
6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 1

Ten Tenets of Testing
“Key Testing Principles”

Joseph W. Yoder

Teams That Innovate

The Refactory, Inc.

joe@refactory.com

http://www.refactory.com

http://www.teamsthatinnovate.com

© Teams That Innovate

The Refactory, Inc. & Joseph W. Yoder

All Rights Reserved.

Testing

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 2

Test Target → the thing

we are trying to test
T

Action → changes

environment or the Test Target

Assertion → compares expected vs

observable outcome of the action on

the Test Target

Understanding Tests

T T’

Test → a sequence

of at least one action

and one assertion

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 3

Good Test Outline

1. Set up

2. Declare the expected results

3. Exercise the test

4. Get the actual results

5. Assert that the actual results

match the expected results

6. Teardown

FIRE

Good tests are:

- Fast

- Informative

- Reliable

- Exhaustive

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 4

Testing Pyramid

Unit Tests

API & Acceptance
Integration Tests

Component/Service

GUI
Tests

Types of Tests

Unit Tests – Tests classes and components

Integration Tests – Tests code integration

Smoke Tests – Quick tests of core functionality

Performance Tests – Test system under load

Regression Tests – Tests it is still working

Acceptance Tests – Requirements testing

System Tests – Test all parts together

Who Tests, Who Develops Them,

Where and How (can we automate)

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 5

Unit tests

• Tests public interface to functionality

• Functional test of system such as a class or

component (functions within a service)

• Compare expected against actual results

• Assumes requirements are sufficiently

detailed to specify expected results!

• Write the test before checking in

Acceptance tests

• Mostly functional tests of system delivered
by the development team (internal or external)

• Sometimes testing critical system characteristics
(non-functional qualities)

• Describes specific tests and expected results

• Requirements must be known in enough
details in order to specify expected results!

• If not, writing acceptance tests helps
 derive requirements details…

• Typically organized by use case or user story

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 6

Acceptance tests

• User Acceptance Tests

• assess whether the Product is working for the user,
and specifically correctly for the usage scenario

• Business Acceptance Tests

• assess whether the Product meets the
business goals and purposes or not

• Contract Acceptance Tests

• tests the contract for when the Product goes live

• Regulation/Compliance Acceptance Tests

• assess whether the Product violates the rules
and regulations of government or country

Acceptance Tests

Acceptance Criteria can be written in

different formats. There are two most

common ones, and the third option is to

devise your own format:

• scenario-oriented (Given/When/Then)

• rule-oriented (checklist)

• custom formats (matching invariants)

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 7

Acceptance Tests

Scenario-oriented acceptance criteria

Scenario-oriented format of writing AC is

known as the Given/When/Then (GWT) type:

• Given some precondition

• When I do some action

• Then I expect some result

Acceptance Tests
User story: As a user, I want to be able to request the

cash from my account in ATM so that I will be able to

receive the money from my account quickly and in

different places.

Scenario: Account Overdrawn

Given: that the account is overdrawn

And: the card is valid

When: the customer requests the cash

Then: ensure the rejection message is displayed

And: ensure cash isn’t dispensed

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 8

Agile Acceptance Tests

Goals Not Intended to be:

• Baseline confidence that the

software works as promised

• Focus on functionality and

important qualities such as:

performance, load, security…

• Provide immediate feedback

• Tests for story completion in

a current iteration of dev

• Exhaustive, impossible

to test 100% of everything

• Test every scenario,

UI edit/detail

• Replacement for other

testing: unit tests, integration

tests, regression tests...

You Can’t Write Acceptance

Tests Forever…

• Tests should be
 written based on
 business value

• Identify meaningful
 path combinations
 through a use case

• Develop test cases
 for each important
 path case

Likelihood/

Importance

Paths

High/High Basic Flow

“Happy Path”

High/High Basic Flow Variation 1

High/Medium Basic Flow Variation 2

High/High Basic Flow Exception 1

Low/Very Low Basic Flow Exception 2

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 9

Slide - 26Test Driven Development – Copyright © 2012 Joseph W. Yoder , Rebecca Wirfs-Brock, The Refactory, Inc., & Wirfs-Brock Associates

Good Testing Values
Work in short cycles of

testing and coding

Unit Tests written along with
other tests (acceptance, …)

It isn't enough to write tests: you have to
run them frequently (many times a day)

