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Constrained problems

PrGen
Consider problem

minimize f (x)

s.t gi (x) ≤ 0 i ∈ I = {1, 2, . . .m}
hi (x) = 0 i ∈ E = {1, 2, . . . l}

Definition
x∗ is KKT point if there are lagrange multipliers vectors λ∗ and µ∗, such that[

x∗ λ∗ µ∗
]t

satisfies:

∇xL (x∗, λ∗, µ∗) = 0

g (x∗) ≤ 0

h (x∗) = 0

µ∗ ≥ 0

µigi (x
∗) = 0 ∀i ∈ I
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Quadratic Programming

Quadratic Programming

Quadratic Programming represents a special class of nonlinear programming

in which the objective function is quadratic and the constraints are linear.

The general quadratic problem (QP) can be stated as

min
x∈Rn

1

2
x tQx + ctx

s.t Ax ≤ a

Bx = b

with Q ∈ Rn×n a symetric matrix (not necessarily positive definite), c ∈ Rn,

A ∈ Rm×n,a ∈ Rm, B ∈ R×n,b ∈ Rl
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Quadratic Programming - SQP

Example

Consider the feasible set: X =

{
x ∈ R

∣∣∣∣∣ 2x1 + 4x2 ≤ 28 x1 + x2 ≤ 10

x1 ≤ 10 x2 ≤ 6 x1 ≥ 0 x2 ≥ 0

}

Figure 1: lecture notes - Professor Scott Moura - University of California, Berkeley
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Quadratic Programming

• There is a profound interest in QP problems and their real-time computing.

• Practical engineering applications frequently lead to large-scale QP problems.

• The solution of nonlinear optimization problems can be attained through methods of

quadratic optimization and techniques of numerical linear algebra.

• Powerful and reliable techniques/codes are available to solve convex QPs

• Numerical methods depend on

• the properties of the matrix Q

• The presence of inequalities

• The structure of the matrices (sparsity, block structure)

• if the are only bound constraints xmin ≤ x ≤ xmax
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Quadratic Programming

• A positive definite quadratic programming (QP) with linear constraints can be

solved (or shown to be unfeasible) in polynomial time (similar to linear

programming)

• If the problem is subject only to equality constraints, A is full rank, and Q is

positive definite on {h : Ah = 0} then the unique solution is obtained via solution

of a linear system of equations.

• QPs are [strictly] convex programs provided that the matrix Q in the objective

function is positive semi-definite [positive definite]

• Nonconvex QPs, in which Q is an indefinite matrix, can be more challenging

because they can have several stationary points and local minima

• These problems are seldon solved analytically
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Quadratic Programming

According to matrix Q, different possibilities

Figure 2: lecture notes from Professor Scott Moura - University of California, Berkeley
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Quadratic Programming

According to matrix Q, different possibilities

Figure 3: lecture notes from Professor Scott Moura - University of California, Berkeley
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Quadratic Programming

Equality-Constrained quadratic programs

min
x∈Rn

1

2
x tQx + ctx

s.t Ax = b

Exercice Consider

min f (x) = 2x21 − 4x1 + 2x22 − 6x2

x1 + x2 = 3

−2x1 + x2 = 2

• Write matrices Q, c, A, and b

• Determine the first order necessary conditions for x∗ to be a solution of the

problem
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Quadratic Programming

Example

Consider

min f (x) = (x1 − 2)2 + 2(x2 − 1)2 − 6

x1 + 4x2 = 3

f (x) = x21 + 2x22 − 4x1 − 4x2

In this case

Q =

[
2 0

0 4

]
c =

[
−4

−4

]

A =
[

1 4
]

b = [3]
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Quadratic Programming
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Quadratic Programming

Let’s write KKT conditions for this problem

Lagrangian

L (x , λ) =
1

2
x tQx + ctx + λt(Ax − b)

L(x , λ) = f (x) + λt(Ax − b)

L(x , λ) = x21 + 2x22 − 4x1 − 4x2 + λ(x1 + 4x2 − 3)

KKT conditions {
∇xL (x∗, λ∗) = 0

Ax∗ = b

This can be written as a linear system
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Quadratic Programming

For the example, the system is given as 2 0

0 4

1

4

1 4 0


 x∗1

x∗2
λ∗

 =

 4

4

3


This is a first order necessary condition for a solution.

