PRO 5961 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro
Aula 9-2023
Quadratic programming

Departamento de Engenharia de Produção
Universidade de São Paulo

Constrained problems

PrGen

Consider problem

$$
\begin{array}{ccc}
& \operatorname{minimize} f(x) & \\
\text { s.t } & g_{i}(x) \leq 0 & \mathrm{i} \in \mathcal{I}=\{1,2, \ldots m\} \\
& h_{i}(x)=0 & \mathrm{i} \in \mathcal{E}=\{1,2, \ldots l\}
\end{array}
$$

Definition
x^{*} is KKT point if there are lagrange multipliers vectors λ^{*} and μ^{*}, such that
$\left[\begin{array}{lll}x^{*} & \lambda^{*} & \mu^{*}\end{array}\right]^{t}$ satisfies:

$$
\begin{array}{lll}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) & =0 \\
g\left(x^{*}\right) & \leq 0 & \\
h\left(x^{*}\right) & =0 \\
\mu^{*} & \geq 0 & \\
\mu_{i} g_{i}\left(x^{*}\right) & =0 \quad \forall i \in \mathcal{I}
\end{array}
$$

Quadratic Programming

Quadratic Programming

Quadratic Programming represents a special class of nonlinear programming in which the objective function is quadratic and the constraints are linear.

The general quadratic problem (QP) can be stated as

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{t} Q x+c^{t} x \\
& \text { s.t } \quad A x \leq a \\
& B x=b
\end{aligned}
$$

with $Q \in \mathbb{R}^{n \times n}$ a symetric matrix (not necessarily positive definite), $c \in \mathbb{R}^{n}$, $A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^{m}, B \in \mathbb{R}^{\times n}, b \in \mathbb{R}^{\prime}$

Quadratic Programming - SQP

Example

Consider the feasible set: $\mathbb{X}=\left\{\begin{array}{l|l}x \in \mathbb{R} & \begin{array}{cc}2 x_{1}+4 x_{2} \leq 28 & x_{1}+x_{2} \leq 10 \\ x_{1} \leq 10 & x_{2} \leq 6\end{array} \quad x_{1} \geq 0 \quad x_{2} \geq 0\end{array}\right\}$

Figure 2: An interior optimum [LEFT] and boundary optimum [RIGHT] for a QP solved graphically.

Figure 1: lecture notes - Professor Scott Moura - University of California, Berkeley

Quadratic Programming

- There is a profound interest in QP problems and their real-time computing.

Quadratic Programming

- There is a profound interest in QP problems and their real-time computing.
- Practical engineering applications frequently lead to large-scale QP problems.

Quadratic Programming

- There is a profound interest in QP problems and their real-time computing.
- Practical engineering applications frequently lead to large-scale QP problems.
- The solution of nonlinear optimization problems can be attained through methods of quadratic optimization and techniques of numerical linear algebra.

Quadratic Programming

- There is a profound interest in QP problems and their real-time computing.
- Practical engineering applications frequently lead to large-scale QP problems.
- The solution of nonlinear optimization problems can be attained through methods of quadratic optimization and techniques of numerical linear algebra.
- Powerful and reliable techniques/codes are available to solve convex QPs

Quadratic Programming

- There is a profound interest in QP problems and their real-time computing.
- Practical engineering applications frequently lead to large-scale QP problems.
- The solution of nonlinear optimization problems can be attained through methods of quadratic optimization and techniques of numerical linear algebra.
- Powerful and reliable techniques/codes are available to solve convex QPs
- Numerical methods depend on
- the properties of the matrix Q
- The presence of inequalities
- The structure of the matrices (sparsity, block structure)
- if the are only bound constraints $x_{\text {min }} \leq x \leq x_{\text {max }}$

Quadratic Programming

- A positive definite quadratic programming (QP) with linear constraints can be solved (or shown to be unfeasible) in polynomial time (similar to linear programming)

Quadratic Programming

- A positive definite quadratic programming (QP) with linear constraints can be solved (or shown to be unfeasible) in polynomial time (similar to linear programming)
- If the problem is subject only to equality constraints, A is full rank, and Q is positive definite on $\{h: A h=0\}$ then the unique solution is obtained via solution of a linear system of equations.

