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Abstract: To formulate a real-world optimization problem, it is sometimes necessary to adopt a set
of non-linear terms in the mathematical formulation to capture specific operational characteristics
of that decision problem. However, the use of non-linear terms generally increases computational
complexity of the optimization model and the computational time required to solve it. This moti-
vates the scientific community to develop efficient transformation and linearization approaches for
the optimization models that have non-linear terms. Such transformations and linearizations are
expected to decrease the computational complexity of the original non-linear optimization models
and, ultimately, facilitate decision making. This study provides a detailed state-of-the-art review
focusing on the existing transformation and linearization techniques that have been used for solving
optimization models with non-linear terms within the objective functions and/or constraint sets.
The existing transformation approaches are analyzed for a wide range of scenarios (multiplication
of binary variables, multiplication of binary and continuous variables, multiplication of continu-
ous variables, maximum/minimum operators, absolute value function, floor and ceiling functions,
square root function, and multiple breakpoint function). Furthermore, a detailed review of piecewise
approximating functions and log-linearization via Taylor series approximation is presented. Along
with a review of the existing methods, this study proposes a new technique for linearizing the square
root terms by means of transformation. The outcomes of this research are anticipated to reveal
some important insights to researchers and practitioners, who are closely working with non-linear
optimization models, and assist with effective decision making.

Keywords: linearization techniques; operations research analytics; transformation process; approxi-
mation; linear programming relaxation

1. Introduction

Many optimization problems in management science and operations research have
been formulated in the non-linear programming form [1–5]. Due to their non-convex
nature, there is no efficient method to locate the optimal solution for this kind of prob-
lem [6]. Finding a global optimum for a non-linear programming model in acceptable
computational time is known as one of the major challenges in the optimization theory [7].
In comparison with non-linear programming problems, linear forms drive the solution
process and have much lower computation time [8]. Therefore, linear programming (LP)
forms of the optimization models are often recommended rather than solving integer
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or non-linear forms [9,10]. The operations research techniques that have generally been
adopted to solve optimization problems with non-linear terms can be classified into two
broad groups, which include the following: (i) transformations in which the non-linear
equations or functions are replaced by an exact equivalent LP formulation to create valid in-
equalities; and (ii) linear approximations which find the equivalent of a non-linear function
with the least deviation around the point of interest or separate straight-line segments.

Transformation into the LP model generally requires particular manipulations and
substitutions in the original non-linear model along with the implementation of valid
inequalities. After solving the modified problem, the optimal values of the initial deci-
sion variables can be easily determined by reversing the transformation. Furthemore,
approximation of complex non-linear functions with simpler ones is recognized as one
of the common operations research techniques. In mathematics, a linear approximation
of a function is an approximation (more precisely, an affine function) that relies on a set
of linear segments for calculation purposes. Linear approximations are often adopted by
finite difference methods, such as piecewise or first-order methods, to solve non-linear
optimization models. A linear approximation to a known curve, as illustrated in Figure 1,
can be obtained by dividing the curve and using linear interpolations between the points.
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Figure 1. A non-linear function (blue) and its piecewise linear approximation (red).

Piecewise approximations play a major role in many areas of engineering and math-
ematics [11–13]. By adding extra variables and constraints, the piecewise linear approxi-
mation forms an alternative linear function that fits the original problem with a non-linear
function. The specific aim of this technique is to estimate a one-variable single-valued
function by a sequence of linear divisions. A piecewise linear approximation of the function
f (x), which has been set on the interval [a, b], approximates a close function g(x) that is
represented by a set of linear segments over the same interval. g(x) can be represented as
g(x) = c + dx for every x in [a, b] [14]. The new linearity allows the previous non-linear
optimization problem to be solved by common LP approaches, which are much easier to
use and more efficient than their non-linear counterparts [15]. Some examples of piecewise
linear approximations have been provided in Gajjar and Adil [16], Geißler et al. [17], Sridhar
et al. [18], Andrade-Pineda et al. [19], and Stefanello et al. [20].

Taylor’s theorem approximates the output of a function f (x) around a given point,
such as x = a, by providing a k-times differentiable function and a polynomial of degree k,
which is known as the kth-order Taylor polynomial. In other words, the first-order Taylor
polynomial provides a linear approximation of the real-valued function f (x) based on
the value and slope of the function at x = b, given that f (x) is differentiable on [a, b] (or
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[b, a]) and that a is close to b. This means that for a given twice continuously differentiable
function of one real variable, the first-order Taylor polynomial can be represented as follows:

f (x) = f (a) + f ′(a)(x− a) + h(x)(x− a), (1)

lim
x→a

h(x) = 0. (2)

where h(x)(x− a) is the error term for the approximation. By removing the remainder
term, the linear approximation of f (x) for x near the point a (La(x)) becomes y = f (a) +
f ′(a)(x− a) whose graph is a tangent line to the graph y = f (x) at the point (a, f (a)).
Figure 2 provides an illustration of the example graph of f (x) = ex (blue) with its linear
approximation La(x) = 1 + x (red) at a = 0. As x tends to be closer to a, the error declines
to zero much faster than f ′(a)(x− a), which makes La(x) ≈ f (x) a useful approximation.
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The reformulation techniques, including transformation and linear approximation
procedures, are able to generate a representation of the increasing degree of strength,
albeit by increasing the size of the problems. Given the recent advances in LP, these
techniques enhance the solvability of the problems within various exact or heuristic solution
approaches by incorporating a tighter representation. A significant number of studies on the
transformation process with LP representations have been conducted in the past, including
Meyer [21], Jeroslow and Lowe [22,23], Balas [24], Johnson [25], Wolsey [26], Sherali and
Adams [27,28], and Williams [29]. The performance of solution algorithms is directly
associated with the tightness or strength of the adopted LP representations. Development of
tight equivalents for separable or polynomial non-linear integer programming formulations
can be achieved by generating valid inequalities [27,28,30–36].

The present study specifically concentrates on common operational research tech-
niques, which have been widely used in the state-of-the-art approaches to convert non-
linear components of optimization models into their LP equivalents. Although there are
several sources that provide detailed information regarding various LP techniques [29,37],
there is a lack of a holistic and comprehensive survey of the state-of-the-art transformation
and linearization approaches for converting non-linear optimization models into their
linearized forms. Along with the review of the existing methods, this study proposes a new
technique for linearizing the square root terms by means of transformation to obtain tight
LP relaxations. Furthermore, a new approach is presented to incorporate quadratic inte-
gers into LP mathematical formulations. The aforementioned contributions are expected
to enhance the solvability of optimization models with non-linear terms and, ultimately,
facilitate decision making.
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The remaining sections of this manuscript are arranged in the following order. Section 2
focuses on the existing transformation approaches for different scenarios, including the
multiplication of binary variables, multiplication of binary and continuous variables, multi-
plication of continuous variables, maximum/minimum operators, absolute value function,
floor and ceiling functions, square root function, and multiple breakpoint function. Sec-
tion 3 discusses linear approximations, including piecewise approximating functions and
log-linearization via Taylor series approximation. Section 4 concludes this study, sum-
marizes the key outcomes from the conducted work, and proposes some directions and
opportunities for the future research.

2. Transformations

The techniques presented in this section are exact transformations of the original non-
linear programs. In particular, the non-linear problems resulting from the multiplication
of binary variables, multiplication of binary and continuous variables, multiplication
of continuous variables, maximum/minimum operators, absolute value function, floor
and ceiling functions, square root function, and multiple breakpoint function and their
equivalent LP versions will be discussed in detail.