Developers get immediate feedback on
how they're doing…publish scores and
keep track of what is happening (visible)

Ten Tenets of Testing

http://thinklikemalinga.files.wordpress.com/2011/07/spin-arrows.gif

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 10

Ten Tenets of Testing

1. Test single complete scenarios

2. Do not create dependencies between tests

3. Only verify a single thing in each assertion

4. Respect service encapsulation

5. Test limit values and boundaries

6. Test expected exceptional scenarios

7. Test interactions with other services

8. When you find a bug, write a test to show it

9. Do not duplicate application logic in tests

10. Keep your test code clean

0. Validate your Tests!!!

Test
Single
Complete
Scenarios

1

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 11

+connect ()

+sendExecution ()

+getExecutionStatus ()

+getExecutionResults ()

+getConnectionStatus ()

+disconnect ()

RemoteExecutor

public void testConnect(){}

public void testSendExecution(){}

public void testGetExecutionStatus(){}

public void testGetExecutionResults(){}

public void testGetConnectionStatus(){}

public void testDisconect(){}

Automatic

Test

Generated

Code

+ connect ()

+ sendExecution ()

+ getExecutionStatus ()

+ getExecutionResults ()

+ getConnectionStatus ()

+ disconnect ()

RemoteExecutor

We should test

successful

and failed

connections

And scenarios

with different

execution status

No! Stop and Think…

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 12

@Test

public void statusOfActiveTask(){

ex.connect(ip);

ex.sendExecution(“TASK“);

String status =

ex.getExecutionStatus(“TASK“);

assertEquals(ACTIVE,status);

}

A test should exercise usage

scenarios of the tested service,

 which can invoke several functions

Don’t Test Too Much, and

Don’t Test Too Little…
Test single complete scenarios

Test only one scenario in a test

Do not just test getters or setters

“unless they have side effects”

Do not test simple support method calls

that are not part of real scenarios,

real scenarios should test these

Most important to Test Real Business Usage Scenarios

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 13

Do Not Create
Dependencies
Between Tests

2

Test 1

Test 2

Test 3

Setup data

Change data

Use previous test data

Change data

Use previous test data

Change data

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 14

Test 1

Test 2

Test 3

Setup data

Change data

Use previous test data

Change data

Use previous test data

Change data

Test 2

Test 3

Test 3 only failed

because data

wasn't in the

expected state

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 15

Test 1

Test 2

Test 3

Setup data

Change data

Setup data

Setup data

Change data

Change data

Test 1 Test 2 Test 3

With independent tests

it is easier to identify

which verifications

actually failed

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 16

Verify a Single
Thing
in Each
Assertion

3

assertTrue(

student.getFinalGrade() == 6.0

&& !student.isApproved()

&& student.status().equals(LOCKED));

If the assertion

fails, where is the

problem?

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 17

assertEquals(6.0,

student.getFinalGrade());

assertFalse(student.isApproved());

assertEquals(LOCKED, student.status());

The code is more

readable and, if the test

fails, the problem is

more easily located!

Respect
Class/Service
Encapsulation4

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 18

In
te

rfa
c

e

public api

public api

private function

private

attribute

Test

Tests should

only use the

elements

publicly exposed

by the tested

service

In
te

rfa
c

e

public api

public api

private function

private

attribute

Test

Imagine a test

which accesses

internal members

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 19

private function

private

attribute
Test

Inappropriate Intimacy

In
te

rfa
c

e

public method

public method

Test

An internal

refactoring in the

class/service can

break the test!

private method

private

attribute

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 20

Test Limit
Values and
Boundaries

5

Test 1

Should

be yellow

Test 2

Should

be blue

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 21

But what

about here?

Is the boundary in

the right

place?

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 22

It is important to test

the values on limits

and boundaries

which

change behavior

Don’t Test All Boundaries

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 23

Test Expected
Exceptional
Scenarios

6

Sometimes

you know that

some things

can go really

wrong

Network

Access

Database

Connection

External

Systems

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 24

Clients of your services

can also do stupid things!

Invalid

Invocations

Wrong

Parameters

Incorrect

State

Tests should

include

expected

behavior for

exceptional

conditions

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 25

In
te

rfa
c

e

public function

private function

private

attribute

Test

Test whether an

object/service

responds

appropriately to ill-

formed, expected

requests

what

????