Quadratic Programming

- A positive definite quadratic programming (QP) with linear constraints can be solved (or shown to be unfeasible) in polynomial time (similar to linear programming)
- If the problem is subject only to equality constraints, A is full rank, and Q is positive definite on $\{h: A h=0\}$ then the unique solution is obtained via solution of a linear system of equations.
- QPs are [strictly] convex programs provided that the matrix Q in the objective function is positive semi-definite [positive definite]

Quadratic Programming

- A positive definite quadratic programming (QP) with linear constraints can be solved (or shown to be unfeasible) in polynomial time (similar to linear programming)
- If the problem is subject only to equality constraints, A is full rank, and Q is positive definite on $\{h: A h=0\}$ then the unique solution is obtained via solution of a linear system of equations.
- QPs are [strictly] convex programs provided that the matrix Q in the objective function is positive semi-definite [positive definite]
- Nonconvex QPs, in which Q is an indefinite matrix, can be more challenging because they can have several stationary points and local minima

Quadratic Programming

- A positive definite quadratic programming (QP) with linear constraints can be solved (or shown to be unfeasible) in polynomial time (similar to linear programming)
- If the problem is subject only to equality constraints, A is full rank, and Q is positive definite on $\{h: A h=0\}$ then the unique solution is obtained via solution of a linear system of equations.
- QPs are [strictly] convex programs provided that the matrix Q in the objective function is positive semi-definite [positive definite]
- Nonconvex QPs, in which Q is an indefinite matrix, can be more challenging because they can have several stationary points and local minima
- These problems are seldon solved analytically

Quadratic Programming

According to matrix Q , different possibilities

Figure 3: Visualizations of stationary points of different nature. In each case, the objective functions take the form $f\left(x_{1}, x_{2}\right)=x^{T} Q x$ and have stationary points at the origin $\left(x_{1}^{\dagger}, x_{2}^{\dagger}\right)=(0,0)$, denoted by the red star. The Hessian for each case are: Local Minimum $Q=[32 ; 23]$, Local Maximum $Q=[-21 ; 1-2]$.

Figure 2: lecture notes from Professor Scott Moura - University of California, Berkeley

Quadratic Programming

According to matrix Q , different possibilities

Figure 3: lecture notes from Professor Scott Moura - University of California, Berkeley

Quadratic Programming

Equality-Constrained quadratic programs

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{t} Q x+c^{t} x \\
\text { s.t } \quad A x=b
\end{gathered}
$$

Exercice Consider

$$
\begin{aligned}
\min f(x)= & 2 x_{1}^{2}-4 x_{1}+2 x_{2}^{2}-6 x_{2} \\
& x_{1}+x_{2}=3 \\
& -2 x_{1}+x_{2}=2
\end{aligned}
$$

- Write matrices $\mathrm{Q}, \mathrm{c}, \mathrm{A}$, and b
- Determine the first order necessary conditions for x^{*} to be a solution of the problem

Quadratic Programming

Example
Consider

$$
\begin{aligned}
\min f(x)= & \left(x_{1}-2\right)^{2}+2\left(x_{2}-1\right)^{2}-6 \\
& x_{1}+4 x_{2}=3
\end{aligned}
$$

Quadratic Programming

Example
Consider

$$
\begin{gathered}
\min f(x)=\left(x_{1}-2\right)^{2}+2\left(x_{2}-1\right)^{2}-6 \\
x_{1}+4 x_{2}=3 \\
f(x)=x_{1}^{2}+2 x_{2}^{2}-4 x_{1}-4 x_{2}
\end{gathered}
$$

Quadratic Programming

Example
Consider

$$
\begin{gathered}
\min f(x)=\left(x_{1}-2\right)^{2}+2\left(x_{2}-1\right)^{2}-6 \\
x_{1}+4 x_{2}=3 \\
f(x)=x_{1}^{2}+2 x_{2}^{2}-4 x_{1}-4 x_{2}
\end{gathered}
$$

In this case

$$
\begin{aligned}
& Q=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right] \quad c=\left[\begin{array}{l}
-4 \\
-4
\end{array}\right] \\
& A=\left[\begin{array}{ll}
1 & 4
\end{array}\right] \quad b=[3]
\end{aligned}
$$

Quadratic Programming

Let's write KKT conditions for this problem
Lagrangian

$$
\begin{gathered}
\mathcal{L}(x, \lambda)=\frac{1}{2} x^{t} Q x+c^{t} x+\lambda^{t}(A x-b) \\
\mathcal{L}(x, \lambda)=f(x)+\lambda^{t}(A x-b)
\end{gathered}
$$

