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Abstract

Time-to-event outcomes are common in medical research as they offer more information than

simply whether or not an event occurred. To handle these outcomes, as well as censored

observations where the event was not observed during follow-up, survival analysis methods

should be used. Kaplan-Meier estimation can be used to create graphs of the observed survival

curves, while the log-rank test can be used to compare curves from different groups. If it is desired

to test continuous predictors or to test multiple covariates at once, survival regression models such

as the Cox model or the accelerated failure time model (AFT) should be used. The choice of

model should depend on whether or not the assumption of the model (proportional hazards for the

Cox model, a parametric distribution of the event times for the AFT model) is met. The goal of

this paper is to review basic concepts of survival analysis. Discussions relating the Cox model and

the AFT model will be provided. The use and interpretation of the survival methods model are

illustrated using an artificially simulated dataset.
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INTRODUCTION

Why Survival Analysis?

Clinical outcomes come in a variety of statistical forms. Some are continuous, such as

systolic blood pressure, and can be easily analyzed with linear regression. Others, such as

mortality or myocardial infarction (MI), are distinct events and have forms that are slightly

more complex to analyze statistically. If the clinical outcome observed is “either-or,” such as

if a patient suffers an MI or not, logistic regression can be used. However, if the information

on the time to MI is the observed outcome, data are analyzed using statistical methods for

survival analysis. It should be noted that despite the name “survival analysis,” methods can

be used in any time-to-event outcome, such as the time until a patient experiences an MI or

the time to hospitalization. Such studies will discuss event-free survival which is the

proportion of subjects who have not yet experienced an event.
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There are important clinical and statistical reasons for investigating a time-to-event outcome

using survival analysis. For example, consider a study that found that the final observed

proportion of events between two treatment groups is identical. However, if one group had

all events occur shortly after randomization, while the other had no events until just before

the end of follow-up then the two treatments would logically be considered to have different

clinical effects despite the identical proportions at the end of follow-up. Similarly, if all-

cause mortality is the outcome, then a sufficiently long follow-up would reveal equal

survival proportions of 0% between any groups. In such cases, the time to an event contains

much more clinical information than whether or not the event occurred. There is much more

statistical information as well, as survival analyses tend to have greater statistical power to

detect a significant treatment or exposure effect than methods for binary outcomes such as

logistic regression.

It is typical in these types of studies to have subjects who did not experience the event

before the end of a study or dropped out before the event of interest occurs. These subjects

are said to be right-censored. Although these may seem to be cases of missing data as the

time-to-event is not actually observed, these subjects are highly valuable as the observation

that they went a certain amount of time without experiencing an event is itself informative.

One of the most important properties of survival methods is their ability to handle such

censored observations which are ignored by methods such as a t-test (or analysis of

variance) for comparing survival times of two (or more) groups and linear regression. It is

worth noting that survival methods of analyses can handle other types of censoring such as

left-censoring, where a subject had already experienced the event at the time they enrolled in

the study, and interval- censoring, where it is known only that the event happened in a

particular interval, say between the last and current visit. This article will only discuss right-

censored data.

OVERVIEW OF SURVIVAL METHODS AND THEIR USE IN NUCLEAR

CARDIOLOGY

In comparing the survival distributions of two or more groups (for example, new therapy vs

standard of care), Kaplan-Meier estimation1 and the log-rank test2 are the basic statistical

methods of analyses. These are non-parametric methods in that no mathematical form of the

survival distributions is assumed. If an investigator is interested in quantifying or

investigating the effects of known covariates (e.g., age or race) or predictor variables (e.g.,

blood pressure), regression models are utilized. As in the conventional linear regression

models, survival regression models allow for the quantification of the effect on survival of a

set of predictors, the interaction of two predictors, or the effect of a new predictor above and

beyond other covariates.

Among the available survival regression models, the Cox proportional hazards model

developed by Sir David Cox3 has seen great use in epidemiological and medical studies, and

the field of nuclear cardiology is no exception. What follows are some examples of Cox

models being used in nuclear cardiology. Xu et al4 looked at how myocardial scarring

(assessed with positron emission tomography [PET] or single photon emission computed
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tomography [SPECT]) and other demographic and medical history factors predicted

mortality in patients with advanced heart failure who received cardiac resynchronization

therapy. Bourque et al5 looked at how left ventricular ejection fraction (LVEF, assessed with

angiography) and nuclear summed rest score (SRS, assessed with SPECT) interacted to

change the risk of mortality. Hachamovitch and Berman6 looked at the incremental

prognostic value of myocardial perfusion SPECT (MPS) parameters in the prediction of

sudden cardiac death. Nakata et al7 looked at how the heart-to-mediastinum ratio (assessed

with metaiodobenzylguanidine [MIBG] imaging) predicted cardiac death.