2.1. Multiplication of Binary Variables

In this section, a common linearization technique for the multiplication of binary
variables is discussed. The suggested linearization method is based on some theoretical
and numerical techniques [38]. Consider two binary variables xi (i ∈ {1, . . . , m}) and yj
(j ∈ {1, . . . , n}). To linearize the term xi·yj, which results from multiplying the binary
variables, we replace it with an additional binary variable:

zij := xi·yj, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (3)

The model including the non-linear term can be linearized by adding some new
constraints as follows:

zij ≤ xi, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}, (4)

zij ≤ yj, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}, (5)

zij ≥ xi + yj − 1, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}, (6)

zij ∈ {0, 1}, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (7)

Table 1 examines the validity of these constraints and lists all possible scenarios by
varying the values of binary variables xi and yj.

When binary variables have power (xp
i ), without loss of generality, one can omit the

power of p (xi := xp
i ), and it consequently can be linearized using the same technique.

The extension to products of more than two variables is straightforward. In general, the
multiplication of binary variables xp

ik
(k ∈ {1, . . . , K}, ik ∈ Ik = {1, . . . , mk}) for K ≥ 2 with

different powers p can be linearized by replacing it with a new variable zj (zj := ∏K
k=1 xp

ik
),

where j = {i1, . . . , iK}, and adding the following constraints:

zj ≤ xik , ∀k ∈ {1, . . . , K}, ∀i ∈ Ik, ∀j ∈ ∪K
k=1 Ik, (8)

zj ≥∑K
k=1 xik − (K− 1), ∀k ∈ {1, . . . , K}, ∀i ∈ Ik, ∀j ∈ ∪K

k=1 Ik, (9)

zj ∈ {0, 1}, ∀j ∈ ∪K
k=1 Ik. (10)
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Table 1. All possible products of binary variables (z := x·y).

x y x·y Constraints Imply

0 0 0 z ≤ 0 z = 0
z ≤ 0
z ≥ −1
z ∈ {0, 1}

0 1 0 z ≤ 0 z = 0
z ≤ 1
z ≥ 0
z ∈ {0, 1}

1 0 0 z ≤ 1 z = 0
z ≤ 0
z ≥ 0
z ∈ {0, 1}

1 1 1 z ≤ 1 z = 1
z ≤ 1
z ≥ 1
z ∈ {0, 1}

2.2. Multiplication of Binary and Continuous Variables

In general, we can replace a multiplication of binary and continuous variables with
a new variable, which is also subject to a number of new constraints. Let xi be a bi-
nary variable for i ∈ {1, . . . , m} and yj be a continuous variable for which 0 ≤ yj ≤ uj
(j ∈ {1, . . . , n}) holds. To linearize the bilinear term xi·yj, we replace it with the auxiliary
variable zij. Furthermore, the following constraint sets should also be imposed on the linear
equivalent formulation, which force zij to take the value of xi·yj:

zij ≤ yj, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}, (11)

zij ≤ uj·xi, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}, (12)

zij ≥ yj + uj·(xi − 1), ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}, (13)

zij ≥ 0, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (14)

where uj can be replaced with a sufficiently large number. The validity of these constraints
can be checked by examining Table 2, in which all possible scenarios are listed. The studies
conducted by Asghari and Mirzapour Al-e-hashem [39], Asghari et al. [40], and Mojtahedi
et al. [41] can serve as relevant examples of applying this method.

Table 2. All possible products of binary and continuous variables (z := x·y).

x y x·y Constraints Imply

0 m : 0 ≤ m ≤ u 0 z ≤ m z = 0
z ≤ 0
z ≥ m− u
z ≥ 0

1 m : 0 ≤ m ≤ u m z ≤ m z = m
z ≤ u
z ≥ m
z ≥ 0

2.3. Multiplication of Two Continuous Variables

This subsection discusses an effective method for linearizing equations that incorporate
a product of continuous variables. Linearization of multiplication of continuous variables
can be complex. Solving such a function can become extremely difficult. The AIMMS
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Modelling Guide [37] provides a hint for bounded variables by which the product of two
continuous variables can be transformed into a separable form. We assume that term
x1·x2 must be converted. First of all, we define two new continuous variables y1 and y2
as follows:

y1 =
1
2
(x1 + x2), (15)

y2 =
1
2
(x1 − x2). (16)

The product x1·x2 can be now replaced with the below separable function:

y2
1 − y2

2 := x1·x2. (17)

which can be linearized by using the technique of the piecewise approximation as stated in
Section 3.1 [29]. Note that one can eliminate the non-linear function at the cost of having
to approximate the objective. If l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2, then the lower and upper
bounds on y1 and y2 are:

1
2
(l1 + l2) ≤ y1 ≤

1
2
(u1 + u2), (18)

1
2
(l1 − u2) ≤ y2 ≤

1
2
(u1 − l2). (19)

It should be noted that the product x1·x2 can be substituted with a single variable z
whenever (i) one of the variables is not referenced in any other term except in the products
of the above form, and (ii) the lower bounds l1 and l2 are non-negative. Suppose x1 is such
a variable (not used in any other terms). Then, the non-linear term x1·x2 can be replaced
with z just by adding the following constraint:

l1·x2 ≤ z ≤ u1·x2. (20)

Once the resulting mathematical formulation is solved in terms of z and x2, it is
required to calculate x1 = z

x2
whenever x2 > 0. x1 is undetermined when x2 = 0. The extra

constraints on z ensure that l1 ≤ x1 ≤ u1 when x2 > 0.

2.4. Maximum/Minimum Operators

The maximum and minimum operators are viewed as explicit non-linear terms. These
terms can also be linearized to efficiently solve the optimization model in which they
are directly used [42]. Assume there is a general non-linear structure in the form of
max

i∈I
{xi}, where I = {1, . . . , n}. This structure can be further converted to an equivalent

mathematical model after adding a new continuous variable z, a set of new binary variables
yi, and introducing supplementary constraint sets (22) to (25).

z := max
i∈I
{xi}, (21)

z ≥ xi, ∀i ∈ {1, . . . , n}, (22)

z ≤ xi + m·yi, ∀i ∈ {1, . . . , n}, (23)

∑n
i=1 yi ≤ n− 1, (24)

yi ∈ {0, 1}, ∀i ∈ {1, . . . , n}. (25)

where m is a sufficiently large number. Constraints (22) assure that z is greater than all xi.
Constraints (23) and (24) are applied to prevent z from becoming infinite. In particular,
constraints (23) and (24) are used to assure that for only one i, z has to be less than or equal
to xi. Constraints (23) and (24) do not have to be applied when the objective function is
of a minimization type. However, constraints (23) and (24) are required when the objective
function is of a maximization type and/or the considered optimization model has multiple
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objective functions. Constraints (25) denote the integrality restrictions on the values of
binary variables yi. For the non-linear term min

i∈I
{xi}, where I = {1, . . . , n}, Equations (22)

and (23) have to be altered as follows:

z ≤ xi, ∀i ∈ {1, . . . , n}, (26)

z ≥ xi −m·yi, ∀i ∈ {1, . . . , n}. (27)

where z := min
i∈I
{xi} and constraints (24) and (25) stay unaltered. In this case, constraints

(24) and (27) do not have to be applied when the objective function is maximization.

