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Some problems

The Transportation Problem with Volume Discounts
Determine an optimal plan for shipping goods from m sources to n destinations,

given supply and demand constraints.

• Assume shipping costs are linear on the volume

• Assume the shipping costs are not be fixed. Volume discounts sometimes are

available for large shipments

Entregar

Considere que a planta 1 oferece descontos de acordo com o volume. Há três faixas: 0 ≤ x < 20

, 20 ≤ x < 40 , 40 ≤ x e assuma que a cada faixa ganha-se um desconto de 5%
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Some problems

Investment problem - Integrated sugar and ethanol plants

Part of the bagasse is used to cover internal needs in steam and electricity,
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Some problems

Investment problem - Integrated sugar and ethanol plants

Modelling the steam and power utility streams as part of the process superstructure

would provide a way of describing these interdependencies, yet at the cost of

increasing the model complexity significantly.
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Some problems

Investment model
Suppose one has the opportunity to invest in n assets. Their future returns are

represented by random variables, R1, ...,Rn, whose expected values and covariances

are µi = E [Ri ], i = 1, ..., n and σij = Cov(Ri ,Rj), i , j = 1, ..., n, respectively,

estimated based on historical data. You want to find the portfolio of miinimum risk

(risk is the variance of the portfolio)
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Some problems

Let xi be the fraction of your wealth allocated to each asset

xi ≥ 0∑n
i=1 xi = 1

• The return of the portfolio is a random variable R(x) =
∑n

i=1 µixi

• The variance of the portfolio is:

var(R(x)) =
∑n

i=1

∑n
j=1 σijxixj = x tΣx

Σ is the covariance matrix

Usually the problem is modelled as

min
∑n

i=1

∑n
j=1 σijxixj∑n

i=1 µixi ≥ R0∑n
i=1 xi = 1

xi ≥ 0 i ∈ {1, 2, . . . n}

for a given R0
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Some problems

Figure 1: Solutions
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Problem of interest

Objective

Minimize f (x), x ∈ S ⊂ Rn

S: feasible set

f : Rn → R - objective function

min
x∈S

f (x)

Solution set

arg min
x∈Rn

{f (x)|x ∈ S}
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Basic concepts

Feasibility

1. A point x is feasible for (P) if it satisfies all the constraints. For an unconstrained

problem we will assume x ∈ Rn

2. The set of all feasible points forms the feasible region, or feasible set. Let us

denote it by S.

3. The goal of an optimization problem in minimization form, as above, is to find a

feasible point x∗ such that f (x∗) ≤ f (x) for any other feasible point x .
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Types of problems

Three general forms of the feasible set

• Unconstrained

• Equality constrained

• Inequality constrained
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Unconstrained Problem

General form

min
x∈S

f (x)

S is an open set (usually, but not always, S = Rn).

Example

min
x∈S

|x |

S = R

.
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Unconstrained Problem

Example 2
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Unconstrained problems

Example 3

min(α0,α1)f (α)

f (α0, α1) =
n∑

j=1

(
Yj − α0 − α1Xj

)2

Example 4

f (α) =
n∑

j=1

(
Yj − e(α×Xj )

)2
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Types of problems

Constrained problem
Given

x ∈ Rn - decision variables vector

f : Rn → R - objective function

gi e hi Constraints

min f (x)

s.a gi (x) ≤ 0 i ∈ {1, 2, . . .m}
hi (x) = 0 i ∈ {1, 2, . . . l}

Find

arg min
x∈Rn

{f (x)|x ∈ S} =

arg min
x∈Rn

{f (x)|gi (x) ≤ 0 hi (x) = 0}
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Constrained problem

Examples
Example 1

min
x∈S

|x |

S = {x ∈ R|x ≥ 7}

.

Example 2

max z = 3x1 - x2
s.a −3x1 +3x2 ≤ 6

−8x1 + 4x2 ≤ 4

xj ≥ 0 ∀j

• Plot the feasible set and the level curves of the objective function See:

https://www.desmos.com/calculator?lang=pt-BR

• What happens if f (x) = 3x1 + x2
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Constrained problem

Example 3

min (x1 − 3)2 + (x2 − 2)2

s.a x21 − x2 ≤ 3

x2 ≤ 1

x1 ≥ 1

Example 4

min (x1 − 2)2 + (x2 − 1)2

s.a x21 − x2 ≤ 0

x1 + x2 ≤ 2

Exercice: Plot the feasible set and the level curves for both problems
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Types of problems
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Types of problems
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Multiple global minimizers
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Types of problems

Example

min (x1 − 3)2 + (x2 − 4)2

s.a 5− x1 − x2 ≥ 0

−2, 5 + x1 − x2 ≤ 0

x1 ≥ 0 x2 ≥ 0
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Types of problems

Objective function

• Plot the feasible set

• Plot the level curves of the objective function
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Types of problems

Objective function
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Types of problems

What if...

min (x1 − 2)2 + (x2 − 2)2

s.a 5− x1 − x2 ≥ 0

−2, 5 + x1 − x2 ≤ 0

x1 ≥ 0 x2 ≥ 0

Celma de Oliveira Ribeiro



Types of problems

Objective function
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Types of problems

Objective function
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Types of problems

Constraints can affect the solution
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Non linear models are much more difficult to solve

• It is hard to distinguish between local and global optimum

• Optimal are not restricted to extreme points

• Different starting points may lead to different final solutions

• It may be difficult to find a feasible starting point

• It is difficult to satisfy equality constraints (and to keep them satisfied)

• The use of solvers is far from a simple task
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Some good news

• Relatively few algorithms implemented

• Solving non linear programs is difficult but not impossible.