If Q is positive semi-definite, the problem is convex and the solution of the system

gives an optimal solution for the quadratic problem.
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Quadratic Programming

Equality-Constrained quadratic programs

There are two cases:

a) Q is symmetric and positive semi-definite ⇒ QP is convex ⇒ the solution of the

KKT-conditions is a solution for the QP.

b) Q is symmetric but not positive semi-definite ⇒ QP is non-convex.

Lagrange function: L (x , λ) = 1
2
x tQx + ctx + λt(Ax − b)

KKT conditions {
∇xL (x∗, λ∗) = 0

Ax∗ = b
⇒

[
Q At

A 0

] [
x

λ

]
=

[
−c

b

]

• The optimization problem is reduced to the solution of a (possibly large-scale)

system of linear equations .

• The matrix is symmetric, but it may or may not be positive definite
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Quadratic Programming

Example

Solve the following QP problem:

minf (x1; x2) = x21 + x22

subject to

x1 + x2 = 5

• Write the problem in the matrix form

• The problem is convex?

• Write the necessary conditions (KKT)

• Solve the resulting system. The solution is optimal?
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Quadratic Programming

Plotting the problem

Figure 4: Level curves and constraint
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Quadratic Programming

Writing the problem in the matrix form:

Necessary conditions
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Quadratic Programming

Writing the problem in the matrix form:

Necessary conditions
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Quadratic Programming

The solution of the system (KKT conditions) is: x1 = 2, 5; x2 = 2 : 5; λ = −5

Verify that f (x1, x2) is convex and conclude about optimality
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Quadratic Programming

Entrega aula

Dê um exemplo (x ∈ R3) de programação quadrática com restrições de igualdade e

repita o exemplo anterior.
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Quadratic Programming

Quadratic programs with inequalities

min
x∈Rn

1

2
x tQx + ctx

Aix ≤ ai , i ∈ {1, 2, ...m}
Ajx = bj j ∈ {m + 1, ...m + p}

Q is a symmetric n × n positive semi-definite matrix

How to solve QP problems?

• The majority of methods for solving quadratic programs can be categorized into

either active-set methods or interior methods.

• Briefly, active-set methods are iterative methods that solve a sequence of

equality-constrained quadratic subproblems.

• The goal of the method is to predict the active set, the set of constraints that are

satisfied with equality, at the solution of the problem.

• The conventional active-set method is divided into two phases; the first focuses

on feasibility, while the second focuses on optimality.

Wong, E. (2011). Active-set methods for quadratic programming. UC San Diego
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Quadratic Programming

Active Set Methods

The basic idea is as follows:

• Given a point xk ∈ S, we define a subproblem of minimization with equality

constraints determined by the active constraints at xk . (Keep in mind the

definition of active constraints)

• If xk is not optimal for this subproblem, we continue trying to solve the

subproblem by choosing a feasible descent direction and performing a linear search

Taking this step may involve adding one or more constraints. If this happens, the

subproblem changes, and we continue working with a new subproblem.

• If xk is the optimum of the subproblem, we test if xk is the optimal solution of

the problem. If it is not, we choose a new feasible descent direction and perform

a linear search to determine xk+1. Also, with this shift, we switch to a new

subproblem, and the described process repeats.
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Quadratic programming

Active Set Method

In general an active-set algorithm has the following structure: (from wikipedia!!!)

• Find a feasible starting point

• repeat until ”optimal enough”

• solve the equality problem defined by the active set (approximately)

• compute the Lagrange multipliers of the active set

• remove a subset of the constraints with negative Lagrange multipliers

• search for infeasible constraints
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Quadratic Programming

Active Set Method

The approach is similar to unconstrained programming

• Start from an arbitrary point x0

• Find the next iterate by setting xk+1 = xk + αkdk where αk is a step-length and
dk is search direction.