2.5. Absolute Value Function

One of the special cases in non-linear programming is optimization problems using
the absolute value function, on which it is extremely hard to apply standard optimization
methods. Operating on the absolute value expression is relatively difficult because it is
sometimes not a continuously distinguishable function. However, it is possible to avoid
these difficulties and solve the problem using LP procedures by simply manipulating the
absolute values [43–47]. If a linear function locates in an absolute value function, then
we can alternatively use a valid inequality instead of the absolute value. This means that
z = | f (x)| can be effectively converted to two linear expressions if the function f (x) is
linear itself. For the simplest example, z = |x|, the function can practically be reformulated
by combining two piecewise functions: z = x if x ≥ 0 and −z = x if x < 0. The
aforementioned procedure is the basis of running LP formulations that contain the absolute
value functions.

2.5.1. Absolute Value in Constraints

In the case | f (x)| ≤ z, we are able to reformulate the expression as the combination of
f (x) ≤ z and − f (x) ≤ z. This relation is demonstrated in Figure 3 using a number line.
The figure depicts that the two formulations, the above two linear functions, as well as
the absolute value function, are equivalent. The same logic can be used to reformulate
| f (x)| ≥ z as f (x) ≥ z and − f (x) ≥ z, or | f (x)| + g(y) ≤ z into f (x) + g(y) ≤ z and
− f (x) + g(y) ≤ z [48].
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2.5.2. Absolute Value in the Objective Function

In certain cases, we can also reformulate the absolute value used in the objective
function to become linear. A model can be easily transformed to be solved using LP when
its objective function is a maximization in the form of −| f (x)|+ g(y) or a minimization
in the form of | f (x)|+ g(y). Unfortunately, when the objective function of the model is a
maximization in the form of | f (x)|+ g(y) or a minimization in the form of −| f (x)|+ g(y),
the model cannot be turned into a standard linear form, and instead must be solved using
mixed-integer LP. In the first two cases, as mentioned in Mangasarian [44] and Caccetta
et al. [47], the model can be reformulated by substituting a new variable z with | f (x)|within
the original objective function, and adding two extra constraints f (x) ≤ z and − f (x) ≤ z.

2.5.3. Minimizing the Sum of Absolute Deviations

The transformation approach for minimizing the sum of absolute deviations presented
herein was introduced by Ferguson and Sargent [49]. Let the deviations be represented by
xi = bi −∑j aij·yj, where i is the ith observation (i ∈ {1, . . . , m}), bi is an observation, and
xi gives the deviation. The objective of the mathematical formulation aims to minimize the
deviation and can be formulated in the following basic form:



Mathematics 2022, 10, 283 8 of 26

Min ∑m
i=1|xi|, (28)

and the linear constraints are

xi + ∑n
j=1 aij·yj = bi, ∀i ∈ {1, . . . , m}, (29)

xi, yj ∈ R, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (30)

The absolute value function generates the non-linearity in this form. However, the
model can be rewritten as an LP model by replacing xi. To linearize the problem, xi is
substituted by x+i − x−i (where x+i and x−i are positive variables), and the model can be
reformulated as:

Min ∑m
i=1

∣∣x+i − x−i
∣∣, (31)

s.t.

x+i − x−i + ∑n
j=1 aij·yj = bi, ∀i ∈ {1, . . . , m}, (32)

xi = x+i − x−i , ∀i ∈ {1, . . . , m}, (33)

x+i , x−i ≥ 0, ∀i ∈ {1, . . . , m}, (34)

xi, yj ∈ R, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (35)

At the optimal solution, it can be proven that x+i ·x
−
i = 0. Therefore, the model is

reformulated to a linear programming form, as |xi| = x+i + x−i ≥ 0. The final form of the
problem is

Min ∑m
i=1

(
x+i + x−i

)
, (36)

s.t.

x+i − x−i + ∑n
j=1 aij·yj = bi, ∀i ∈ {1, . . . , m}, (37)

xi = x+i − x−i , ∀i ∈ {1, . . . , m}, (38)

x+i , x−i ≥ 0, ∀i ∈ {1, . . . , m}, (39)

xi, yj ∈ R, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (40)

2.5.4. Minimizing the Maximum of Absolute Values

In some cases, such as the evaluation of the maximum forecast error by applying the
Chebyschev criterion, the problem aims to minimize the largest absolute deviation rather
than the sum. Such a formulation can be expressed using Equations (41) to (43).

Minmax
i
|xi|, (41)

s.t.

xi + ∑n
j=1 aij·yj = bi, ∀i ∈ {1, . . . , m}, (42)

xi, yj ∈ R, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (43)

where variable xi indicates the deviation for the ith observation and yj indicates the jth
variable in the forecasting equation. The constraints have been described in the previous
subsection. To solve this model, variable x is introduced, which satisfies the following
two inequalities:

x ≥ bi −∑n
j=1 aij·yj, ∀i ∈ {1, . . . , m}, (44)

x ≥ −
(

bi −∑n
j=1 aij·yj

)
, ∀i ∈ {1, . . . , m}. (45)
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The inequalities (44) and (45) guarantee that x is greater than or equal to the largest |xi|.
Therefore, as stated by McCarl and Spreen [50], the original formulation can be represented
in the following form:

Minx, (46)

s.t.

− x−∑n
j=1 aij·yj ≤ −bi, ∀i ∈ {1, . . . , m}, (47)

− x + ∑n
j=1 aij·yj ≤ bi, ∀i ∈ {1, . . . , m}, (48)

x ≥ 0 (49)

yj ∈ R, ∀j ∈ {1, . . . , n}. (50)

2.6. Floor and Ceiling Functions

The floor function is a mathematical function that takes a certain real number x as
an input and returns the greatest integer that is less than or equal to x as an output. In a
similar fashion, the ceiling function is a mathematical function that rounds x to the least
integer that is greater than or equal to x. Let b c denote the floor integer function and
consider the non-linear equation b f (x)c . The value of function f (x) can be represented
as f (x) = y + r, where y is the integral part of f (x) and 0 ≤ r < 1. Therefore, the floor
function b f (x)c can be linearized by replacing it with the integer variable y (y f b(x)c ) and
adding the following constraints:

y ≤ f (x) < y + 1, (51)

y ∈ Z. (52)

Equation (52) is the integrality constraint. A similar approach can be used to linearize
the ceiling function d f (x)e by replacing it with the integer variable y (yd f (x)e ) and adding
the following constraints to the problem:

y− 1 ≤ f (x) < y, (53)

y ∈ Z. (54)

2.7. Square Root Function

A square root of a certain number x is defined in mathematics using another number y
such that y2 = x; alternatively, a number y that has a squared value (i.e., the resulting value
of multiplying a given number by itself or y · y) of x [51]. Each real-valued non-negative
number x has a unique non-negative square root (that is also referred to as the principal
square root), which can be represented by mathematical notation

√
x. The linearization of a

square root function, to the authors’ knowledge, has not yet been studied in the literature
(or been applied in practice). Several studies addressing such a function only used the
Taylor-series approximation method by writing the equation of the line tangent to the
function at a given constant. Kwon and Draper [52] and Del Moral and Niclas [53] are
examples of Taylor-series expansion algorithms developed for the square root function.

