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Optimality conditions - Karush-Kuhn-Tucker (KKT)

Karush-Kuhn–Tucker Conditions

Consider problem PrGen

minimize f (x)

s.t gi (x) ≤ 0 i ∈ I = {1, 2, . . .m}
hi (x) = 0 i ∈ E = {1, 2, . . . l}

Necessary conditions for a constrained local optimum

Definition

x∗ is KKT point if there are lagrange multipliers vectors λ∗ ∈ Rm and µ∗ ∈ Rl , such

that
[

x∗ λ∗ µ∗
]t

satisfies:

∇xL (x∗, λ∗µ∗) = 0

g (x∗) ≤ 0

h (x∗) = 0

µ∗ ≥ 0

µigi (x
∗) = 0 ∀i ∈ I complementary slackness condition
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Karush-Kuhn–Tucker

• The complementary slackness condition applies only to inequality constraints.

• For equality constrained problems KKT become:

∇xL (x∗, λ∗µ∗) = 0

h (x∗) = 0

• Inequality constraints introduce some complexity to the problem as

complementary slackness conditions are non-linear
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Karush-Kuhn–Tucker

Exercice Write the KKT conditions and solve the resulting system

min f (x) = x21 +−4x1 + x22 − 6x2

x1 + x2 = 3

Example Write the KKT conditions and solve the resulting system

min f (x) = x21 +−4x1 + x22 − 6x2

x1 + x2 ≤ 3

−2x1 + x2 ≤ 2
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KKT

min f (x) = x21 +−4x1 + x22 − 6x2

x1 + x2 ≤ 3

−2x1 + x2 ≤ 2

The Lagrangian is

L(x , λ, µ) = x21 − 4x1 + x22 − 6x2 + µ1(x1 + x2 − 3) + µ2(−2x1 + x2 − 2)

Kuhn–Tucker conditions :

∇xL (x∗, λ∗µ∗) = 0 ⇒
{

∂L
∂x1

= 2x1 − 4 + µ1 − 2µ2 = 0
∂L
∂x2

= 2x2 − 6 + µ1 + µ2 = 0

g (x∗) ≤ 0 ⇒
{

x1 + x2 ≤ 3

−2x1 + x2 ≤ 2

µ ≥ 0

µigi (x
∗) = 0 ⇒

{
µ1(x1 + x2 − 3) = 0

µ2(−2x1 + x2 − 2) = 0

There is no simple computational procedure for the solution
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KKT

• µ1 = 0 and µ2 = 0{
2x1 − 4 = 0 ⇒ x1 = 2

2x2 − 6 = 0 ⇒ x2 = 3
This solution violates the first constraint x1 + x2 ≤ 3.

• µ1 ̸= 0 and µ2 = 0{
2x1 + µ1 = 4

2x2 + µ1 = 6

Due to the complementary slackness condition µ1 ̸= 0 ⇒ x1 + x2 = 3

Solution of the system: x1 = 1, x2 = 2, µ1 = 2. It satisfies the remaining Kuhn

Tucker conditions.
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KKT

• µ1 = 0 and µ2 ̸= 0

The resulting system is:
2x1 − 2µ2 = 4

2x2 + µ2 = 6

−2x1 + x2 = 2

Solution: x1 = 4/5, x2 = 18/5µ2 = −6/5 Violates µ2 ≥ 0 and x1 + x2 ≤ 3

• µ1 ̸= 0 and µ2 ̸= 0

Due to the complementary slackness condition{
x1 + x2 = 3

−2x1 + x2 = 2

With solution x1 = 1/3x2 = 8/3. Substituting in the equations L(x , λ, µ) = 0,

gives u2 = 89 ≤ 0

The inspection of the graph of the feasible solutions illustrates that

x1 = 1, x2 = 2, u1 = 2, u2 = 0 is indeed the optimal solution .
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KKT
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Optimality conditions

Is KKT a necessary condition?

