PRO 5970 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro
Aula 8 - Karush Kuhn Tucker-2023

Departmento de Engenharia de Produção
Universidade de São Paulo

Optimality conditions - Karush-Kuhn-Tucker (KKT)

Karush-Kuhn-Tucker Conditions

Consider problem PrGen

$$
\begin{array}{cc}
& \text { minimize } f(x) \\
\text { s.t } \quad & g_{i}(x) \leq 0 \\
& h_{i}(x)=0
\end{array} \quad \mathrm{i} \in \mathcal{I}=\{1,2, \ldots m\}
$$

Necessary conditions for a constrained local optimum
Definition
x^{*} is KKT point if there are lagrange multipliers vectors $\lambda^{*} \in \mathbb{R}^{m}$ and $\mu^{*} \in \mathbb{R}^{\prime}$, such that $\left[\begin{array}{lll}x^{*} & \lambda^{*} & \mu^{*}\end{array}\right]^{t}$ satisfies:

$$
\begin{array}{ll}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*} \mu^{*}\right) & =0 \\
g\left(x^{*}\right) & \leq 0 \\
h\left(x^{*}\right) & =0 \\
\mu^{*} & \geq 0 \\
\mu_{i} g_{i}\left(x^{*}\right) & =0 \quad \forall i \in \mathcal{I} \text { complementary slackness condition }
\end{array}
$$

Karush-Kuhn-Tucker

- The complementary slackness condition applies only to inequality constraints.
- For equality constrained problems KKT become:

$$
\begin{array}{ll}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*} \mu^{*}\right) & =0 \\
h\left(x^{*}\right) & =0
\end{array}
$$

- Inequality constraints introduce some complexity to the problem as complementary slackness conditions are non-linear

Karush-Kuhn-Tucker

Exercice Write the KKT conditions and solve the resulting system

$$
\begin{aligned}
\min f(x)= & x_{1}^{2}+-4 x_{1}+x_{2}^{2}-6 x_{2} \\
& x_{1}+x_{2}=3
\end{aligned}
$$

Example Write the KKT conditions and solve the resulting system

$$
\begin{aligned}
\min f(x)= & x_{1}^{2}+-4 x_{1}+x_{2}^{2}-6 x_{2} \\
& x_{1}+x_{2} \leq 3 \\
& -2 x_{1}+x_{2} \leq 2
\end{aligned}
$$

KKT

$$
\begin{gathered}
\min f(x)=x_{1}^{2}+-4 x_{1}+x_{2}^{2}-6 x_{2} \\
x_{1}+x_{2} \leq 3 \\
-2 x_{1}+x_{2} \leq 2
\end{gathered}
$$

The Lagrangian is

KKT

$$
\begin{gathered}
\min f(x)=x_{1}^{2}+-4 x_{1}+x_{2}^{2}-6 x_{2} \\
x_{1}+x_{2} \leq 3 \\
-2 x_{1}+x_{2} \leq 2
\end{gathered}
$$

The Lagrangian is
$\mathcal{L}(x, \lambda, \mu)=x_{1}^{2}-4 x_{1}+x_{2}^{2}-6 x_{2}+\mu_{1}\left(x_{1}+x_{2}-3\right)+\mu_{2}\left(-2 x_{1}+x_{2}-2\right)$
Kuhn-Tucker conditions :

KKT

$$
\begin{aligned}
\min f(x)= & x_{1}^{2}+-4 x_{1}+x_{2}^{2}-6 x_{2} \\
& x_{1}+x_{2} \leq 3 \\
& -2 x_{1}+x_{2} \leq 2
\end{aligned}
$$

The Lagrangian is

$$
\mathcal{L}(x, \lambda, \mu)=x_{1}^{2}-4 x_{1}+x_{2}^{2}-6 x_{2}+\mu_{1}\left(x_{1}+x_{2}-3\right)+\mu_{2}\left(-2 x_{1}+x_{2}-2\right)
$$

Kuhn-Tucker conditions:

