

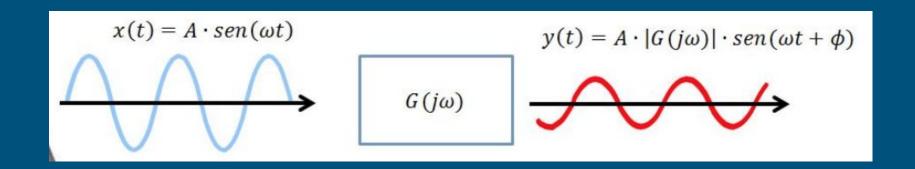
Resposta em frequência de circuitos RC e RLC

Experiência 6

Prof. Dr. Laisa Costa De Biase | Prof. Dr. Elisabete Galeazzo

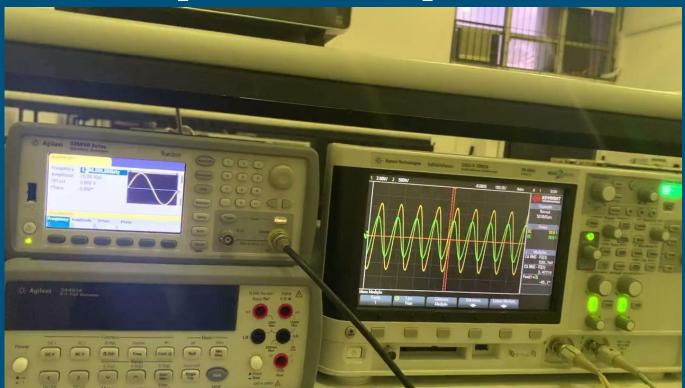
Autor: Profa. Dra. Laisa Costa De Biase Disciplina: PSI 3212 Lab. Circ. Elétricos Período: 2023-1

Objetivo da experiência

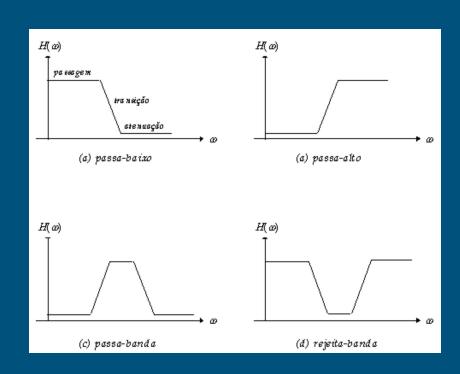

Período: 2023-1

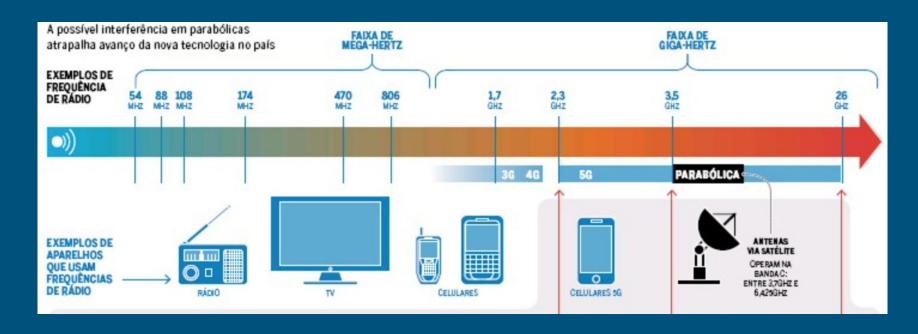
- Aprender a determinar a resposta em frequência de circuitos RC e RLC;
- Aprender a caracterizar a resposta em frequência de circuitos RC e RLC.