Usually it is necessary that the feasible set of the original problem satisfies some

regularity assumption (Constraint qualification) in order to derive optimality

conditions.

• KKT conditions can be useful in assessing potential local minima

•
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Active set

Active set
The active set is the equality constraints indices, together with the indices of the

inequality constraints for which gi (x) = 0, that is A(x) = E ∩ {i ∈ I|gi (x) = 0}

In the KKT conditions, if gj (x
∗) < 0 (an inactive constraint) at x∗ then µj = 0

Thus

∑
j∈I

µ∗
j ∇gj (x

∗) =
∑

j∈I∩A
µ∗
j ∇gj (x

∗)
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Geometric interpretation

minx∈R2 (x1 − 2)2 + (x2 − 1)2

x21 − x2 ≤ 0

x1 + x2 − 2 ≤ 0.

Analyse at
[

1 1
]t
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KKT

Geometric interpretation

minimize f (x)

s.t f1(x) ≤ 0

f2(x) ≤ 0

.

.

.

fm(x) ≤ 0
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Optimality conditions

Example 1

min
x∈X

(x1 − 2)2 +
(
x2 − 0.5

(
3−

√
5
))2

X =
{
x ∈ R2|x1 + x2 ≤ 1 x21 ≤ x2

}
Consider the optimal solution x∗ = 1

2

[
−1 +

√
5 3−

√
5

]t
• Which are the active constraints at x*?

• Write the gradients of f (x) and gi (x) and obtain ∇f (x∗) and ∇gi (x
∗)

• Can ∇f (x∗) be written as a linear combination of ∇gi (x
∗)?
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Optimality conditions

Example 1

∇f (x∗) =

[
−5 +

√
5

0

]

∇g1(x∗) =

[
1−

√
5

1

]
∇g2(x∗) =

[
−1

−1

]

g1(x
∗) = g2(x

∗) = 0

∇f (x∗) = µ∗
1µg1(x

∗) + µ∗
2µg2(x

∗) with µ∗
1 = µ∗

2 =
√
5− 1 > 0

It is possible to find a KKT point
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Optimality conditions
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Optimality conditions

Example 2 - The same problem

min
x∈X

(x1 − 2)2 +
(
x2 − 0.5

(
3−

√
5
))2

X =
{
x ∈ R2| − x1 − x2 + 1 ≥ 0 x2 − x21 ≥ 0

}
Let x∗ =

[
0 0

]t
∇f (x∗) =

[
−4√
5− 3

]

∇g1(x∗) =

[
0

0

]
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Optimality conditions

Example 2

g1(x
∗) = 0 active

g2(x
∗) = 1 inactive ⇒ λ2 = 0

It is not possible to write

∇f (x∗) = λ∗
1∇g1(x

∗) with λ∗
1 ≥ 0

Contradiction

Cannot write ∇f as linear combination of ∇gi
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Optimality conditions - Constraint qualification

• We would like KKT to be a necessary condition for a given optimal solution. In

this case, we could verify if a candidate to optimal can be discarded.

(x∗ optimal

⇒ KKT is satisfied. Then, If x∗ does not satisfy KKT it cannot be optimal )

• When the problem is unconstrained , the KKT conditions reduce to ∇f (x∗) = 0

which is a necessary optimality condition.

• Usually it is necessary that the feasible set of the original problem satisfies some

regularity assumption (Constraint qualfication) in order to derive optimality

conditions.

Main idea

Theorem (First order necessary conditions)
Under suitable constraint qualfications,

x∗ is a local minimizer ⇒ x∗ KKT point .
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Optimality conditions - Constraint qualification

Linear independence constraint qualification
PrGen satisfies linear independence constraint qualification at a given x ⇔
{∇gi (x), i ∈ A(x)} is linearly independent.