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*} \mu^{*}\right)=0 \Rightarrow\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x_{1}}=2 x_{1}-4+\mu_{1}-2 \mu_{2}=0 \\
\frac{\partial \mathcal{L}}{\partial x_{2}}=2 x_{2}-6+\mu_{1}+\mu_{2}=0
\end{array}\right. \\
& g\left(x^{*}\right) \leq 0 \Rightarrow\left\{\begin{array}{c}
x_{1}+x_{2} \leq 3 \\
-2 x_{1}+x_{2} \leq 2
\end{array}\right. \\
& \mu \geq 0
\end{aligned}
$$

$$
\mu_{i} g_{i}\left(x^{*}\right)=0 \Rightarrow\left\{\begin{array}{c}
\mu_{1}\left(x_{1}+x_{2}-3\right)=0 \\
\mu_{2}\left(-2 x_{1}+x_{2}-2\right)=0
\end{array}\right.
$$

There is no simple computational procedure for the solution

KKT

- $\mu_{1}=0$ and $\mu_{2}=0$
$\left\{\begin{array}{l}2 x_{1}-4=0 \Rightarrow x_{1}=2 \\ 2 x_{2}-6=0 \Rightarrow x_{2}=3\end{array}\right.$ This solution violates the first constraint $x_{1}+x_{2} \leq 3$.

KKT

- $\mu_{1}=0$ and $\mu_{2}=0$
$\left\{\begin{array}{l}2 x_{1}-4=0 \Rightarrow x_{1}=2 \\ 2 x_{2}-6=0 \Rightarrow x_{2}=3\end{array}\right.$ This solution violates the first constraint $x_{1}+x_{2} \leq 3$.
- $\mu_{1} \neq 0$ and $\mu_{2}=0$
$\left\{\begin{array}{l}2 x_{1}+\mu_{1}=4 \\ 2 x_{2}+\mu_{1}=6\end{array}\right.$
Due to the complementary slackness condition $\mu_{1} \neq 0 \Rightarrow x_{1}+x_{2}=3$
Solution of the system: $x_{1}=1, x_{2}=2, \mu_{1}=2$. It satisfies the remaining Kuhn Tucker conditions.

KKT

- $\mu_{1}=0$ and $\mu_{2} \neq 0$

The resulting system is:
$\left\{\begin{array}{l}2 x_{1}-2 \mu_{2}=4 \\ 2 x_{2}+\mu_{2}=6 \\ -2 x_{1}+x_{2}=2\end{array}\right.$
Solution: $x_{1}=4 / 5, x_{2}=18 / 5 \mu_{2}=-6 / 5$ Violates $\mu_{2} \geq 0$ and $x_{1}+x_{2} \leq 3$

KKT

- $\mu_{1}=0$ and $\mu_{2} \neq 0$

The resulting system is:
$\left\{\begin{array}{l}2 x_{1}-2 \mu_{2}=4 \\ 2 x_{2}+\mu_{2}=6 \\ -2 x_{1}+x_{2}=2\end{array}\right.$
Solution: $x_{1}=4 / 5, x_{2}=18 / 5 \mu_{2}=-6 / 5$ Violates $\mu_{2} \geq 0$ and $x_{1}+x_{2} \leq 3$

- $\mu_{1} \neq 0$ and $\mu_{2} \neq 0$

Due to the complementary slackness condition
$\left\{\begin{array}{l}x_{1}+x_{2}=3 \\ -2 x_{1}+x_{2}=2\end{array}\right.$
With solution $x_{1}=1 / 3 x_{2}=8 / 3$. Substituting in the equations $\mathcal{L}(x, \lambda, \mu)=0$, gives $u_{2}=89 \leq 0$

The inspection of the graph of the feasible solutions illustrates that $x_{1}=1, x_{2}=2, u_{1}=2, u_{2}=0$ is indeed the optimal solution .

Optimality conditions

Is KKT a necessary condition?
Usually it is necessary that the feasible set of the original problem satisfies some regularity assumption (Constraint qualification) in order to derive optimality conditions.