Autor: Profa. Dra. Laisa Costa De Biase Disciplina: PSI 3212 Lab. Circ. Elétricos

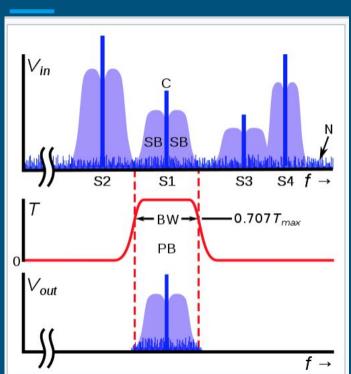


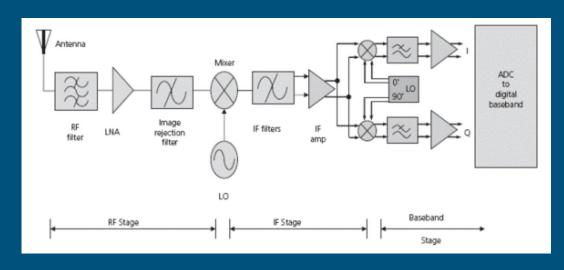
Resposta em frequência

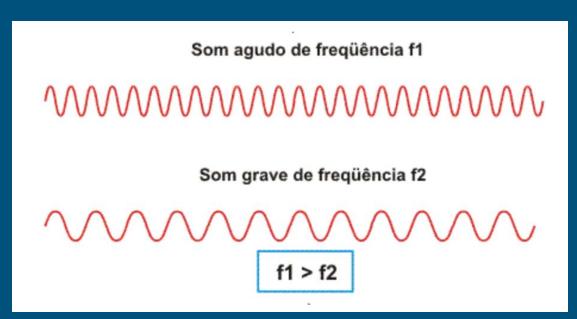

Resposta em frequência


Filtros

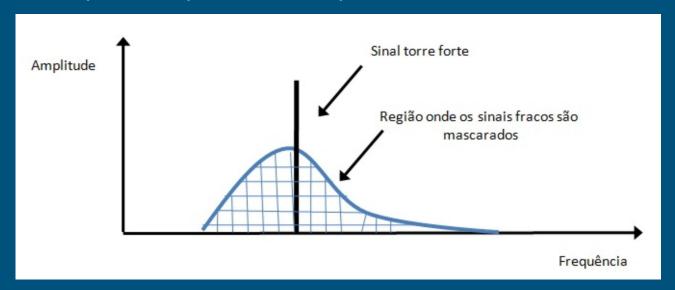
Realizam o tratamento de sinais por diminuição de ruídos, restauração de distorções, ou seleção de frequências.



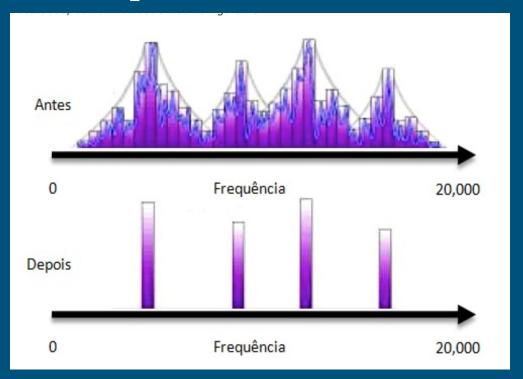

Exemplo de aplicação de filtro: Seleção de estação de rádio


Exemplo de filtro: Seleção de estação de rádio

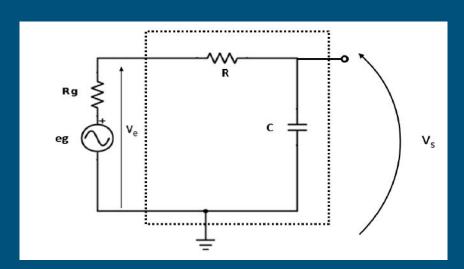
Exemplo de aplicação de filtro: Distribuição de som em falantes

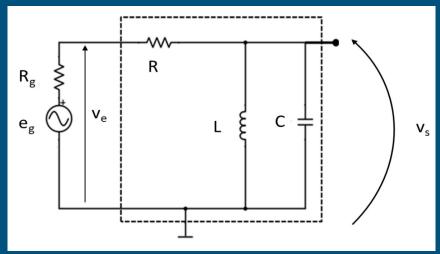

Exemplo de aplicação de filtro: Distribuição de som em falantes

Exemplo de filtro: Compressão de áudio


O padrão MPEG baseia-se no fenômeno de mascaramento de sinais fracos pelo ouvido humano para compressão de arquivos de áudio