Exercice (entrega aula) Give an example where this constraint qualification holds and

show that the optimal solution satisfies KKT (may be the example below if you

explain what is going on. See Nocedal ex 12.3 )

Exercice (entrega aula) Give an example where this constraint qualification does not

hold.

Slater constraint qualification
PrGen satisfies Slater constraint qualification x ⇔ if there exists some feasible

solution x for which all inequality constraints are strictly satisfied (i.e. ∃x |
gi (x) < 0∀i ∈ I, hj (x) = 0∀j ∈ E )

Both fail for minx∈X x1 + x2 X =
{
x | x21 + (x2 − 1)2 ≤ 1 x2 ≥ 0

}
Consider x∗ =

[
0 0

]t
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Necessary conditions

Some specific problems are easier

Linear Equality-constrained problem

Theorem First order necessary condition

Let f : Rn → R,be partially differentiable with continuous partial derivatives,

A ∈ Rm×n, b ∈ Rm if x∗ ∈ Rn is a local minimizer of

min
x∈Rn

{f (x)|Ax = b}

then

∃λ∗ ∈ Rm such that

{
∇f (x∗) + Atλ∗ = 0

Ax∗ = b

These are the KKT

Observe that

{
∇xL(x , λ) = ∇f (x∗) + Atλ∗

∇λL(x , λ) = Ax∗ − b

Celma de Oliveira Ribeiro



Sufficient conditions

Some specific problems are easier

Linear Equality-constrained problem

Theorem Sufficient condition

Suppose that f : Rn → R is partially differentiable with continuous partial

derivatives, A ∈ Rm×n, b ∈ Rm Let x∗ ∈ Rn and λ∗ ∈ Rm satisfy:

∇f (x∗) + Atλ∗ = 0

Ax∗ = b

f is convex on {x ∈ Rn|Ax = b}

Then x∗ is a global minimizer of

min
x∈Rn

{f (x)|Ax = b}
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Second-order sufficient conditions

Example

Consider minx∈Rn {f (x)|Ax = b} with

f (x) = (x1 − 1)2 + (x2 − 3)2,

A =
[

1 1
]
, b =

[
0

]
a) Verify if x∗ =

[
2

2

]
, and λ∗ =

[
−2

]
Satisfy KKT conditions

b) Is x∗ is optimal?
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Second-order sufficient conditions

Some specific problems are easier

Linear Equality-constrained problem

Suppose that f : Rn → R is twice partially differentiable with continuous second

partial derivatives, A ∈ Rm×n, b ∈ Rm Let x∗ ∈ Rn and λ∗ ∈ Rm satisfy:


∇f (x∗) + Atλ∗ = 0

Ax∗ = b

(A∆x = 0 and ∆x ̸= 0) ⇒ (∆x t∇2f (x∗)∆x > 0)

not necessarily positive definite in Rn

Then x∗ is a local minimizer of

min
x∈Rn

{f (x)|Ax = b}
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Optimality conditions

Some specific problems are easier

Convex programming

Convex programming problems

An optimization problem minx∈X f (x) is called a convex programming problem if

f (x) is a convex function and X is a convex set.

Theorem Sufficient optimality conditions for convex problems
Let PrGen be a convex programming problem. Then

x∗ is a KKT point of PrGen ⇒ x∗ is a (global) minimizer of PrGen

IMPORTANT

• When the problem is not convex, the KKT conditions are not, in general,

sufficient for optimality

• One needs positive definiteness of the Hessian of the Lagragian function along

feasible directions.
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Idea for algorithms

i Minimize the Lagrangian over x for a fixed λ then adjust λ

ii Find critical points of L and try to assure optimality

First order necessary conditions are not sufficient!

Example

minx∈Rn {f (x)|Ax = b} with f (x) = − 1
2
x21 − 1

2
x22 , A =

[
1 −1

]
, b =

[
0

]
• Find the necessary conditions

• Analyze the point x̂ = 0 , λ̂ = 0
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