- KKT conditions can be useful in assessing potential local minima

Active set

Active set

The active set is the equality constraints indices, together with the indices of the inequality constraints for which $g_{i}(x)=0$, that is $\mathcal{A}(x)=\mathcal{E} \cap\left\{i \in \mathcal{I} \mid g_{i}(x)=0\right\}$

In the KKT conditions, if $g_{j}\left(x^{*}\right)<0$ (an inactive constraint) at x^{*} then $\mu_{j}=0$ Thus

$$
\sum_{j \in \mathcal{I}} \mu_{j}^{*} \nabla g_{j}\left(x^{*}\right)=\sum_{j \in \mathcal{I} \cap \mathcal{A}} \mu_{j}^{*} \nabla g_{j}\left(x^{*}\right)
$$

Geometric interpretation

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{2}}\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
& x_{1}^{2}-x_{2} \leq 0 \\
& x_{1}+x_{2}-2 \leq 0 .
\end{aligned}
$$

Analyse at $\left[\begin{array}{ll}1 & 1\end{array}\right]^{t}$

KKT

Geometric interpretation

$$
\begin{aligned}
& \text { minimize } f(x) \\
& \text { s.t } \quad f_{1}(x) \leq 0 \\
& f_{2}(x) \leq 0 \\
& f_{m}(x) \leq 0
\end{aligned}
$$

Fig. 2.1. Kuhn-Tucker conditions.

Optimality conditions

Example 1

$$
\begin{aligned}
& \min _{x \in \mathbb{X}}\left(x_{1}-2\right)^{2}+\left(x_{2}-0.5(3-\sqrt{5})\right)^{2} \\
& \mathbb{X}=\left\{x \in \mathbb{R}^{2} \mid x_{1}+x_{2} \leq 1 \quad x_{1}^{2} \leq x_{2}\right\}
\end{aligned}
$$

Consider the optimal solution $x^{*}=\frac{1}{2}\left[\begin{array}{ll}-1+\sqrt{5} & 3-\sqrt{5}\end{array}\right]^{t}$

- Which are the active constraints at x^{*} ?
- Write the gradients of $f(x)$ and $g_{i}(x)$ and obtain $\nabla f\left(x^{*}\right)$ and $\nabla g_{i}\left(x^{*}\right)$
- Can $\nabla f\left(x^{*}\right)$ be written as a linear combination of $\nabla g_{i}\left(x^{*}\right)$?

Optimality conditions

Example 1

$$
\begin{gathered}
\nabla f\left(x^{*}\right)=\left[\begin{array}{c}
-5+\sqrt{5} \\
0
\end{array}\right] \\
\nabla g_{1}\left(x^{*}\right)=\left[\begin{array}{c}
1-\sqrt{5} \\
1
\end{array}\right] \quad \nabla g_{2}\left(x^{*}\right)=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \\
g_{1}\left(x^{*}\right)=g_{2}\left(x^{*}\right)=0
\end{gathered}
$$

$$
\nabla f\left(x^{*}\right)=\mu_{1}^{*} \mu g_{1}\left(x^{*}\right)+\mu_{2}^{*} \mu g_{2}\left(x^{*}\right) \text { with } \mu_{1}^{*}=\mu_{2}^{*}=\sqrt{5}-1>0
$$

It is possible to find a KKT point

Optimality conditions

Optimality conditions

Example 2 - The same problem

$$
\begin{gathered}
\min _{x \in \mathbb{X}}\left(x_{1}-2\right)^{2}+\left(x_{2}-0.5(3-\sqrt{5})\right)^{2} \\
\mathbb{X}=\left\{x \in \mathbb{R}^{2} \mid-x_{1}-x_{2}+1 \geq 0 \quad x_{2}-x_{1}^{2} \geq 0\right\}
\end{gathered}
$$

Let $x^{*}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{t}$

$$
\begin{gathered}
\nabla f\left(x^{*}\right)=\left[\begin{array}{c}
-4 \\
\sqrt{5}-3
\end{array}\right] \\
\nabla g_{1}\left(x^{*}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

Optimality conditions

Example 2

$$
\begin{gathered}
g_{1}\left(x^{*}\right)=0 \text { active } \\
g_{2}\left(x^{*}\right)=1 \text { inactive } \Rightarrow \lambda_{2}=0
\end{gathered}
$$

It is not possible to write

$$
\nabla f\left(x^{*}\right)=\lambda_{1}^{*} \nabla g_{1}\left(x^{*}\right) \quad \text { with } \quad \lambda_{1}^{*} \geq 0
$$

Optimality conditions - Constraint qualification

- We would like KKT to be a necessary condition for a given optimal solution. In this case, we could verify if a candidate to optimal can be discarded.