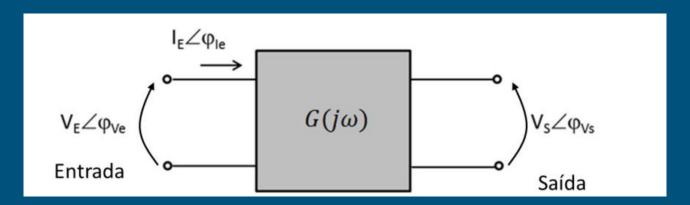
Exemplo de filtro: Compressão de áudio


Transformada de Fourier e aplicação de filtro passa banda



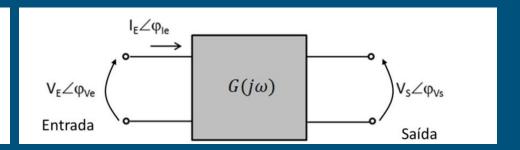
Circuitos a serem estudados

Circuito RC (não ressonante)


Circuito RLC (ressonante)

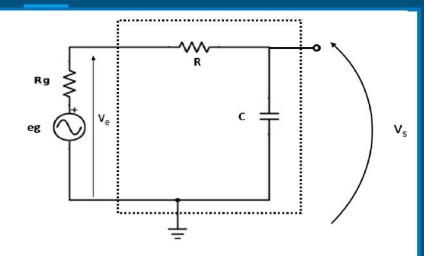
Circuitos a serem estudados

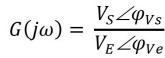
Generalização como um quadrupolo

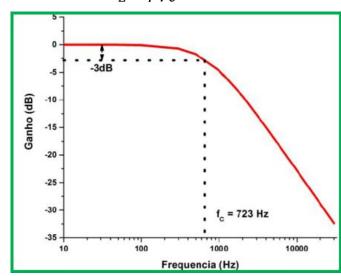


Resposta em frequência

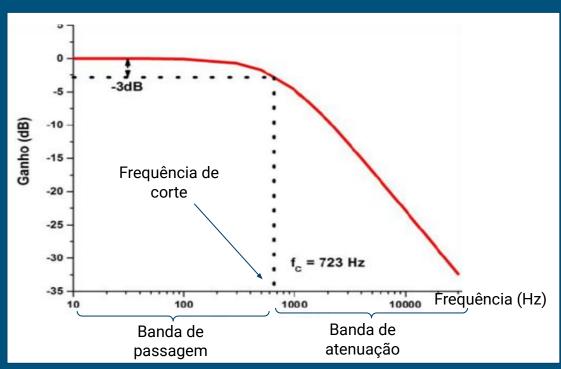
Ganho do circuito x frequência de operação


$$G(j\omega) = \frac{V_S \angle \varphi_{Vs}}{V_E \angle \varphi_{Ve}}$$


$$G(j\omega) = \left| \frac{V_S}{V_e} \right| \exp(j\varphi) = |G(j\omega)| \exp(j\varphi)$$
, onde $\varphi = \varphi_{V_S} - \varphi_{V_e}$

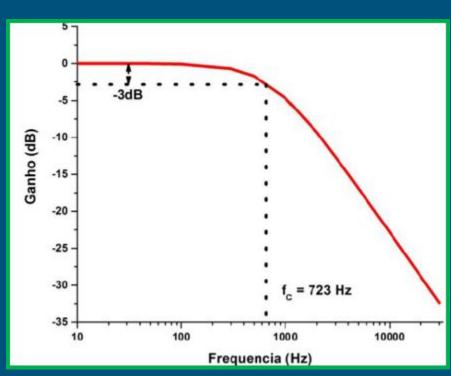


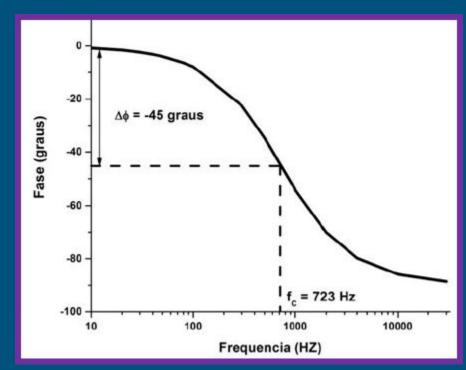
Resposta em frequência: Circuito RC


Alta frequências -> $C \cong \text{curto} -> \text{Vs=0}$ Baixas frequências -> $C \cong \text{aberto} -> \text{Vs=Ve}$