Quadratic Programming

Let's write KKT conditions for this problem
Lagrangian

$$
\begin{gathered}
\mathcal{L}(x, \lambda)=\frac{1}{2} x^{t} Q x+c^{t} x+\lambda^{t}(A x-b) \\
\mathcal{L}(x, \lambda)=f(x)+\lambda^{t}(A x-b) \\
\mathcal{L}(x, \lambda)=x_{1}^{2}+2 x_{2}^{2}-4 x_{1}-4 x_{2}+\lambda\left(x_{1}+4 x_{2}-3\right)
\end{gathered}
$$

Quadratic Programming

Let's write KKT conditions for this problem
Lagrangian

$$
\begin{gathered}
\mathcal{L}(x, \lambda)=\frac{1}{2} x^{t} Q x+c^{t} x+\lambda^{t}(A x-b) \\
\mathcal{L}(x, \lambda)=f(x)+\lambda^{t}(A x-b) \\
\mathcal{L}(x, \lambda)=x_{1}^{2}+2 x_{2}^{2}-4 x_{1}-4 x_{2}+\lambda\left(x_{1}+4 x_{2}-3\right)
\end{gathered}
$$

KKT conditions

$$
\begin{cases}\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right) & =0 \\ A x^{*} & =b\end{cases}
$$

This can be written as a linear system

Quadratic Programming

For the example, the system is given as

$$
\left[\begin{array}{cc|c}
2 & 0 & 1 \\
0 & 4 & 4 \\
\hline 1 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*} \\
\lambda^{*}
\end{array}\right]=\left[\begin{array}{c}
4 \\
4 \\
\hline 3
\end{array}\right]
$$

This is a first order necessary condition for a solution.
If Q is positive semi-definite, the problem is convex and the solution of the system gives an optimal solution for the quadratic problem.

Quadratic Programming

Equality-Constrained quadratic programs
There are two cases:
a) Q is symmetric and positive semi-definite $\Rightarrow Q P$ is convex \Rightarrow the solution of the KKT-conditions is a solution for the QP.
b) Q is symmetric but not positive semi-definite $\Rightarrow Q P$ is non-convex.

Quadratic Programming

Equality-Constrained quadratic programs
There are two cases:
a) Q is symmetric and positive semi-definite $\Rightarrow Q P$ is convex \Rightarrow the solution of the KKT-conditions is a solution for the QP.
b) Q is symmetric but not positive semi-definite $\Rightarrow Q P$ is non-convex.

Lagrange function: $\mathcal{L}(x, \lambda)=\frac{1}{2} x^{t} Q x+c^{t} x+\lambda^{t}(A x-b)$
KKT conditions

$$
\begin{gathered}
\left\{\begin{array}{lll}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right) & = & 0 \\
A x^{*}
\end{array} \Rightarrow b\right.
\end{gathered} \begin{aligned}
& {\left[\begin{array}{cc}
Q & A^{t} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-c \\
b
\end{array}\right]}
\end{aligned}
$$

Quadratic Programming

Equality-Constrained quadratic programs
There are two cases:
a) Q is symmetric and positive semi-definite $\Rightarrow Q P$ is convex \Rightarrow the solution of the KKT-conditions is a solution for the QP.
b) Q is symmetric but not positive semi-definite $\Rightarrow Q P$ is non-convex.

Lagrange function: $\mathcal{L}(x, \lambda)=\frac{1}{2} x^{t} Q x+c^{t} x+\lambda^{t}(A x-b)$
KKT conditions

$$
\begin{gathered}
\left\{\begin{array}{lll}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right) & = & 0 \\
A x^{*}
\end{array} \Rightarrow b\right.
\end{gathered} \begin{aligned}
& {\left[\begin{array}{cc}
Q & A^{t} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-c \\
b
\end{array}\right]}
\end{aligned}
$$

- The optimization problem is reduced to the solution of a (possibly large-scale) system of linear equations.
- The matrix is symmetric, but it may or may not be positive definite

Quadratic Programming

Example

Solve the following QP problem:

$$
\operatorname{minf}\left(x_{1} ; x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

subject to

$$
x_{1}+x_{2}=5
$$

- Write the problem in the matrix form
- The problem is convex?
- Write the necessary conditions (KKT)
- Solve the resulting system. The solution is optimal?