This section of the manuscript proposes a new technique for linearizing the square
root terms. The suggested linearization method is based on some numerical and theoretical
techniques in the area of mixed-integer programming that were presented by Rahil [38].
Consider the square root

√
f (x) which is an explicit non-linear term named here as radical.

To linearize the radical term, it can be replaced with a new positive integer variable A
as below:

A = dradicale, (55)

A ∈ Z+. (56)
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where d e is the ceiling bracket sign that rounds up radical to the nearest integer that is
greater than or equal to the expression. In Equation (55), radical is a positive real number,
and A is a positive integer number. Thus, A ignores the fraction part of radical (if there is
any fraction) and approximates it with a strictly lower than one unit error. This amount of
error can be negligible, especially when radical is a very large number. By using Theorem 1,
the value of A can be converted into its binary equivalent.

Theorem 1. Assume that w is an integer variable. Then,

w =
n−1

∑
i=0

2i·yi + (u− 2n + 1)·yn, (57)

where yi are binary variables, u denotes the upper bound of w, and n is set to blog2(u + 1)c.

For example, if u = 45, any positive integer number w less than 45 can be written as
binary using the following equation:

w = 20y0 + 21y1 + 22y2 + 23y3 + 24y4 +
(
45− 25 + 1

)
y5

= 1 + 2y1 + 22y2 + 23y3 + 24y4 + 14y5.
(58)

It should also be noted that integer numbers greater than 45 cannot be constructed
by Equation (58). Therefore, the upper bound condition, u, is never violated. Proof of
Theorem 1 is provided in Appendix A. The upper bound can be determined by calculating
the maximum function f (x) = max

x
{ f (x)} as follows:

u =
√

f (x). (59)

As shown in Equation (53), A =
⌈√

f (x)
⌉

, then
√

f (x) ≤ A. To calculate the upper
bound of function f (x), we rise the two sides of this inequality to the power of 2:

f (x) ≤ A2. (60)

At this point, we can use Theorem 2 to precisely simulate the quadratic term A2.

Theorem 2. Assume w is an integer variable that has an upper bound of u. After that, w2 can be
further linearized based on the following equation:

w2 =
n−1

∑
i=0

22i·yi +
n−2

∑
i=0

n−1

∑
j>i

2i+j+1·zij + β·
n−1

∑
i=0

2i+1·zin + β2·yn, (61)

where yi and zij are binary variables, β = (u− 2n + 1), and n is set to blog2 (u + 1)c .

The proof of Theorem 2 is provided in Appendix B. The linearization of the quadratic
integers is presented in Appendix C. By utilizing Theorems 1 and 2, we obtain the
linearized equivalent of a square root by substituting

√
f (x) by A and adding the

following constraints:

f (x) ≤
n−1

∑
i=0

22i·yi +
n−2

∑
i=0

n−1

∑
j>i

2i+j+1·zij + (u− 2n + 1)·
n−1

∑
i=0

2i+1·zin + (u− 2n + 1)2·yn, (62)

A =
n−1

∑
i=0

2i·yi + (u− 2n + 1)·yn, (63)

zij ≤ yi, ∀i, j ∈ {0, . . . , n}, (64)
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zij ≤ yj, ∀i, j ∈ {0, . . . , n}, (65)

zij ≥ yi + yj − 1, ∀i, j ∈ {0, . . . , n}, (66)

yi, zij ∈ {0, 1}, ∀i, j ∈ {0, . . . , n}, (67)

A ∈ Z+. (68)

To show how Equations (61)–(68) can be applied in a specific case, let us estimate the
square root

√
x with an upper bound of 103. n is calculated accordingly as blog2 (103 + 1)c = 6.

The square root function can be linearized by replacing it with the integer variable A and
adding the following constraints to the problem:

x ≤
5

∑
i=0

22i·yi +
4

∑
i=0

5

∑
j>i

2i+j+1·zij + 40·
5

∑
i=0

2i+1·zi,6 + 1600·y6, (69)

A =
5

∑
i=0

2i·yi + 40·y6, (70)

zij ≤ yi, ∀i, j ∈ {0, . . . , 6}, (71)

zij ≤ yj, ∀i, j ∈ {0, . . . , 6}, (72)

zij ≥ yi + yj − 1, ∀i, j ∈ {0, . . . , 6}, (73)

yi, zij ∈ {0, 1}, ∀i, j ∈ {0, . . . , 6}, (74)

A ∈ Z+. (75)

2.8. Multiple Breakpoint Function

In this section, we describe two linearization techniques for multiple breakpoint
functions based on the information presented in Tsai [54] and Mirzapour Al-e-hashem
et al. [55]. Suppose there is a general continuous multiple breakpoint function that can be
defined as follows:

f (x) =


a1·x + b1,
a2·x + b2,

if c0 ≤ x ≤ c1
if c1 ≤ x ≤ c2

...
an·x + bn,

...
if cn−1 ≤ x ≤ cn

, (76)

x ∈ R. (77)

Based on the methodology suggested by Tsai [54], the equivalent valid inequality of
Equation (76) can be further simplified to the following form:

f (x) =
n

∑
i=1

ti·(ai·x + bi), (78)

s.t.
n

∑
i=1

ci−1·ti ≤ x ≤
n

∑
i=1

ci·ti, (79)

n

∑
i=1

ti = 1, (80)

ti ∈ {0, 1}, ∀i ∈ {1, . . . , n}. (81)

As can be seen, this formulation contains an explicit non-linear term ti·x. As proven
by Tsai [54], an equivalent linear equation for z = t·g(x); t ∈ {0, 1} can be reformulated as:
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g(x)− (1− t)·m ≤ z ≤ g(x) + (1− t)·m, (82)

− t·m ≤ z ≤ t·m, (83)

t ∈ {0, 1}. (84)

where m is a sufficiently large number.
Let us consider ai·x + bi as g(x); then, Tsai’s techniques can be rewritten as follows:

f (x) =
n

∑
i=1

zi, (85)

s.t.
n

∑
i=1

ci−1·ti ≤ x ≤
n

∑
i=1

ci·ti, (86)

n

∑
i=1

ti = 1, (87)

ai·x + bi − (1− ti)·m ≤ zi, ∀i ∈ {1, . . . , n}, (88)

ai·x + bi + (1− ti)·m ≥ zi, ∀i ∈ {1, . . . , n}, (89)

− ti·m ≤ zi ≤ ti·m, ∀i ∈ {1, . . . , n}, (90)

ti ∈ {0, 1}, ∀i ∈ {1, . . . , n}, (91)

zi ∈ R, ∀i ∈ {1, . . . , n}. (92)

Mirzapour Al-e-hashem et al. [55] proposed another linearization technique for a mul-
tiple breakpoint function. The authors have shown that the multiple breakpoint function
f (x) can be linearized by introducing some binary variables ti and also converting variable
x to n independent variables xi, where x = ∑i xi. Thus, Equation (76) can be rewritten
as follows:

f (x) =


a1·x1 + b1,
a2·x2 + b2,

if c0 ≤ x1 ≤ c1

if c1 ≤ x2 ≤ c2
...

an·xn + bn,

...
if cn−1 ≤ xn ≤ cn

. (93)

As proven by Mirzapour Al-e-hashem et al. [55], the linear equivalent mathematical
structure of f (x) can be written by introducing new constraints as follows:

f (x) =
n

∑
i=1

(ai·xi + bi·ti), (94)

s.t.