Caracterização: sistemas não ressonantes

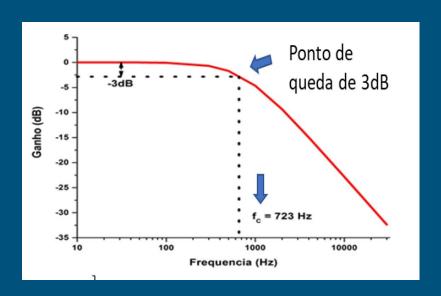
- Frequência de corte
- Banda de passagem
- Banda de atenuação

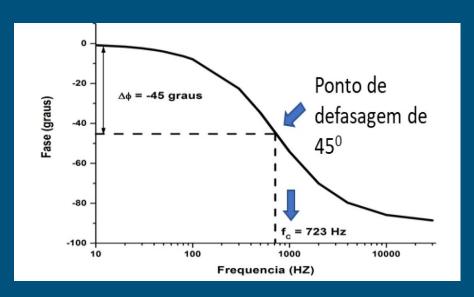

Autor: Profa. Dra. Laisa Costa De Biase


Disciplina: PSI 3212 Lab. Circ. Elétricos

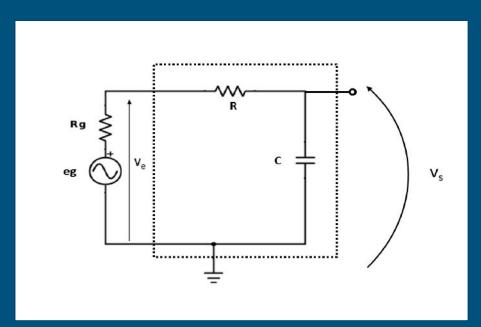
Período: 2023-1

Resposta em frequência: Circuito RC



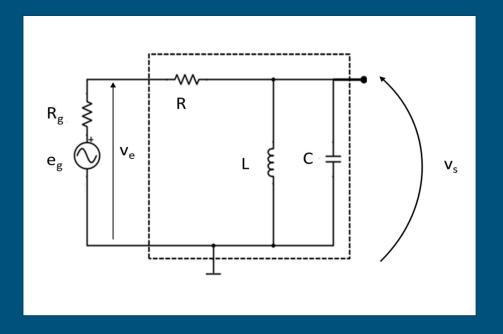


Caracterização: sistemas não ressonantes


Frequência de corte e Banda de passagem

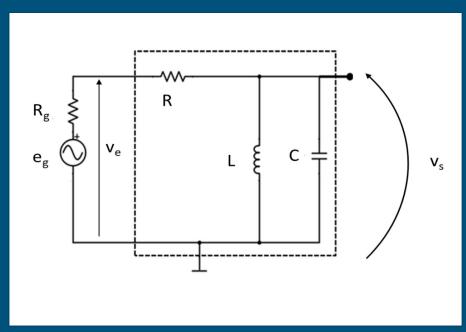
Resposta em frequência: Ganho do Circuito RC

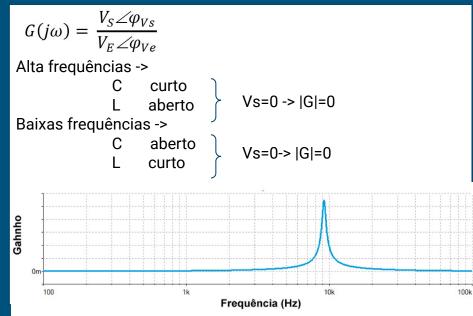
$$G(j\omega) = \frac{Z_C}{Z_C + R} = \frac{1}{1 + \omega RCj}$$


$$|G(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}} = \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_c})^2}}$$