This direction is obtained by solving a QP equality
constrained subproblem.

• The subproblem solved to obtain dk will have a subset of constraints imposed as

equalities and referred as the working set, Wk , consisting of all m equality constraints

and some of the active inequalities.

• New iterates are calculated and the working set is modified until the optimality

conditions are satisfied, or all Lagrange multipliers are positive (the KKT conditions are

satisfied).
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Quadratic Programming

For a given x∗, the active set is

A(x∗) = {i ∈ {1, 2, ...m}|Aix
∗ = ai} ∪ {i ∈ {m + 1, ...m + p}|Aix

∗ = bi}

This will be initial the working set Wk

Idea of the algorithm

• For the current (feasible) point, xk , check whether xk minimizes the quadratic

objective function in the subspace defined by the working set, i.e. the Lagrange

multipliers corresponding to the inequality constraints are non negative. (that is,

verify the KKT conditions).

• If the optimality conditions are not satisfied, we compute a direction, dk , to move

to the next point xk+1 = xk + dk

Direction finding problem at iteration k:

min
x∈Rn

1

2
(xk + dk )

tQ(xk + dk ) + ct(xk + dk )

Ai (xk + dk ) = ai , i ∈ A(xk )
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Quadratic Programming

Direction finding problem at iteration k:

This problem can be formulated as

min
x∈Rn

1

2
d t
kQdk + g tdk

Aidk = 0, i ∈ A(xk )

with gk = Qxk + c

An equality constrained QP !!!!

The solution dk of this quadratic problem is obtained solving the following system:[
Q Ãt

Ã 0

] [
d

λ

]
=

[
−gk
0

]

with Ã being the matrix having the rows ati , for all indices i in the working set

Celma de Oliveira Ribeiro



Quadratic Programming

• If dk ̸= 0 we shall move in this direction.

• If dk = 0 we have to check for optimality, i.e. all the Lagrange multipliers for the

inequality constraints must be non negative.

Case 1 dk = 0

if the lagrange multipliers λj ≥ 0 then Stop and return the current point xk

if there exists λj < 0, find the most negative λj and remove constraint j from the

working set Wk . Keep the same point for the next step: xk+1 = xk
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Quadratic Programming

Case 2 dk ̸= 0

In this case we shall decide about the step lenght αk

The constraints in Wk are satisfied for any αk . The step lenght will be determined

such that xk + αkdk satisfies the constraints j /∈ Wk .

The step length is given as

(Try to believe...)

• If αk < 1, the movement along dk was blocked by some constraint that does not

belong to Wk . This is a blocking constraint and will be added to the new

working set.

• If αk = 1 no new constraints are active for xk + αkdk and there are no blocking

constraints at this stage.

Example
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Quadratic Programming

Example

minf (x1; x2) = x21 + x22 − 4x1 − 4x2

subject to

x1 + x2 ≤ 2

x1 − 2x2 ≤ 2

−x1 − x2 ≤ 1

−2x1 + x2 ≤ 2
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Quadratic Programming

Algorithm

Celma de Oliveira Ribeiro



Quadratic Programming

Algorithm
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Quadratic Programming

Algorithm
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Quadratic Programming

Important issues:

• How to determine a starting point x0 for the active-set algorithm.

• Active set methods require an efficient strategy for the determination of active

sets at each xk .
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Quadratic Programming

Advantages of active set methods

• Since only active constraints are considered at each iteration xk , the QP with

equality (QPe) usually has only a few constraints and can be solved fast. Thus,

Large-scale (QPi) ’s are easy to solve.

• In many cases the active set varies slightly from step-to-step, making active set

method efficient. ⇒ Data obtained from the current QPE can be used to solve

the next QPE known as warm starting.

• All iterates xk are feasible to (QP)I . This is an important property, e.g, in

Sequential Quadratic Programming.

Disadvantages of active set methods

• Since the active-set Ak may vary from step to step, the structure and properties,

e.g. sparsity, of constraint matrices may change.

• ASM may become slower near to the optimal solution;.

• For some problems ASM can be computationally expensive.
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