ci−1·ti ≤ xi ≤ ci·ti, ∀i ∈ {1, . . . , n}, (95)
n

∑
i=1

xi = x, (96)

n

∑
i=1

ti = 1, (97)

ti ∈ {0, 1}, ∀i ∈ {1, . . . , n}, (98)

xi ∈ R, ∀i ∈ {1, . . . , n}. (99)

For a non-continuous multiple breakpoint function of type:
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f (x) =


a1·x + b1,
a2·x + b2,

if x ≤ c1

if c1 < x ≤ c2
...

an·x + bn,

...
if cn−1 < x

, (100)

x ∈ R. (101)

The Mirzapour’s technique can be used by modifying Equation (95) as follows:(
ci−1 +

1
m

)
·ti ≤ xi ≤ ci·ti, ∀i ∈ {2, . . . , n− 1}, (102)

x1 ≤ c1·t1, (103)(
cn−1 +

1
m

)
·tn ≤ xn, (104)

where m is a sufficiently large number.
Comparing the two aforementioned methodologies, the same amount of binary and

continuous variables is used. However, the method proposed by Mirzapour Al-e-hashem
et al. [55] requires five new different classes of constraints for the initial model. On the
contrary, the Tsai’s technique imposes seven new different classes of constraints for the
original model.

3. Approximate Linearization Methods

Approaches to non-linear programming typically use approximation techniques that
may be either iterative or non-iterative (i.e., the ones that require just one iteration). This
section discusses the main approximation techniques that can be implemented for the
majority of non-linear problems. The considered approximation techniques could be
divided into two broad groups, including (i) piecewise linear approximation techniques;
and (ii) log-linearization via Taylor series approximation. For more information regarding
alternative approximation techniques, the interested readers can refer to Dembo [56],
McCarl and Tice [57], and McCarl and Onal [58].

3.1. Piecewise Linear Approximation

In many studies over the past decades, piecewise linear approximation (PLA) tech-
niques have been used to convert the non-linear LP models into their linear forms or mixed-
integer convex optimization problems to obtain approximate global optimal solutions. To
reformulate the original non-linear optimization problem, new variables of binary and
continuous nature along with extra constraints are generally applied in the transformation
process. The additional variables and constraint sets typically improve the effectiveness of
obtaining solutions for the converted problem. The next sections of the manuscript present
an overview of common PLAs and analyze their computational efficiency.

3.1.1. Formulations

Consider a general non-linear function f (x) of a single variable x, which is within the
interval [a0, an]. Such a continuous function has the advantage that we can approximate
its non-linear expressions to piecewise linear ones as commonly used in the non-linear
programming literature [59–62]. For comparing PLA techniques, interested readers can
refer to the computational results reported by Li et al. [59] and Lin et al. [63].

• Method 1

First, divide f (x) into n separate segments and define ai (i ∈ {0, 1, . . . , n}) as the
breakpoints of f (x), a0 < a1 < . . . < an. Then, we can approximately linearize the
non-linear function f (x) over the interval [a0, an] as follows:
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L( f (x)) =
n

∑
i=0

f (ai)·yi, (105)

s.t.
n

∑
i=0

ai·yi = x, (106)

n

∑
i=0

yi = 1, (107)

y0 ≤ t0, (108)

yi ≤ ti−1 + ti, ∀i ∈ {1, . . . , n− 1}, (109)

yn ≤ tn−1, (110)

n−1

∑
i=0

ti = 1, (111)

ti ∈ {0, 1}, ∀i ∈ {0, . . . , n− 1}, (112)

yi ∈ R+, ∀i ∈ {0, . . . , n}. (113)

where only two adjacent yi are allowed to be non-zero.
Figure 4 illustrates the piecewise linearization of f (x). The above terms include n extra

binary variables t0, t1, . . . , tn−1 and n + 1 new continuous variables y0, y1, . . . , yn. The
number of these newly added variables increases with the number of breakpoints (n + 1),
which leads to an exponential increase in computational time. The more linear segments
there are, the more accurate the approximation will be at the expense of increasing the
computational complexity.
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• Method 2

Li and Yu [64] introduced a method for the global optimization of non-linear mathe-
matical models in which the objective along with the constraint sets may be non-convex.
First, a univariate mathematical function is formulated via a piecewise linear function using
a sum of absolute expressions. Denote si (i ∈ {0, 1, . . . , n− 1}) as the slopes of each line
between ai and ai+1, computed using Equation (114):

si =
f (ai+1)− f (ai)

ai+1 − ai
, ∀i ∈ {0, . . . , n− 1}. (114)
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An equivalent piecewise linear form of non-linear function f (x) can then be reformu-
lated as follows:

L( f (x)) = f (a0) + s0·(x− a0) +
n−1

∑
i=1

si − si−1

2
·(|x− ai|+ x− ai). (115)

If the successive slopes of the PLA are non-decreasing (si − si−1 ≥ 0) in the interval
[ai−1, ai], f (x) is convex. Otherwise, f (x) is a concave (non-convex) function when these
slopes are increasing. After linearization of the absolute term, Li and Yu [64] included
additional binary variables ti to convert the non-convex model to a piecewise linear form
as follows:

L( f (x)) = f (a0) + s0·(x− a0) + ∑
i:si>si−1

(si − si−1)·
(

x− ai +
i−1
∑

j=0
dj

)
+ 1

2 ∑
i:si<si−1

(si − si−1)·(x− ai + 2·ai·ti − 2·zi),
(116)

s.t.

x +
n−2

∑
i=0

di ≥ an−1, (117)

di ≤ ai+1 − ai, ∀i ∈ {0, . . . , n− 1} and si > si−1, (118)

x + u(ti − 1) ≤ zi, ∀i ∈ {0, . . . , n− 1} and si < si−1, (119)

ti ∈ {0, 1}, ∀i ∈ {0, . . . , n− 1}, (120)

di, zi ∈ R+, ∀i ∈ {0, . . . , n− 1}. (121)

where u is the upper bound of x.
Compared to Method 1, which used binary variables for all parts, the binary variables

applied by the second approach have only been used to linearize the non-convex intervals
of f (x). Thus, the second method generally employs fewer binary variables than Method 1.

• Method 3

Another representing form of the piecewise approximating function has been used in
the studies conducted by Li and Tsai [65], Topaloglu and Powell [66], Padberg [67], Li [68],
and Croxton et al. [69]. The equivalent function can be formulated as demonstrated below.

x ≥ ai − (an − a0)(1− ti), ∀i ∈ {0, . . . , n− 1}, (122)

x ≤ ai+1 + (an − a0)(1− ti), ∀i ∈ {0, . . . , n− 1}, (123)

f (x) ≥ f (ai) + si·(x− ai)−m(1− ti), ∀i ∈ {0, . . . , n− 1}, (124)

f (x) ≤ f (ai) + si·(x− ai) + m(1− ti), ∀i ∈ {0, . . . , n− 1}, (125)

si =
f (ai+1)− f (ai)

ai+1 − ai
, ∀i ∈ {0, . . . , n− 1}, (126)

n−1

∑
i=0

ti = 1, (127)

ti ∈ {0, 1}, ∀i ∈ {0, . . . , n− 1}. (128)

where m is a sufficiently large constant.
When n + 1 breakpoints are used, the above approach requires extra n binary variables

and 4n new constraint sets to model a piecewise linear function.
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• Method 4