$$\varphi = -\arctan(\omega RC)$$

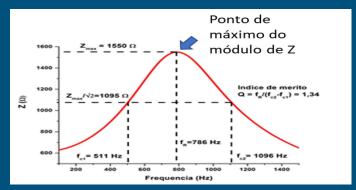
$$\omega_c = \frac{1}{RC}$$

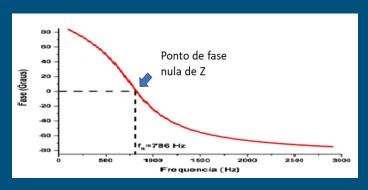



Resposta em frequência: Circuito RLC

Resposta em frequência: Circuito RLC

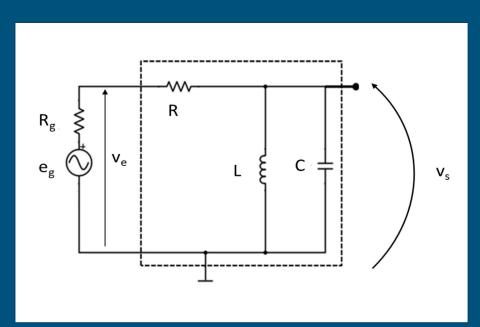
Resposta em frequência: Circuito RLC -> ressonante


Circuitos ressonantes respondem com maior intensidade em determinada frequência.

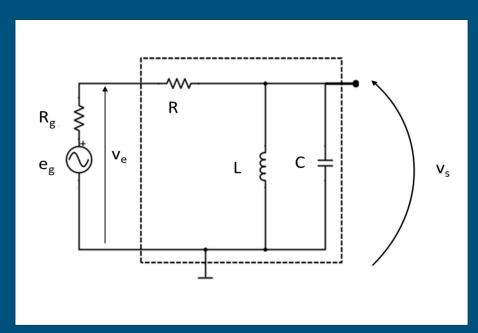


Resposta em frequência: Caracterização de circuitos ressonantes

- Frequência de ressonância (f_R)
 - o função de transferência assume seu valor máximo
 - o fase da função de transferência é igual a zero.
- Frequência de corte inferior (f_{C1}) e superior (f_{C2})
 - o módulo com queda de 3 dB (ou $|G(j\omega)|/\sqrt{2}$, ou Zmax/ $\sqrt{2}$)
- Índice de mérito ou fator de qualidade (Q)


$$Q = \frac{f_R}{f_{c2} - f_{c1}}$$

Resposta em frequência: Circuito RLC ideal


$$G(j\omega) = \frac{1}{1 + \frac{R}{\omega L} \left(\left(\frac{\omega}{\omega_0} \right)^2 - 1 \right) j}$$

$$|G(j\omega)| = \left[\frac{1}{1 + \left(\frac{R}{\omega L} \right)^2 \left(1 - \left(\frac{\omega}{\omega_0} \right)^2 \right)^2} \right]^{1/2}$$

$$\varphi = \arctan \left[\frac{R}{\omega L} \left(1 - \frac{\omega^2}{\omega_0^2} \right) \right]$$

Resposta em frequência: Circuito RLC com resistência parasitária

$$G(j\omega) = \frac{R_S + \omega L j}{R_S + R\left(1 - \frac{\omega^2}{\omega_0^2}\right) + (\omega L + \omega R R_S C) j}$$

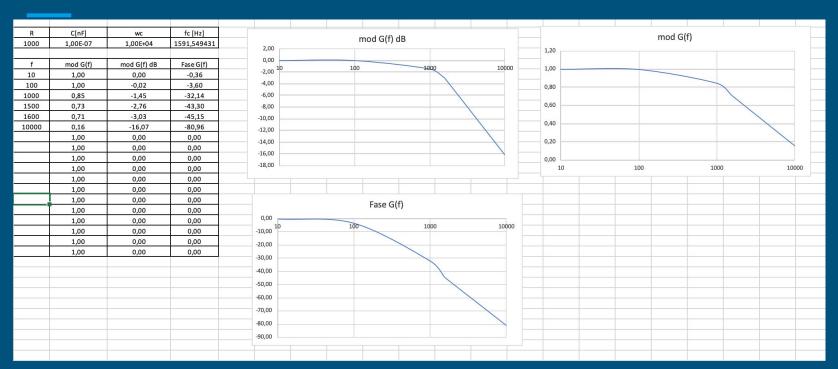
$$|G(j\omega)| = \left[\frac{1 + \left(\frac{R_S}{\omega L}\right)^2}{1 + \left(\frac{R_S}{\omega L}\right)^2 \left(1 + \frac{2R}{R_S} + (\omega R C)^2\right) + \left(\frac{R}{\omega L}\right)^2 \left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2}\right]^{1/2}$$

$$\varphi = \arctan\left[\frac{R}{\omega L}\left(\frac{1 - \frac{\omega^2}{\omega_0^2}\left(1 + \frac{R_S^2}{\omega^2 L^2}\right)}{1 + \frac{R_S(R_S + R)}{\omega^2 L^2}}\right)\right]$$

