

LOQ4241 – Sistemas de Apoio a Decisão

Prof. Dr. José Eduardo Holler Branco

Lorena

2023

Aula XI – Introdução à Lógica Fuzzy

Prof. Dr. José Eduardo Holler Branco

Lorena

2023

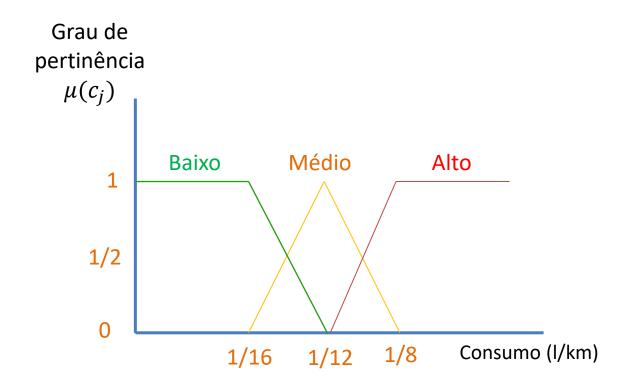
Análises de Pay-off

Utilidade ($oldsymbol{U_{ij}}$)	Critérios			
Alternativas (a_i)	Preço (c_1)	Consumo (c_2)	Velocidade (c_3)	
Carro (a_1)	Alto	Alto	Alto	
Carro (a_2)	Médio	Alto	Baixo	

Lógica tradicional:

Se c_1 é Baixo e c_2 é Baixo e c_3 é Alto, então o benefício / custo é alto Se c_1 é Baixo e c_2 é Alto e c_3 é Alto, então o benefício / custo é médio

Se c_1 é Alto e c_2 é Alto e c_3 é Baixo, então o benefício / custo é baixo


O que pode ser considerado preço alto ou baixo?

O que pode ser considerada velocidade alta ou baixa?

Seria mais adequado avaliar essas variáveis como variáveis contínuas, ao invés de variáveis booleanas (dois estados)?

A Lógica Fuzzi permite comparar alternativas com atributos que são mais apropriados serem medidos por meio de variáveis contínuas.

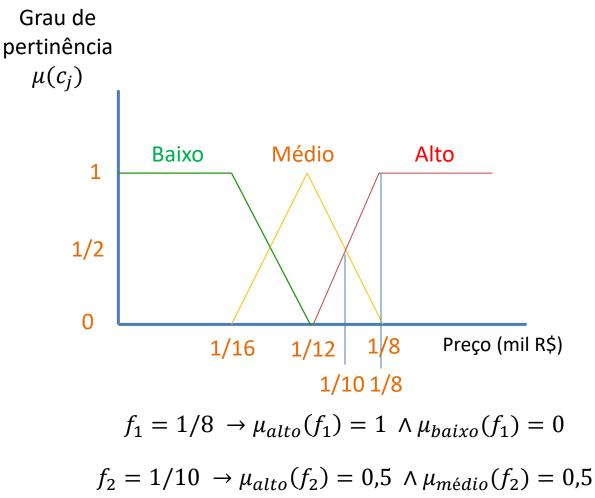
Voltando ao nosso problema

Convertendo as variáveis do modelo de decisão para variáveis contínuas.

Utilidade (U_{ij})	Critérios		
Alternativas (a_i)	Preço (mil RS)	Consumo (I $/km$)	Velocidade (Km/h)
Carro (a_1)	100	1/8	130
Carro (a_2)	95	1/10	110

A Lógica Fuzzi pode ser usada para avaliar o benefício / custo dessas alternativas.

Ela gera indicadores numéricos de saída, sem necessidade de entradas precisas.


Medindo o grau de pertinência do preço (p).

Grau de pertinência $\mu(c_i)$ Baixo Médio Alto 1/2 0 100 Preço (mil R\$) 80 90 95 100

$$p_1 = 100 \rightarrow \mu_{alto}(p_1) = 1 \land \mu_{baixo}(p_1) = 0$$

 $p_2 = 95 \rightarrow \mu_{m\'edio}(p_2) = 0.5 \land \mu_{baixo}(p_2) = 0.5$

Medindo o grau de pertinência do consumo (f).