More linear pieces in the piecewise linear programming enhance the accuracy of the
approximating function, but in the meantime, the execution time is negatively affected.
To decrease the number of new binary variables added throughout the process of ap-
proximation, Li et al. [70] proposed a piecewise linearization technique that contains a
logarithmic number of variables with binary nature in n. Consider the same continuous
function f (x) expressed above, where x is assumed to be within the interval [a0, an] with
n + 1 breakpoints. Let k be a positive integer number that can be represented using the
following form:

k =
h−1

∑
i=0

2i·yi, (129)

where yi are binary variables, n− 1 denotes the upper bound of k, and h is set to blog2(n + 1)c.
Consider a set A(k) ⊆ {0, 1, . . . , h− 1} such that

k = ∑
i∈A(k)

2i. (130)

For example, A(0) = ∅, A(3) = {0, 1}, and A(5) = {0, 2}. Denote ‖A(k)‖ to be the
amount of elements in A(k). For example, ‖A(0)‖ = 0, and ‖A(3)‖ = 2. Li et al. [70]
proposed the following expressions for approximation of a univariate non-linear function:

L( f (x)) =
n−1

∑
k=0

( f (ak)− sk(ak − a0))·rk +
n−1

∑
k=0

sk·wk, (131)

s.t.

x ≥
n−1

∑
k=0

rk·ak, (132)

x ≤
n−1

∑
k=0

rk·ak+1, (133)

sk =
f (ak+1)− f (ak)

ak+1 − ak
, ∀k ∈ {0, . . . , n− 1}, (134)

n−1

∑
k=0

rk = 1, (135)

n−1

∑
k=0

rk·‖A(k)‖+
h−1

∑
i=0

zi = 0, (136)

zi ≥ −yi, ∀i ∈ {0, . . . , h− 1}, (137)

zi ≤ yi, ∀i ∈ {0, . . . , h− 1}, (138)

zi ≥
n−1

∑
k=0

rk·cki − (1− yi), ∀i ∈ {0, . . . , h− 1}, (139)

zi ≤
n−1

∑
k=0

rk·cki + (1− yi), ∀i ∈ {0, . . . , h− 1}, (140)

n−1

∑
k=0

wk = x− a0, (141)

n−1

∑
k=0

wk·‖A(k)‖+
h−1

∑
i=0

vi = 0, (142)
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vi ≥ −(an − a0)·yi, ∀i ∈ {0, . . . , h− 1}, (143)

vi ≤ (an − a0)·yi, ∀i ∈ {0, . . . , h− 1}, (144)

vi ≥
n−1

∑
k=0

wk·cki − (an − a0)·(1− yi), ∀i ∈ {0, . . . , h− 1}, (145)

vi ≤
n−1

∑
k=0

wk·cki + (an − a0)·(1− yi), ∀i ∈ {0, . . . , h− 1}, (146)

yi ∈ {0, 1}, ∀i ∈ {0, . . . , h− 1}, (147)

rk, wk ∈ R+, ∀k ∈ {0, . . . , n− 1}, (148)

cki, zi, vi ∈ R, ∀k ∈ {0, . . . , n− 1}, ∀i ∈ {0, . . . , h− 1}. (149)

Considering n + 1 breakpoints, this method requires h binary variables, 2n non-
negative variables, and h·(n + 1) free-signed continuous variables. Although the method
proposed by Li et al. [70] uses fewer variables of binary nature, Vielma et al. [71] showed that
this approach is not a theoretically and computationally superior representation method
for piecewise linear functions.

• Method 5

To approximate the non-linear functions of a variable, Vielma and Nemhauser [72]
developed a new expression that needs fewer variables and constraints than previous
representation methods. Their formulation requires a logarithmic number of binary vari-
ables and constraint sets in expressing a piecewise approximating function as follows.
Let i ∈ I = {0, 1, . . . , n} and B(i) = (y1, y2, . . . , yh), where h = dlog2 ne, yk ∈ {0, 1} for
k ∈ {1, . . . , h}. Let B : {0, 1, . . . , n} → {0, 1}h denote the injective function, where the vec-
tors B(i) and B(i + 1) differ in at most one component for all i ∈ {1, . . . , n− 1} and B(0) =
B(1). Let S+(k) be a set of i where yk = 1 in both B(i) and B(i + 1) for i ∈ {1, . . . , n− 1} or
just in B(i) for i ∈ {0, n} (S+(k) = {i|B(i) and B(i + 1) ∀i ∈ {1, . . . , n− 1} : yk = 1} ∪
{i|B(i) ∀i ∈ {0, n} : yk = 1}). Let S−(k) be a set of i where yk = 0 in both B(i) and
B(i + 1) for i ∈ {1, . . . , n− 1} or just in B(i) for i ∈ {0, n} (S+(k) = {i|B(i) and B(i + 1)
∀i ∈ {1, . . . , n− 1} : yk = 0} ∪ {i|B(i) ∀i ∈ {0, n} : yk = 0}). The piecewise linear func-
tion of f (x) with n + 1 breakpoints where a0 < a1 < . . . < an can be represented as:

L( f (x)) =
n

∑
i=0

f (ai)·λi, (150)

s.t.

x =
n

∑
i=0

ai·λi, (151)

n

∑
i=0

λi = 1, (152)

∑
i∈S+(k)

λi ≤ yk, ∀k ∈ {1, . . . , h}, (153)

∑
i∈S−(k)

λi ≤ 1− yk, ∀k ∈ {1, . . . , h}, (154)

yk ∈ {0, 1}, ∀k ∈ {1, . . . , h}, (155)

λi ∈ R+, ∀i ∈ {0, . . . , n}. (156)

To form a piecewise linear programming function with n pieces, this method applies
dlog2 ne variables of binary nature, n + 1 variables of continuous nature, and 2 + 2·dlog2 ne
constraint sets. Method 5 induces a piecewise linear function with an independent branch-
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ing scheme of logarithm depth and constructs a tighter convex estimator, making fewer
breakpoints to meet the feasibility and optimality tolerance. Experimental results from
the literature [71,73] show that this method provides a significant computational advan-
tage in the linearization process and outperforms other methods, especially when more
breakpoints are used.

3.1.2. PLA-Based Algorithms

Establishing the PLA generates its own optimization problem. To properly fit a curve,
the most accurate PLA uses an infinite amount of segments. The complexity associated
with this procedure becomes similar to the initial non-linear model. In solving the new
decision problem, the main goal is to determine the best approximation with the least
number of linear pieces. There are a number of commercial solvers, such as MINOS and
CONOPT used within the General Algebraic Modeling System (GAMS), that can solve
these problems [74]. There are also several optimal search algorithms using PLAs to solve
complicated models with both concave and convex objective functions [75–78]. The most
prominent algorithms developed based on PLA techniques include the following:

• Approximating Planar Curves

PLAs are not just restricted to two-dimensional cases but can be utilized to fit multi-
dimensional planes and curves. Williams [79] presented the first algorithm that efficiently
fits flat curves by using the required number of linear vectors. The proposed methodology
of approximating the fitting of straight lines to a plane is based on the geometric analysis
of the curvature of the plane, with subsequent geometrically accurate and numerically
stable calculations.