Experiência

Itens experimentais

- 1. Identificação e medição dos componentes
- 2. Resposta em frequência do circuito RC
- 3. Resposta em frequência de um circuito RLC paralelo
- 4. Análise com a função Sweep do gerador de funções
- 5. Resposta em frequência de voltímetros CA (opcional)


Identificação e medição dos componentes

Medidor RLC

- Dois tipos no laboratório (trocar de bancadas)
- Importância da calibração
- Calibrar conforme folha de instruções

Levantamento da curva teórica de resposta em frequência do circuito RC: Tabela Excel

Levantamento da curva teórica de resposta em frequência do circuito RC: Tabela Excel

	C[nF] 1,00E-07	wc 1,00E+04	fc [Hz] 1591,549431				ee acos e			Dados do item	1, Preparação
f 10 100	mod G(f) 1,00 1,00	mod G(f) dB 0,00 -0,02	Fase G(f) -0,36 -3,60			Valores similianos			Cálculos a partir das tensões simuladas	•	
1000 1500 1600	0,85 0,73 0,71	-1,45 -2,76 -3,03	-32,14 -43,30 -45,15		f (Hz)	V _E (CA V _{RMS})	V _S (CA V _{RMS})	Fase $\theta_{S \to E}$ $\phi_{VS,VE}(^{\circ})$	Ganho G(f)	G(f)	Fase φ
0000	0,16 1,00 1,00	-16,07 0,00 0,00	-80,96 0,00 0,00 0,00		10						
	1,00 1,00 1,00	0,00 0,00 0,00	0,00		100						
	1,00 1,00 1,00	0,00 0,00 0,00	0,00 0,00 0,00		1 k						
	1,00 1,00 1,00	0,00 0,00 0,00	0,00 0,00 0,00		1,5 k						
	1,00	0,00	0,00		1,6 k						
					10 k						
				-90,0	00						

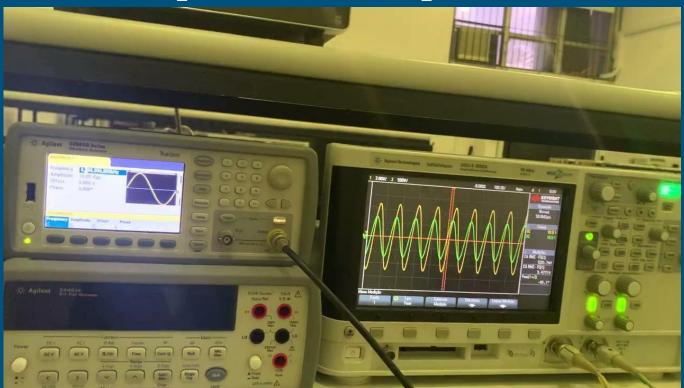
Preenchimento da Tabela 1: Levantamento da curva de resposta em frequência do circuito RC

					Dados do item :	1, Preparação	
	Valor	Valores simulados Cálculos a partir		Cálculos a partir das	Resultado dos cálculos teóricos a		
	Valor	cs simulados		tensões simuladas	partir dos parâmetros do circuito		
f (Hz)	V _E (CA V _{RMS})	V_S (CA V_{RMS})	Fase $\theta_{s \to e}$ $\phi_{Vs,VE}(^{\circ})$	Ganho G(f)	G(f)	Fase φ	
10							
100							

Preenchimento da Tabela 1:

