

Escola Superior de Agricultura "Luiz de Queiroz"
LEB0140 – Física
Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

14/06/2023 Prof. Jarbas

46

Escola Superior de Agricultura "Luiz de Queiroz"
LEB0140 – Física
Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

Hidrodinâmica

4.1. Introdução

Estuda o comportamento de fluidos (líquidos e gases) em movimento.

LAVADOR HIDRODINÂMICO (Hortaliças)

Escola Superior de Agricultura "Luiz de Queiroz" LEB0140 – Física Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

Hidrodinâmica

4.1. Introdução

Estuda o comportamento de fluidos (líquidos e gases) em movimento.

Aplicação: ingredientes na indústria de doces, leite condensado, base lácteas, soro em pó, achocolatados, mistura lácteas, etc.

Yogurt Fermentation Tank

48

Escola Superior de Agricultura "Luiz de Queiroz"

ESALQ Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

Esse movimento pode ocorrer de maneira que a velocidade do fluido possa variar ou permanecer constante (nesse caso, em cada ponto cada partícula do fluido tem a mesma velocidade, denominado regime estacionário ou permanente).

Líquido ideal:

- Incompressível (mantém o mesmo volume)
- Não viscoso (Viscosidade) (água e mel)

REVISÃO DE UNIDADES (Pressão, Energia, Massa específica e Peso específico)

Unidade de Viscosidade: 1 poise = 1 g/(cm·s) = 0,1 Pa·s

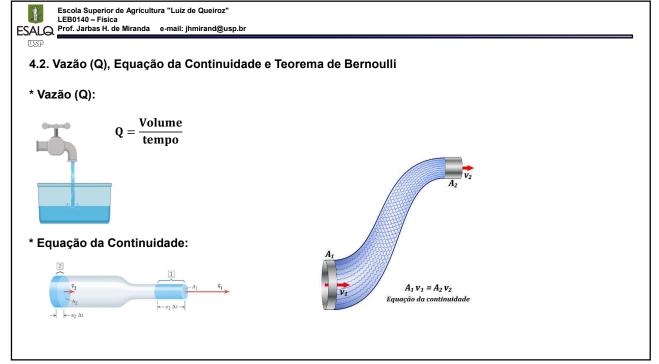
 $1 \text{ cp} = 10^{-3} \text{ Pa.s}$

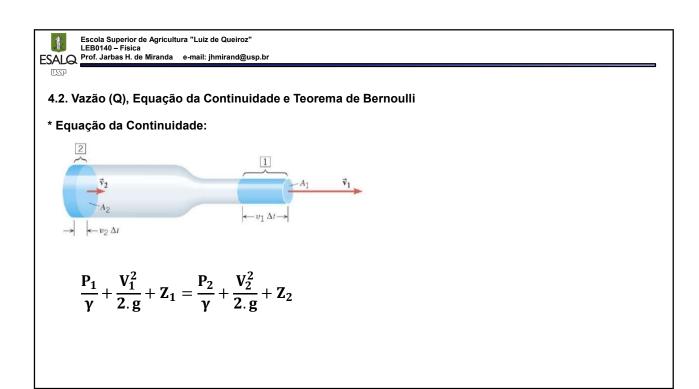
O centipoise é a unidade de medida mais utilizada.

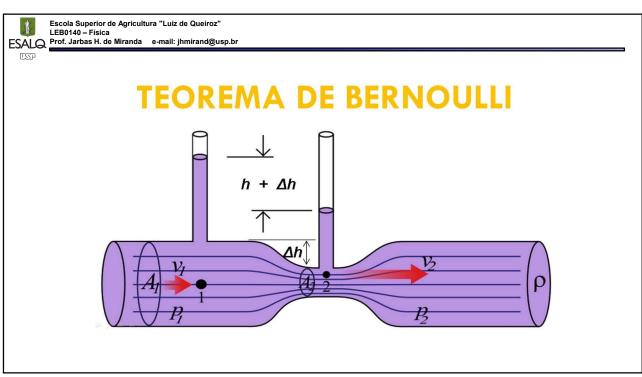
A água tem uma viscosidade de 1,0020 cP a 20 °C e 0,891 cP a 25° C.

Escola Superior de Agricultura "Luiz de Queiroz" LEB0140 – Física ESALQ Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

Viscosidade: é a propriedade física que caracteriza a resistência de um fluido ao escoamento. Ou seja, quanto maior a viscosidade, menor será a velocidade com que o fluido se movimenta.


$$Viscosidade = \frac{Energia}{\acute{A}rea. \ velocidade} \qquad \begin{array}{l} \text{1 poise = 1 g/(cm \cdot s) = 0,1 Pa \cdot s} \\ \text{1 Pa = } \rho.g.h = M \ L^{-3}.L \ T^{-2}.L = M \ L^{-1} \ T^{-2} \end{array}$$


Tabela 2 - Valores médios de condutividade elétrica, pH, acidez, índice de formol, cinzas, proteína e viscosidade determinados em méis


Mês de coleta	Condutividade elétrica (µS)	pН	Acidez (meq kg ⁻¹)	Índice de formol (mL kg ⁻¹)	Cinzas (%)	Proteína (%)	Viscosidade (mPa.s)
02	1095,7	4,3	33,3	9,3	0,54	0,59	1070,0
03	1428,3	4,6	28,3	9,3	0,72	0,57	2683,3
04	1851,3	4,9	23,3	9,0	1,02	0,98	2636,7
05	1744,3	4,9	24,7	11,7	0,85	0,66	3536,7
06	1220,0	4,7	37,0	15,3	0,71	0,81	3550,0
07	1334,7	4,3	47,0	16,7	0,57	0,74	1123,3
08	547,0	4,3	24,3	7,0	0,20	0,58	2863,3
09	283,7	4,0	15,1	8,4	0,06	1,00	4546,7
10	227,3	3,8	17,8	6,0	0,04	0,13	2766,7
Média	1081,4	4,4	27,9	10,3	0,52	0,67	2753,0
Desvio padrão	679,0	0,4	9,9	3,6	0,35	0,25	1117,2
Normas (BRASIL, 2000)			Máx. 50,0		Máx. 0,60		

mPa.s $(milipascal = 10^{-3})$ 1 cP = 1 mPa A água tem uma viscosidade de 1,0020 cP

50