Quadratic Programming

Plotting the problem

Figure 1.1: The contour plot of $f\left(x_{1}, x_{2}\right)$ and the constraint
Figure 4: Level curves and constraint

Quadratic Programming

Plotting the problem

Figure 1.1: The contour plot of $f\left(x_{1}, x_{2}\right)$ and the constraint
Figure 4: Level curves and constraint

Quadratic Programming

Writing the problem in the matrix form:

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{T} \mathbf{x} \\
{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=5}
\end{gathered}
$$

Quadratic Programming

Writing the problem in the matrix form:

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \mathbf{x}+\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{T} \mathbf{x} \\
{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=5}
\end{gathered}
$$

Necessary conditions

The necessary condition for optimum is obtained from the linear system given by:

$$
\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]
$$

Quadratic Programming

The necessary condition for optimum is obtained from the linear system given by:

$$
\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]
$$

8

The solution of the system (KKT conditions) is: $x_{1}=2,5 ; x_{2}=2: 5 ; \lambda=-5$
Verify that $f\left(x_{1}, x_{2}\right)$ is convex and conclude about optimality

Quadratic Programming

Entrega aula
Dê um exemplo $\left(x \in \mathbb{R}^{3}\right)$ de programação quadrática com restrições de igualdade e repita o exemplo anterior.

Quadratic Programming

Quadratic programs with inequalities

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{t} Q x+c^{t} x \\
A_{i} x \leq a_{i}, \quad i \in\{1,2, \ldots m\} \\
A_{j} x=b_{j} \quad j \in\{m+1, \ldots m+p\}
\end{gathered}
$$

Q is a symmetric $n \times n$ positive semi-definite matrix

How to solve QP problems?

- The majority of methods for solving quadratic programs can be categorized into either active-set methods or interior methods.
- Briefly, active-set methods are iterative methods that solve a sequence of equality-constrained quadratic subproblems.
- The goal of the method is to predict the active set, the set of constraints that are satisfied with equality, at the solution of the problem.
- The conventional active-set method is divided into two phases; the first focuses on feasibility, while the second focuses on optimality.

Wong, E. (2011). Active-set methods for quadratic programming. UC San Diego

Quadratic Programming

Active Set Methods
The basic idea is as follows:

- Given a point $x_{k} \in S$, we define a subproblem of minimization with equality constraints determined by the active constraints at x_{k}. (Keep in mind the definition of active constraints)

Quadratic Programming

Active Set Methods

The basic idea is as follows:

- Given a point $x_{k} \in S$, we define a subproblem of minimization with equality constraints determined by the active constraints at x_{k}. (Keep in mind the definition of active constraints)
- If x_{k} is not optimal for this subproblem, we continue trying to solve the subproblem by choosing a feasible descent direction and performing a linear search Taking this step may involve adding one or more constraints. If this happens, the subproblem changes, and we continue working with a new subproblem.

Quadratic Programming

Active Set Methods

The basic idea is as follows:

- Given a point $x_{k} \in S$, we define a subproblem of minimization with equality constraints determined by the active constraints at x_{k}. (Keep in mind the definition of active constraints)
- If x_{k} is not optimal for this subproblem, we continue trying to solve the subproblem by choosing a feasible descent direction and performing a linear search Taking this step may involve adding one or more constraints. If this happens, the subproblem changes, and we continue working with a new subproblem.
- If x_{k} is the optimum of the subproblem, we test if x_{k} is the optimal solution of the problem. If it is not, we choose a new feasible descent direction and perform a linear search to determine x_{k+1}. Also, with this shift, we switch to a new subproblem, and the described process repeats.

Quadratic programming

Active Set Method
In general an active-set algorithm has the following structure: (from wikipedia!!!)

- Find a feasible starting point
- repeat until "optimal enough"
- solve the equality problem defined by the active set (approximately)
- compute the Lagrange multipliers of the active set
- remove a subset of the constraints with negative Lagrange multipliers
- search for infeasible constraints

Quadratic Programming

Active Set Method

The approach is similar to unconstrained programming

- Start from an arbitrary point x_{0}
- Find the next iterate by setting $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ where α_{k} is a step-length and d_{k} is search direction.

Quadratic Programming

Active Set Method

The approach is similar to unconstrained programming

- Start from an arbitrary point x_{0}
- Find the next iterate by setting $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ where α_{k} is a step-length and d_{k} is search direction. This direction is obtained by solving a QP equality constrained subproblem.