Optimality conditions - Constraint qualification

- We would like KKT to be a necessary condition for a given optimal solution. In this case, we could verify if a candidate to optimal can be discarded. (x^{*} optimal \Rightarrow KKT is satisfied. Then, If x^{*} does not satisfy KKT it cannot be optimal)

Optimality conditions - Constraint qualification

- We would like KKT to be a necessary condition for a given optimal solution. In this case, we could verify if a candidate to optimal can be discarded. (x^{*} optimal \Rightarrow KKT is satisfied. Then, If x^{*} does not satisfy KKT it cannot be optimal)
- When the problem is unconstrained, the KKT conditions reduce to $\nabla f\left(x^{*}\right)=0$ which is a necessary optimality condition.
- Usually it is necessary that the feasible set of the original problem satisfies some regularity assumption (Constraint qualfication) in order to derive optimality conditions.

Optimality conditions - Constraint qualification

- We would like KKT to be a necessary condition for a given optimal solution. In this case, we could verify if a candidate to optimal can be discarded. (x^{*} optimal \Rightarrow KKT is satisfied. Then, If x^{*} does not satisfy KKT it cannot be optimal)
- When the problem is unconstrained, the KKT conditions reduce to $\nabla f\left(x^{*}\right)=0$ which is a necessary optimality condition.
- Usually it is necessary that the feasible set of the original problem satisfies some regularity assumption (Constraint qualfication) in order to derive optimality conditions.

Main idea

Theorem (First order necessary conditions)
Under suitable constraint qualfications,

$$
x^{*} \text { is a local minimizer } \Rightarrow x^{*} \text { KKT point } .
$$

Optimality conditions - Constraint qualification

Linear independence constraint qualification
PrGen satisfies linear independence constraint qualification at a given $x \Leftrightarrow$ $\left\{\nabla g_{i}(x), i \in \mathcal{A}(x)\right\}$ is linearly independent.

Exercice (entrega aula) Give an example where this constraint qualification holds and show that the optimal solution satisfies KKT (may be the example below if you explain what is going on. See Nocedal ex 12.3)

Exercice (entrega aula) Give an example where this constraint qualification does not hold.

Optimality conditions - Constraint qualification

Linear independence constraint qualification
PrGen satisfies linear independence constraint qualification at a given $x \Leftrightarrow$ $\left\{\nabla g_{i}(x), i \in \mathcal{A}(x)\right\}$ is linearly independent.

Exercice (entrega aula) Give an example where this constraint qualification holds and show that the optimal solution satisfies KKT (may be the example below if you explain what is going on. See Nocedal ex 12.3)

Exercice (entrega aula) Give an example where this constraint qualification does not hold.

Slater constraint qualification
PrGen satisfies Slater constraint qualification $x \Leftrightarrow$ if there exists some feasible solution x for which all inequality constraints are strictly satisfied (i.e. $\exists x \mid$ $\left.g_{i}(x)<0 \forall i \in \mathcal{I}, h_{j}(x)=0 \forall j \in \mathcal{E}\right)$

Both fail for $\min _{x \in \mathbb{X}} x_{1}+x_{2} \mathbb{X}=\left\{x \mid x_{1}^{2}+\left(x_{2}-1\right)^{2} \leq 1 \quad x_{2} \geq 0\right\}$
Consider $x^{*}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{t}$