Medindo o grau de pertinência da velocidade (v).

Grau de pertinência $\mu(c_j)$ Baixo Médio Alto

1/2

1/0

100

120

140

Preço (mil R\$)

$$v_1 = 130 \rightarrow \mu_{alto}(v_1) = 0.7 \land \mu_{m\'edio}(f_1) = 0.3$$

 $v_2 = 110 \rightarrow \mu_{m\'edio}(v_2) = 0.7 \land \mu_{baixo}(f_2) = 0.3$

Critérios de ordenamento

Alternativa 01

$$p_1 = 100 \rightarrow \mu_{alto}(p_1) = 1 \land \mu_{baixo}(p_1) = 0$$

 $f_1 = 1/8 \rightarrow \mu_{alto}(f_1) = 1 \land \mu_{baixo}(f_1) = 0$
 $v_1 = 130 \rightarrow \mu_{alto}(v_1) = 0.7 \land \mu_{médio}(f_1) = 0.3$

Alternativa 02

$$p_2 = 95 \rightarrow \mu_{m\'edio}(p_2) = 0.5 \land \mu_{baixo}(p_2) = 0.5$$

 $f_2 = 1/10 \rightarrow \mu_{alto}(f_2) = 0.5 \land \mu_{m\'edio}(f_2) = 0.5$
 $v_2 = 110 \rightarrow \mu_{m\'edio}(v_2) = 0.7 \land \mu_{baixo}(f_2) = 0.3$

Alternativa	Ordem	Preço	Consumo	Velocidade
	1º	Baixo	Baixo	Alto
	2º	Baixo	Baixo	Médio
	3º	Baixo	Baixo	Baixo
	4º	Baixo	Médio	Alto
Alternativa 2	5º	Baixo	Médio	Médio
	6º	Baixo	Médio	Baixo
	7º	Baixo	Alto	Alto
	8º	Baixo	Alto	Médio
	9º	Baixo	Alto	Baixo
	10⁰	Médio	Baixo	Alto
	119	Médio	Baixo	Médio
	129	Médio	Baixo	Baixo
	13º	Médio	Médio	Alto
	149	Médio	Médio	Médio
	15º	Médio	Médio	Baixo
	16⁰	Médio	Alto	Alto
	179	Médio	Alto	Médio
	18º	Médio	Alto	Baixo
	19º	Alto	Baixo	Alto
	20º	Alto	Baixo	Médio
	21º	Alto	Baixo	Baixo
	22º	Alto	Médio	Alto
	23º	Alto	Médio	Médio
	24º	Alto	Médio	Baixo
Alternativa 1	25⁰	Alto	Alto	Alto
	26⁰	Alto	Alto	Médio
	27º	Alto	Alto	Baixo

Critérios de ordenamento

É possível criar uma função de ordenamento:

$$S_{a_i} = \sum_j \left[\sum_c (K_{cj} * \mu_{cj}) \right] * \alpha_j$$

Onde:

 K_{cj} : valor numérico para cada categoria de classificação do critério j (maior valor para as categorias menos desejáveis);

 α_j : peso atribuído a cada critério j ($\sum_j \alpha_j = 1$);

Critérios de ordenamento

Exemplo:

Valor das categorias (K_j)	Critérios			
Categorias	Preço (c_1)	Consumo (c_2)	Velocidade (c_3)	
Alto	3	3	1	
Médio	2	2	2	
Baixo	1	1	3	
$lpha_j$	60%	30%	10%	

$$S_{a_1} = [3*1+2*0+1*0]*60\% + [3*1+2*0+1*0]*30\% + [3*0+2*0,3+1*0,7]*10\%$$

$$S_{a_1} = 2,83$$

$$S_{a_2} = [3*0+2*0,5+1*0,5]*60\% + [3*0,5+2*0,5+1*0]*30\% + [3*0+2*0,7+1*0,3]*10\%$$

$$S_{a_2} = 1,82$$

$$S_{a_2} < S_{a_1} \div S_{a_2}$$
 é preferível a S_{a_1}