Quadratic Programming

Active Set Method

The approach is similar to unconstrained programming

- Start from an arbitrary point x_{0}
- Find the next iterate by setting $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ where α_{k} is a step-length and d_{k} is search direction. This direction is obtained by solving a QP equality constrained subproblem.
- The subproblem solved to obtain d_{k} will have a subset of constraints imposed as equalities and referred as the working set, \mathcal{W}_{k}, consisting of all m equality constraints and some of the active inequalities.
- New iterates are calculated and the working set is modified until the optimality conditions are satisfied, or all Lagrange multipliers are positive (the KKT conditions are satisfied).

Quadratic Programming

For a given x^{*}, the active set is

$$
\mathcal{A}\left(x^{*}\right)=\left\{i \in\{1,2, \ldots m\} \mid A_{i} x^{*}=a_{i}\right\} \cup\left\{i \in\{m+1, \ldots m+p\} \mid A_{i} x^{*}=b_{i}\right\}
$$

This will be initial the working set \mathcal{W}_{k}
Idea of the algorithm

- For the current (feasible) point, x_{k}, check whether x_{k} minimizes the quadratic objective function in the subspace defined by the working set, i.e. the Lagrange multipliers corresponding to the inequality constraints are non negative. (that is, verify the KKT conditions).
- If the optimality conditions are not satisfied, we compute a direction, d_{k}, to move to the next point $x_{k+1}=x_{k}+d_{k}$

Direction finding problem at iteration k :

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\left(x_{k}+d_{k}\right)^{t} Q\left(x_{k}+d_{k}\right)+c^{t}\left(x_{k}+d_{k}\right) \\
A_{i}\left(x_{k}+d_{k}\right)=a_{i}, \quad i \in \mathcal{A}\left(x_{k}\right)
\end{gathered}
$$

Quadratic Programming

Direction finding problem at iteration k :
This problem can be formulated as

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} d_{k}^{t} Q d_{k}+g^{t} d_{k} \\
& A_{i} d_{k}=0, \quad i \in \mathcal{A}\left(x_{k}\right)
\end{aligned}
$$

with $g_{k}=Q x_{k}+c$

> An equality constrained QP !!!!

The solution d_{k} of this quadratic problem is obtained solving the following system:

$$
\left[\begin{array}{cc}
Q & \tilde{A}^{t} \\
\tilde{A} & 0
\end{array}\right]\left[\begin{array}{l}
d \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-g_{k} \\
0
\end{array}\right]
$$

with \tilde{A} being the matrix having the rows a_{i}^{t}, for all indices i in the working set

Quadratic Programming

- If $d_{k} \neq 0$ we shall move in this direction.
- If $d_{k}=0$ we have to check for optimality, i.e. all the Lagrange multipliers for the inequality constraints must be non negative.

Case $1 d_{k}=0$
if the lagrange multipliers $\lambda_{j} \geq 0$ then Stop and return the current point x_{k} if there exists $\lambda_{j}<0$, find the most negative λ_{j} and remove constraint j from the working set \mathcal{W}_{k}. Keep the same point for the next step: $x_{k+1}=x_{k}$

Quadratic Programming

Case $2 d_{k} \neq 0$
In this case we shall decide about the step lenght α_{k}
The constraints in \mathcal{W}_{k} are satisfied for any α_{k}. The step lenght will be determined such that $x_{k}+\alpha_{k} d_{k}$ satisfies the constraints $j \notin \mathcal{W}_{k}$.

The step length is given as

$$
\alpha_{k}=\min _{i \notin W_{k}, \mathbf{a}_{i}^{T} \mathbf{d}_{k}>0}\left(1, \frac{b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}_{k}}{\mathbf{a}_{i}^{T} \mathbf{d}_{k}}\right)
$$

(Try to believe...)

- If $\alpha_{k}<1$, the movement along d_{k} was blocked by some constraint that does not belong to \mathcal{W}_{k}. This is a blocking constraint and will be added to the new working set.
- If $\alpha_{k}=1$ no new constraints are active for $x_{k}+\alpha_{k} d_{k}$ and there are no blocking constraints at this stage.

