J

e Start from a randomly chosen initial solution and use specific deterministic rules for changing the
solutions’ position in the search space.

* Most of them utilize the gradient information of the objective function.

* The initial solutions always follow the same path for the same starting position and converge to the fixed
final position, irrespective of the number of runs.

* Provide a mathematical guarantee that a given optimization problem can be solved with a required level
of accuracy within a finite number of steps.

 There exist sufficient literature on traditional optimization methods where different methods are
capable of handling various types of optimization problems.

* Sometimes fail to handle optimization problems.

* Usually, these methods rely on the properties like continuity, differentiability, smoothness, and
convexity of the objective function and constraints (if any). The absence of any of these properties
makes traditional methods incapable of handling such optimization problems.

* Moreover, there are optimization problems for which no information is available about the objective
function; these problems are referred as the black-box optimization problem. Traditional optimization
methods or deterministic methods also fail to handle such black-box problems.



Optimization methods

[ Stochastic

Stochastic or non-deterministic optimization methods contain inherent components of randomness and
are iterative in nature.

These methods utilize stochastic equations which are based on different stochastic processes and utilize
different probability distributions. The stochastic nature of these equations governs the path of the
solutions in the search space. In different runs of these algorithms, a solution can follow different paths,
despite having a fixed initial position.

Stochastic optimization methods do not always guarantee convergence to a fixed optimal position in the
search space.

In fact, these methods look for near optimal solution in a predefined fixed number of iterations.

N number of independent runs are simulated to ensure a statistical reliability to these methods, and in
general, the number of runs N =30 or 51 is used to support the claim of near optimal solution.

The trade-off for sacrificing the optimal solution by stochastic methods is the fast convergence speed, low
computational cost, and less time complexity.

Random number generators or pseudo-random number generators play an important role in the success of
the stochastic methods.



min  (z1 — 3)% + (22 — 2)*
s.a x7 — a2 <3

ro <1

37121

https://www.desmos.com/calculator?lang=pt-BR



Analyze the following sets

1. P={xeR|-4<x<1}U{xeR2<x <4}

4<x<1 }

2. W{X‘ER| EE

3. M = {x € R"|Ax < b}



fAz+ (1 =Ny <Af(x)+ (1 =AN)f(y)



 f(x) =<c,x>x€R"ceR"
. f(X) = max{X — Xp,0}
(x +5)?% se x<0
.f(X):{ (X—5)2 se x>0
Note that f(x) = min {(x +5)2, (x — 5)2}

. f(x) = max {(x +5), (x — 5)*}
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