Necessary conditions

Some specific problems are easier
 Linear Equality-constrained problem

Theorem First order necessary condition
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be partially differentiable with continuous partial derivatives, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ if $x^{*} \in \mathbb{R}^{n}$ is a local minimizer of

$$
\min _{x \in \mathbb{R}^{n}}\{f(x) \mid A x=b\}
$$

then
$\exists \lambda^{*} \in \mathbb{R}^{m}$ such that $\left\{\begin{array}{l}\nabla f\left(x^{*}\right)+A^{t} \lambda^{*}=0 \\ A x^{*}=b\end{array}\right.$
These are the KKT
Observe that $\left\{\begin{array}{l}\nabla_{x} \mathcal{L}(x, \lambda)=\nabla f\left(x^{*}\right)+A^{t} \lambda^{*} \\ \nabla_{\lambda} \mathcal{L}(x, \lambda)=A x^{*}-b\end{array}\right.$

Sufficient conditions

> Some specific problems are easier
> Linear Equality-constrained problem

Theorem Sufficient condition
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is partially differentiable with continuous partial derivatives, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ Let $x^{*} \in \mathbb{R}^{n}$ and $\lambda^{*} \in \mathbb{R}^{m}$ satisfy:

$$
\begin{array}{ll}
\nabla f\left(x^{*}\right)+A^{t} \lambda^{*} & =0 \\
A x^{*} & =b \\
\mathrm{f} \text { is convex on } & \left\{x \in \mathbb{R}^{n} \mid A x=b\right\}
\end{array}
$$

Then x^{*} is a global minimizer of

$$
\min _{x \in \mathbb{R}^{n}}\{f(x) \mid A x=b\}
$$

Second-order sufficient conditions

Example

Consider $\min _{x \in \mathbb{R}^{n}}\{f(x) \mid A x=b\}$ with
$f(x)=\left(x_{1}-1\right)^{2}+\left(x_{2}-3\right)^{2}$,
$A=\left[\begin{array}{ll}1 & 1\end{array}\right], b=[0]$
a) Verify if $x^{*}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$, and $\lambda^{*}=[-2]$ Satisfy KKT conditions
b) Is x^{*} is optimal?

Second-order sufficient conditions

> Some specific problems are easier
> Linear Equality-constrained problem

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice partially differentiable with continuous second partial derivatives, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ Let $x^{*} \in \mathbb{R}^{n}$ and $\lambda^{*} \in \mathbb{R}^{m}$ satisfy:

$$
\begin{cases}\nabla f\left(x^{*}\right)+A^{t} \lambda^{*} & =0 \\ A x^{*} & =b \\ (A \Delta x=0 \text { and } \Delta x \neq 0) & \Rightarrow\left(\Delta x^{t} \nabla^{2} f\left(x^{*}\right) \Delta x>0\right)\end{cases}
$$

not necessarily positive definite in \mathbb{R}^{n}
Then x^{*} is a local minimizer of

$$
\min _{x \in \mathbb{R}^{n}}\{f(x) \mid A x=b\}
$$

Optimality conditions

Some specific problems are easier
 Convex programming

Convex programming problems

An optimization problem $\min _{x \in \mathbb{X}} f(x)$ is called a convex programming problem if $f(x)$ is a convex function and \mathbb{X} is a convex set.

Theorem Sufficient optimality conditions for convex problems
Let PrGen be a convex programming problem. Then
x^{*} is a KKT point of $\operatorname{PrGen} \Rightarrow x^{*}$ is a (global) minimizer of PrGen

IMPORTANT

- When the problem is not convex, the KKT conditions are not, in general, sufficient for optimality
- One needs positive definiteness of the Hessian of the Lagragian function along feasible directions.

Idea for algorithms

i Minimize the Lagrangian over \times for a fixed λ then adjust λ
ii Find critical points of \mathcal{L} and try to assure optimality

First order necessary conditions are not sufficient!

Example

$$
\min _{x \in \mathbb{R}^{n}}\{f(x) \mid A x=b\} \text { with } f(x)=-\frac{1}{2} x_{1}^{2}-\frac{1}{2} x_{2}^{2}, A=\left[\begin{array}{ll}
1 & -1
\end{array}\right], b=[0]
$$

- Find the necessary conditions
- Analyze the point $\hat{x}=0, \hat{\lambda}=0$