Example

Quadratic Programming

Example

$$
\operatorname{minf}\left(x_{1} ; x_{2}\right)=x_{1}^{2}+x_{2}^{2}-4 x_{1}-4 x_{2}
$$

subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 2 \\
x_{1}-2 x_{2} \leq 2 \\
-x_{1}-x_{2} \leq 1 \\
-2 x_{1}+x_{2} \leq 2
\end{gathered}
$$

Quadratic Programming

Algorithm

Algorithm 1 Active set method

Define the quadratic objective function: matrix \mathbf{Q} and vector \mathbf{c}
Define the constraints: vectors \mathbf{a}_{i}^{T} and scalars $b_{i}, i=\overline{1, p}$
Select an initial feasible point x_{0}
Find the initial working set W_{0}
Compute the gradient of the objective function at the current point: $\mathrm{g}_{0}=$ Qx ${ }_{0}+\mathbf{c}$
Compute the matrix A having the rows $\mathbf{a}_{i}, i \in W_{k}$
Solve the linear system

$$
\left[\begin{array}{cc}
\mathbf{Q} & \mathbf{A}^{T} \tag{1.65}\\
\mathbf{A} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{d}_{0} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{g}_{0} \\
0
\end{array}\right]
$$

Set $k=0$

Quadratic Programming

Algorithm

Set $k=0$
while not all $\lambda_{i} \geq 0, i \in W_{k} \cap\{1,2, \ldots, m\}$ or $\mathbf{d}_{k} \neq 0$ do
if $\mathrm{d}_{k}=0$ then
Check optimality:
if $\lambda_{i} \geq 0, i \in W_{k} \cap\{1,2, \ldots, m\}$ then
Stop and return the current point x_{k}
else
Find the most negative λ_{j}
Remove constraint j from the working set W_{k}
Keep the same point for the next step: $\mathrm{x}_{k+1}=\mathrm{x}_{k}$
end if
else
Compute the step length α_{k} from:

$$
\begin{equation*}
\alpha_{k}=\min _{i \notin W_{k}, \mathbf{a}_{i}^{T} \mathrm{~d}_{k}>0}\left(1, \frac{b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}_{k}}{\mathbf{a}_{i}^{T} \mathbf{d}_{k}}\right) \tag{1.66}
\end{equation*}
$$

Compute a new point: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$
If $\alpha_{k}<1$, find the blocking constraint i and add it to the working set W_{k}
end if
Set $k \leftarrow k+1$

Quadratic Programming

Algorithm
Set $k \leftarrow k+1$
Compute the gradient of the objective function at the current point:

$$
\begin{equation*}
\mathrm{g}_{k}=\mathbf{Q} \mathbf{x}_{k}+\mathbf{c} \tag{1.67}
\end{equation*}
$$

Compute the matrix A having the rows $\mathbf{a}_{i}, i \in W_{k}$ Solve the linear system

$$
\left[\begin{array}{cc}
\mathbf{Q} & \mathbf{A}^{T} \tag{1.68}\\
\mathbf{A} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{d}_{k} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{g}_{k} \\
0
\end{array}\right]
$$

18
end while

Quadratic Programming

Important issues:

- How to determine a starting point x_{0} for the active-set algorithm.
- Active set methods require an efficient strategy for the determination of active sets at each x_{k}.

Quadratic Programming

Advantages of active set methods

- Since only active constraints are considered at each iteration x_{k}, the QP with equality (QPe) usually has only a few constraints and can be solved fast. Thus, Large-scale (QPi) 's are easy to solve.
- In many cases the active set varies slightly from step-to-step, making active set method efficient. \Rightarrow Data obtained from the current QPE can be used to solve the next QPE known as warm starting.
- All iterates $\times k$ are feasible to (QP)I . This is an important property, e.g, in Sequential Quadratic Programming.

Quadratic Programming

Advantages of active set methods

- Since only active constraints are considered at each iteration x_{k}, the QP with equality (QPe) usually has only a few constraints and can be solved fast. Thus, Large-scale (QPi) 's are easy to solve.
- In many cases the active set varies slightly from step-to-step, making active set method efficient. \Rightarrow Data obtained from the current QPE can be used to solve the next QPE known as warm starting.
- All iterates $\times k$ are feasible to (QP)I . This is an important property, e.g, in Sequential Quadratic Programming.

Disadvantages of active set methods

- Since the active-set \mathcal{A}_{k} may vary from step to step, the structure and properties, e.g. sparsity, of constraint matrices may change.
- ASM may become slower near to the optimal solution;.
- For some problems ASM can be computationally expensive.