Test Interactions
with other
Objects or
Services

7

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 26

Test Service/Object

Interactions

updatePlan interacts with

CallingPlan and possible

the Service objects.

Similarly, UsageData and

UsageRecord needs tests for their interactions.

When You Find
a Bug, Write a
Test to Show It!

8

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 27

Why Write a Test

To Show a Bug?

Demonstrates that it is repeatable.

As more code is written, old

problems that were “fixed” can

become “broken” again.

A test that validates a bug ensures

against reintroducing the problem,

i.e. not loosing money again

Do Not
Duplicate
Application
Logic in Tests

9

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 28

And if my test

need logic

present in other

classes/services?

Do not
duplicate!

DRY Principle

Test

copied code

+

In
te

rfa
c

e

public api

public api

private function

private

attribute

In
te

rfa
c

e

public api

public api

private function

private

attribute

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 29

In
te

rfa
c

e

public api

public api

private function

private

attribute

Test

In
te

rfa
c

e

public api

public api

private function

private

attribute

Now you do not

have to maintain

copied code!!!

Keep Your
Test Code
Clean!!!

10

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 30

Tests need

Refactoring

Test code design
evolves, just like
production code
design evolves!

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 31

Refactoring

Production Code

Test bar should

continue green

But some bad smells

can appear in the

test code!

Ten Tenets of Testing

1. Test single complete scenarios

2. Do not create dependencies between tests

3. Only verify a single thing in each assertion

4. Respect service/class encapsulation

5. Test limit values and boundaries

6. Test expected exceptional scenarios

7. Test interactions with other objects/services

8. When you find a bug, write a test to show it

9. Do not duplicate application logic in tests

10. Keep your test code clean

0. Validate your Tests!!!

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 32

Services (threads) can be hard to Test

Limit threads as much as possible non-threaded code is easier to test

When we do have to create threads, consider the following:

1. Decouple the logic that orchestrate the threads from the

ones with the business logic. Then, mock the threads

forcing some synchronization scenarios. Test the business

logic individually wherever possible.

2. The objects that process information usually are created

inside methods as local variables (for instance, inside loops)

because they receive as parameters for processing local

information. To enable mocking in this case, use a factory

for the creation of such objects. So, for testing you can

introduce a factory which create the mocks.

3. For testing, add a sleep with different times on the mock

execution to simulate different processing orders for

different testing scenarios.

Summary: What to Test

•Test significant business scenarios

 of use, not isolated functions

•Spend time testing the difficult parts:

• Complex interactions

• Intricate algorithms

• Tricky business logic

•Test for required system qualities

• Performance, scalability, throughput, security

•Test how services respond to normal

 and exceptional invocations

6/14/2023

For internal use only

Do Not Distribute!!! Copyright 2020 by Joseph Yoder and The Refactory, Inc. - 33

Summary: What Not to Test

•Tests should add value, test real business

scenarios, not just be an exercise…

•Do not test:

• setting and getting values alone

common language things…

• every boundary condition; only those

with significant business value

• every exception; only those likely to occur

or that will cause catastrophic problems.

Joe’s cool photo goes here!!!

joe@refactory.com

Twitter: @metayoda

www.joeyoder.com

www.refactory.com

Obrigado!!!

	Slide 1: Ten Tenets of Testing “Key Testing Principles”
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Good Test Outline
	Slide 6: FIRE
	Slide 7: Testing Pyramid
	Slide 8: Types of Tests
	Slide 9: Unit tests
	Slide 11: Acceptance tests
	Slide 12: Acceptance tests
	Slide 13: Acceptance Tests
	Slide 14: Acceptance Tests
	Slide 15: Acceptance Tests
	Slide 24: Agile Acceptance Tests
	Slide 25: You Can’t Write Acceptance Tests Forever…
	Slide 26: Good Testing Values
	Slide 27: Ten Tenets of Testing
	Slide 28: Ten Tenets of Testing
	Slide 29
	Slide 30
	Slide 31: No! Stop and Think…
	Slide 32
	Slide 33: Don’t Test Too Much, and Don’t Test Too Little…
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Don’t Test All Boundaries
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Test Service/Object Interactions
	Slide 61
	Slide 62: Why Write a Test To Show a Bug?
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 72: Ten Tenets of Testing
	Slide 73: Services (threads) can be hard to Test
	Slide 74: Summary: What to Test
	Slide 75: Summary: What Not to Test
	Slide 76