• Looks for a simpler formulation

• Provide a good starting point

• Put resonable bounds on all variables

Celma de Oliveira Ribeiro



Identifying a solution

Global minimum
Vector x∗ is a global minimizer if

f (x∗) ≤ f (x) ∀x ∈ S

Local minimizer
A vector x∗ is a local minimizer if there is a neighborhood of V of x∗, such that

f (x∗) ≤ f (x) ∀x ∈ V ∩ S
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Concepts

Optimization problems

• according to the type of variable (continuous or discrete)

• according to constraints (constrained or unconstrained)

• optimal local versus global

• uncertainty in parameters (deterministic or stochastic)

• differentiability and convexity
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Convex sets

A set S ⊂ Rn is convex if

∀x , y ∈ S, ∀λ ∈ [0, 1] , λx + (1− λ)y ∈ S

A set is convex if, given any two points in the set, the line segment connecting them

lies entirely inside the set.
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Analyze the following sets

1. P = {x ∈ R| − 4 ≤ x ≤ 1} ∪ {x ∈ R|2 ≤ x ≤ 4}

2. W =

{
x ∈ R| −4 ≤ x ≤ 1

−1 ≤ x ≤ 4

}
3. M = {x ∈ Rn|Ax ≤ b}
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M = {x ∈ Rn|Ax ≤ b}

Let w ∈ M, y ∈ M and λ ∈ [0, 1]. Then

• Aw ≤ b ⇒ λA (w) ≤ λb

• Ay ≤ b ⇒ (1− λ)A (y) ≤ (1− λ) b

Ento:

• A (λw + (1− λ) y) = λAw + (1− λ)A (y) ≤

≤ λb + (1− λ) b = b
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Basic concepts

Convex functions
Let S ⊂ Rn be convex. A function f : S → R is convex if

1.

∀x , y ∈ S, ∀λ ∈ [0, 1] ,

f (λx + (1− λ) y) ≤ λf (x) + (1− λ)f (y)

2. The line segment connecting two points f (x1) and f (x2) lies entirely on or above

the function f .

3. The set of points lying on or above the function f is convex.
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The top two figures are convex functions. The first function is strictly convex. Bottom

figures are nonconvex functions.
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Analyse if the following functions are convex.

1. f (x) =< c, x > x ∈ Rn c ∈ Rn

2. f (X ) = max {X − X0, 0}

3. f (x) =

{
(x + 5)2 se x ≤ 0

(x − 5)2 se x > 0

Note that f (x) = min
{
(x + 5)2, (x − 5)2

}
4. f (x) = max

{
(x + 5)2, (x − 5)2

}
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Exercices
Let fl : Rn → R, l = 1, 2, . . . , r e f : Rn → R given as:

f (x) = maxl=1,2,...,r {fl (x)}

Verify: If fl is convex ∀l then f is convex
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Theorem

Let S ⊂ Rn be convex and f : S → R convex. Then

i. If f is convex in S, then there is at most one local minimum in S 1

ii. If f is convex to S and has a local minimum in S, then the local

minimum is also a global minimum.

iii. If f is strictly convex in S then it has at most one minimizer in S

If f is convex you just need to find a local minimum
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Algorithms

Algorithms fall into three families:

• Heuristics methods

- normally quick to execute but do not provide guarantees of optimality.

- Include ant colony, particle swarm, and evolutionary algorithms

- Some heuristics are stochastic in nature and have proof of convergence to an optimal

solution (e.g Simulated annealing and multiple random starts).

- No guarantee on the running time to reach optimality and there is no way to identify

when one has reached an optimum point.

• Approximate methods

- efficient algorithms that find approximate solutions to optimization problems

- can provide a guarantee of the solution being at most ϵ away from the optimal solution.

• Exact methods

- method of choice to solve an optimization problem to optimality.

- The computational effort grows (at least) polynomially with the problem size
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Important

1. Algorithms are usually iterative. In general you can only assure convergence to a

local minimum

2. Iterative algorithms obtain points with decreasing values of the objective function

at each step (or closer to satisfying constraints).

3. The choice of search directions, in general, aims to:

a move from the current solution in a direction that decreases the objective function and

maintains feasibility

b move from the current solution towards the optimal (minimizer)
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Convex problems

Definition

Let S ⊂ Rn a convex set and f : Rn → R convex on S, then the problem minx∈Sf (x)

is called a convex problem or convex optimization problem.
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Convex problems

Examples
Linear programming is always a convex problem

min ctx

s.t Ax = b

Dx ≤ d

x ≥ 0

Quadratic programming is a convex problem iff the matrix Q is positive semidefinite

min x tQx + ctx

s.t Ax = b

Dx ≤ d

x ≥ 0
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