• Single Pass PLA Algorithm

Gritzali and Papakonstantinou [80] devised an algorithm for finding different parts
of a formulated waveform function and identifying a number of peak points. The points
marked as peaks are those where the derivative of the function equals zero. This algorithm
starts with a maximum point plotted on the piecewise curve and develops the PLA into the
function in order that all points on the waveform have the same difference with respect to
the piecewise approximation. Such an algorithm can obviously be beneficial in real-time
applications like an electrocardiogram readout where peaks are important.

• Branch and Refine

The branching and refining algorithm is based on the well-known PLA techniques.
This is an effective way to find a global optimum for a non-linear problem. The algorithm
applies PLAs to determine global lower bounds for mixed-integer non-linear optimization
models, and from there, the upper bounds of the problem are provided by the feasible
solutions. As the amount of iterations increases, the amount of segments increases, and
the algorithm moves towards the global solution. For more information regarding the
branching and refining algorithm, the interested readers can refer to Leyffer et al. [81] and
Gong and You [82].

• PLAs for Accuracy

The algorithm designed by Nishikawa [83] estimates the global and local asymptotic
L2 error as a piecewise continuous linear approximation in a manner that the target error
on the curve can be achievable. The latter task can be accomplished via the local error
analysis, which is followed by using key terms for the approximation. Some numerical
tests are then performed to verify that the error is around L2.

3.2. Log-Linearization via Taylor Series Approximation

There exist many different types of non-linear problems (e.g., dynamic stochastic
general equilibrium), for which there exist no closed-form solutions and solving these
problems is challenging. The log-linearization approach can be applied for such cases.
When using the log-linearization approach, it is necessary to approximate the non-linear
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equations characterizing the equilibrium with log-linear ones. The strategy is to first take
the natural logs of the non-linear equations and then use the first-order Taylor approx-
imation around the steady-state to replace the logged difference equations with linear
approximations in the log-deviations of the variables. There are different ways to perform
log-linearization [84–86]. One of the main theories is to apply the Taylor Series expansion
as suggested by Griffith and Stewart [87]. Taylor’s theorem indicates that the first-order
approximation of an arbitrary mathematical function f (x) centered at x = x∗ (differentiable
n times at some point x∗) can be represented as follows:

f (x) ∼= f (x∗) + f ′(x∗)·(x− x∗). (157)

For example, the function f (x) = ln(1 + x) can be approximated at x = 2 by the
first-order Taylor polynomial as follows:

f (x) ∼= ln 3 +
1
3
·(x− 2) = 0.43195 + 0.3333·x. (158)

The first-order Taylor approximations can also be used to convert equations with more
than one endogenous variable to a log-deviation form. The first-order Taylor polynomial of
the function f (x, y) at the steady-state values x = x∗ and y = y∗ gives

f (x, y) ∼= f (x∗, y∗) + f ′x(x∗, y∗).(x− x∗) + f ′y(x∗, y∗)·(y− y∗). (159)

This methodology could be used to log-linearize equations and take the log-deviation
around the steady state-value. Log-linearization means around a steady state. The log-
deviation of the variable x from its steady state x∗ is defined as

x̃ = ln x− ln x∗. (160)

The right-hand side of Equation (160) can be rewritten as

ln
( x

x∗
)
= ln

(
1 +

x− x∗

x∗

)
. (161)

Using the first-order Taylor polynomial mentioned in Equation (157), the log expres-
sion can be approximated at the steady state x = x∗ as

ln
(

1 +
x− x∗

x∗

)
∼= ln 1 +

1
x∗
·(x− x∗). (162)

Thus, we get log-deviation of x about x∗ as

x̃ =
x− x∗

x∗
. (163)

Consider an example of the Cobb-Douglas production function yt = at·kα
t ·n1−α

t and
then take a log of the function:

ln yt = ln at + α· ln kt + (1− α)· ln nt. (164)

Using Taylor Series expansion is the next step, we take the first order approximation
as follows:

ln y∗ + 1
y∗ ·(yt − y∗)

= ln a∗ + 1
a∗ ·(at − a∗) + α· ln k∗ + α

k∗ ·(kt − k∗)
+(1− α)· ln n∗ + 1−α

n∗ ·(nt − n∗).
(165)

Since ln y∗ = ln a∗ + α· ln k∗ + (1− α)· ln n∗, we can cancel out the relevant parts of
the approximation, which will result in the following expression:
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1
y∗
·(yt − y∗) =

1
a∗
·(at − a∗) +

α

k∗
·(kt − k∗) +

1− α

n∗
·(nt − n∗). (166)

For notational ease, the equations are defined as the percentage deviation about the
steady-state. Thus, applying log-deviation stated in Equation (163) to this approximation
leads to

ỹt = ãt + α·k̃t + (1− α)·ñt. (167)

The method of taking logs and then subtracting the log terms from the steady-state
equation is very convenient. However, it does not always work. It is only useful for
multiplicative equations or when the log removes exponents and converts multiplication
into addition to significantly simplify the equation. However, the method of taking logs
and then subtracting the log terms from the steady-state equation should not be used for
the equations that involve expectation terms, even when the equation is multiplicative [85].
This is because taking the expectation of a logarithmic term is not the same as taking the
log from the expectation term.

4. Conclusions

In this study, a comprehensive and holistic review of transformation and linearization
techniques was provided to deal with non-linear terms in optimization models. The
following groups of operations research techniques for solving optimization problems with
non-linear terms were analyzed: (i) transformations in which the non-linear equations
or functions are replaced by an exact equivalent linear programming (LP) formulation to
create valid inequalities; and (ii) linear approximations which find the equivalent of a non-
linear function with the least deviation around the point of interest or separate straight-line
segments. The existing transformation approaches for different scenarios were considered,
including the multiplication of binary variables, multiplication of binary and continuous
variables, multiplication of continuous variables, maximum/minimum operators, absolute
value function, floor and ceiling functions, square root function, and multiple breakpoint
function. As for linear approximations, the present survey provided a detailed review of
piecewise approximating functions and log-linearization via Taylor series approximation.

The main advantages and disadvantages of using common transformation and lin-
earization techniques were investigated as a part of this survey as well. Along with a
review of the existing methods, this study proposed a new technique for linearizing the
square root terms by means of transformation to obtain tight LP relaxations. Furthermore,
a new approach was presented to incorporate quadratic integers into LP mathematical
formulations. The aforementioned contributions are expected to enhance the solvability
of optimization models with non-linear terms and, ultimately, facilitate decision making.
Furthermore, the information presented in this survey study can be used by scientists and
practitioners, who often work with optimization models that have non-linear terms, and
selection of the appropriate transformation and linearization techniques. In conclusion, a
detailed review of the relevant literature confirms that transformation methods were found
be efficient, as they ensure model feasibility and allow reducing the computation time.

The scope of future research for this study can focus more on additional techniques
that can be used to decrease computational time even further after transformation of
the original optimization model into its linear form (e.g., Lagrangian relaxation, Benders
decomposition). Furthermore, a number of iterative optimization algorithms that directly
rely on linearization techniques have been applied in the literature for different decision
problems [88–90]. Another interesting research direction would be the investigation of
computational complexity changes due to the deployment of linearization techniques in
such algorithms. Moreover, future research can compare the computational performance of
various PLA techniques in more detail for different scenarios. Last but not least, the future
research can concentrate more on different domains where transformation and linearization
techniques have been applied the most to discover additional tendencies and potential
implementation challenges.