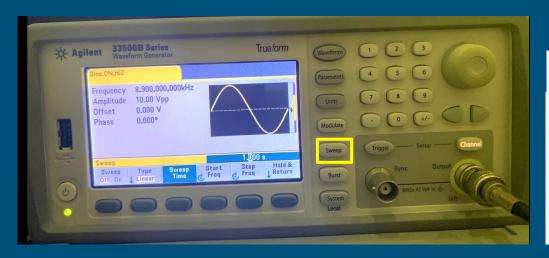
|G(jw)|=Vs/Ve

	Valor	Cálculos a partir das tensões simuladas		
f (Hz)	V _E (CA V _{RMS})	V _S (CA V _{RMS})	Fase $\theta_{s \to e}$ $\phi_{Vs,Ve}$ (°)	Ganho G(f)
10				
100				
1 k				
1,5 k				
1,6 k				
10 k				



Disciplina: PSI 3212 Lab. Circ. Elétricos

Período: 2023-1



Resposta em frequência

Função Sweep do Gerador de Funções


```
Guia experimental:

STARTFREQ = 5 kHz,

STOPFREQ = 15 kHz,

SWEEPTIME = 100 ms,

SWEEP TYPE = linear,

SWEEP = ON.
```


Uso da função Sweep

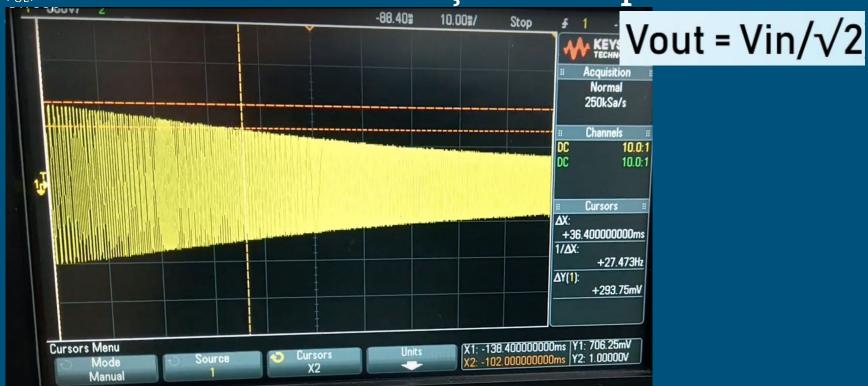
Configurações do gerador

STARTFREQ = 5 kHz,

STOPFREQ = 15 kHz,

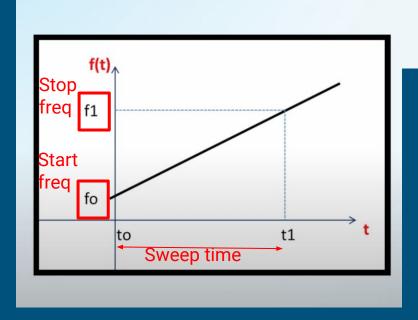
SWEEPTIME = 100 ms,

SWEEP TYPE = linear,


SWEEP = ON.

Tensão de saída no osciloscópio

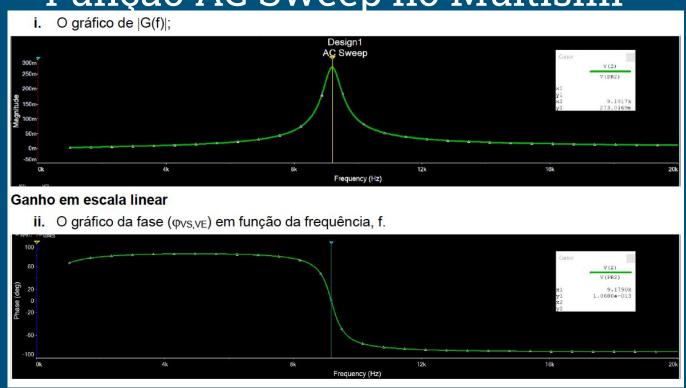
Uso da função Sweep


Autor: Profa. Dra. Laisa Costa De Biase

Disciplina: PSI 3212 Lab. Circ. Elétricos

Período: 2023-1

Uso da função Sweep



$$f = f_0 + (f_1 - f_0)*(t_1 - t_0)/(t_1 - t_0)$$

Função AC Sweep no Multisim

Obrigada!