Mathematics 2022, 10, 283 21 of 26

Author Contributions: Conceptualization: M.A. and S.M.J.M.A.-e.-h.; methodology: M.A. and
S.M.J.M.A.-e.-h.; validation: M.A. and M.A.D.; formal analysis: M.A.; investigation: M.A.; writing—
original draft preparation: M.A., A.M.F.-F. and M.A.D.; writing—review and editing: M.A., A.M.F.-F.
and M.A.D.; supervision: M.A.; project administration: M.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This is a survey study and all the data are available within the main
body of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

Every integer number can be described in powers of 2 [91]. In other words, every
positive integer number N lower than or equal to 2n − 1 can be expressed as the sum of
powers of 2 and n binary variables yi as follows:

N = 20y0 + 21y1 + . . . + 2n−1yn−1, (A1)

yi ∈ {0, 1}, ∀i ∈ {0, . . . , n− 1}. (A2)

For example, consider integer number N = 71,307. In this case, n is equal to 17
(71,307 ≤ 217 − 1), and the binary equivalent raised to the power of 2 is

71,307 = 20y0 + 21y1 + . . . + 216y16. (A3)

where yi = 1 for i ∈ {0, 1, 3, 7, 9, 10, 12, 16} and other binary variables are zero.
Now, the above lemma can be extended to the case that the least upper bound is within

2n − 1 < u < 2n+1 − 1. In this case, the integer number N with an upper bound of u can be
written in the form

N = 20y0 + 21y1 + . . . + 2n−1yn−1 + (u− 2n + 1)yn. (A4)

It should be pointed out that, as 2n − 1 < u < 2n+1 − 1, n can be calculated by
using blog2(u + 1)c. For N less than or equal to 2n − 1, it has been proven that the binary
equivalent of ∑n−1

i=0 2iyi can be used. Otherwise, for N greater than 2n − 1, we only need
to show that the binary equivalent can be made with the second component of Equation
(A4), i.e., (u− 2n + 1)yn. The maximum value of ∑n−1

i=0 2iyi is 2n − 1, when all yi take 1. As
initially assumed u < 2n+1 − 1. Now, if we subtract 2n − 1 from both sides of this equation,
we obtain:

u− (2n − 1) < 2n+1 − 1− (2n − 1) = 2n. (A5)

Since N is an integer number, Equation (A5) can be rewritten as follows:

u− 2n + 1 ≤ 2n − 1· (A6)

Therefore, it can be concluded that the second component of Equation (A4), i.e.,
(u− 2n + 1)yn, is always less than or equal to the maximum value of the first part, i.e.,
∑n−1

i=0 2iyi. Assuming that N is greater than 2n − 1, we only need to prove that the first
part (∑n−1

i=0 2iyi) has the ability to produce the remaining amount, binary equivalent of
N − (u− 2n + 1). As N ≥ 2n − 1 and u− 2n + 1 ≤ 2n − 1, then

N − (u− 2n + 1) ≥ 0· (A7)
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If we subtract u− 2n + 1 from both sides of the initial condition N ≤ u, then

N − (u− 2n + 1) ≤ 2n − 1· (A8)

Since 0 ≤ ∑n−1
i=0 2iyi ≤ 2n − 1, the first part can convert the remaining N− (u− 2n + 1)

into the binary equivalent. �

Appendix B. Proof of Theorem 2

In Theorem 1, we proved that any positive integer w with a limit of u can be converted
into the binary equivalent. By rising the two sides of Equation (57) to the power of two, we
attain the following binomial term:

w2 =

(
n−1

∑
i=0

2i·yi + (u− 2n + 1)·yn

)2

. (A9)

By factorizing the right side of the above equation, we can rewrite it as follows:

w2 =
n−1
∑

i=0
22i·y2

i +
n−2
∑

i=0

n−1
∑
j>i

2i+j+1·yi·yj + (u− 2n + 1)·
n−1
∑

i=0
2i+1·yi·yn

+(u− 2n + 1)2·y2
n.

(A10)

As mentioned in Section 2.1, since yi is a binary variable, we can ignore the power of 2
and replace y2

i with yi. To linearize the term yi·yj, we replace it with a new binary variable
zij (zij := yi·yj) and add the following constraints:

zij ≤ yi, ∀i, j ∈ {0, . . . , n}, (A11)

zij ≤ yj, ∀i, j ∈ {0, . . . , n}, (A12)

zij ≥ yi + yj − 1, ∀i, j ∈ {0, . . . , n}, (A13)

zij ∈ {0, 1}, ∀i, j ∈ {0, . . . , n}. (A14)

Let β = u− 2n + 1. Then, Equation (A10) can be expressed as follows:

w2 =
n−1

∑
i=0

22i·yi +
n−2

∑
i=0

n−1

∑
j>i

2i+j+1·zij + β·
n−1

∑
i=0

2i+1·zin + β2·yn. (A15)

This completes the proof of Theorem 2. �

Appendix C. Linearization of Quadratic Integers for n + 1

Extending this lemma for a given n + 1 implies that

w2
n+1 =

(
20y0 + 21y1 + 22y2 + . . . + 2n−1yn−1 + 2nyn + βyn+1

)2
. (A16)

If we add βyn − βyn to the right of the above equation, then:

w2
n+1 =

(
20y0 + 21y1 + 22y2 + . . . + 2n−1yn−1 + 2nyn + βyn+1 + βyn − βyn

)2
. (A17)

According to Theorem 1, this equation can be rewritten as follows:

w2
n+1 = (wn + 2n·yn + β·(yn+1 − yn))

2. (A18)

After factorization, we see that

w2
n+1 = w2

n + 2n+1·wn·yn − 2·β·wn·yn + 22n·y2
n − 2n+1·β·y2

n + β2·y2
n

+2·β·wn·yn+1 + 2n+1·β·yn·yn+1 − 2·β2·yn·yn+1 + β2·y2
n+1.

(A19)
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According to the technique described in Section 2.1, we replace terms y2
n and yn·yn+1

with variables yn and zn,n+1, respectively. Then

w2
n+1 = w2

n + wn·yn·
(
2n+1 − 2·β

)
+ 2·β·wnyn+1 +

(
β2 − 2n+1·β + 22n)·yn

+β2·yn+1 + zn,n+1·
(
2n+1·β− 2·β2), (A20)

where

wn·yn =

(
n−1

∑
i=0

2i·yi + β·yn

)
·yn =

n−1

∑
i=0

2i·zin + β·yn, (A21)

wn·yn+1 =

(
n−1

∑
i=0

2i·yi + β·yn

)
·yn+1 =

n−1

∑
i=0

2i·zn,n+1 + β·zn,n+1· (A22)

Finally, by replacing wn with ∑n−1
i=0 2i·yi + β·yn and simplifying the equation, we obtain

the linearized form for n + 1 shown below:

w2
n+1 =

n−1
∑

i=0
22i·yi + 22n·yn +

(
n−2
∑

i=0

n−1
∑
j>i

2i+j+1·zij + 2n+1·
n−1
∑

i=0
2i·zin

)
+β·

(
n−1
∑

i=0
2i+1·zi,n+1 + 2n+1·zn,n+1

)
+ β2·yn+1

=
n
∑

i=0
22i·yi +

n−1
∑

i=0

n
∑
j>i

2i+j+1·zij + β·
n
∑

i=0
2i+1·zi,n+1 + β2·yn+1.

(A23)
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