Survival models other than the Cox model have been used in nuclear cardiology as well. For

example, in a study of diagnosis strategies for quantifying myocardial perfusion with

SPECT, Duvall et al8 utilized a log-normal survival model, a member of the parametric

family of regression survival models, since initial data exploration revealed that the

proportional hazards assumption of the Cox model was invalid. While this is an excellent

example of when to utilize other survival models, it has been more common to see such data

presented in conjunction with a Cox model analysis. In earlier studies of MPS-derived

predictors of cardiac events, Hachamovitch et al9 used Cox models to identify significant

predictors and parametric models, specifically the accelerated failure time (AFT) model, to

make estimates of the time to certain percentiles of survival. An identical analysis strategy

was used by the research group comprised of Cuocolo, Acampa, Petretta, Daniele et al10–13

in their research of the impact of various SPECT-derived predictors on the occurrence of

cardiac events.

IMPORTANT QUANTITIES IN SURVIVAL ANALYSIS

In analyzing survival or time-to-event data, there are several important quantities of interest

to define. One of the most important quantities is the survival function, denoted by S(t),

which provides the probability of survival at a given time. To illustrate, suppose that death is

the event of interest, and time is measured in years from study enrollment. Examples of

survival functions for two groups are displayed in Figure 1A. Group 1 has a higher risk of

experiencing death than Group 2, because its survival curve decreases faster than the curve

for Group 2. It is expected that about 61% of Group 1 and about 76% in Group 2 will

survive past 5 years of study enrollment; while about 25% in Group 1 and 47% in Group 2

will survive past 10 years. The median time for each group is found by looking at the

intersection between the horizontal line associated with the probability of survival equal to

0.5 and the particular survival curve. The median time is about 6.2 years for Group 1 and

about 9.4 years for Group 2 using Figure 1A.

Another important quantity in the analysis of survival data is the rate at which a person who

is event-free at a given point in time will instantaneously experience the event. This rate is

quantified by the hazard function, denoted by h(t). The value of the hazard function is not a

probability, but it is an indicator of the risk of experiencing the event. The higher the value

of the hazard function, the higher the risk of event. Mathematically, the hazard function is

related to how fast the survival function decreases over time. Therefore, the faster the

survival function decreases, the higher the hazard. Returning to Figure 1A, since the survival

curve for Group 1 decreases faster than Group 2, it is expected that the hazard function for
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Group 1 is higher than that of Group 2 as seen in Figure 1B which displays the hazard

function corresponding to the survival curves in Figure 1A. It is also worth noting that both

hazard functions increase over time.

COX PROPORTIONAL HAZARDS MODEL

The hazard function plays a very important role in survival analysis. The Cox proportional

hazards model, the most popularly used survival regression model, investigates the

relationship of predictors and the time-to-event through the hazard function. It assumes that

the predictors have a multiplicative effect on the hazard and that this effect is constant over

time, i.e.,

where h(t|x) is the hazard at time t for a subject with a set of predictors x1,…,xp, h0(t) is the

baseline hazard function, and β1,…,βp are the model parameters describing the effect of the

predictors on the overall hazard. Therefore, the interpretation of the Cox model is done

using hazard ratios (HR), defined as the ratio of the predicted hazard function under two

different values of a predictor variable. A hazard ratio greater than 1 means the event is

more likely to occur, and a ratio less than one means an event is less likely to occur. A

hazard ratio of 1 means the predictor has no effect on the hazard of the event. Also, due to

the regression framework of the model, one can get hazard ratio estimates that are controlled

for other covariates in the model such as age, sex, and race.

Cox models have achieved great popularity, because they do not require the investigator to

assume a particular survival distribution for the data. Instead, these models use a hazard

function. In estimating the baseline hazard function, a Cox model uses the so-called Aalen-

Breslow estimator, which is a generalization of the non-parametric Nelson-Aalen estimator

of the cumulative hazard function.14 The lack of a parametric form of the survival

distribution gives the Cox model its other name, the semiparametric model, since the only

parameters to estimate in the model are those describing how the predictors affect the

hazard.

Despite the seeming ease at which the Cox model can be implemented, there is one

significant assumption which must be checked. The Cox model assumes proportional

hazards between the values of the predictors regardless of how the underlying hazard may

change over time (admittedly, the addition of time-varying covariates affects this

assumption). Since the proportional hazards model is built entirely around this assumption,

if it happens to be invalid for a set of predictors in a given dataset, then the Cox model

should not be used on that dataset, and any results would be questionable. A way around this

issue is to fit a stratified Cox model for which the baseline hazard can be different from

stratum to stratum or fit a model that includes time-varying covariates.14 The latter case can

address broader cases but the interpretation of the resulting model will not be straight

forward.
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It is important to examine the proportional hazards assumption for all predictors tested in a

Cox model. A way to assess proportional hazards for a continuous predictor is to plot the

Schoenfeld residuals vs time. If the proportional hazards assumption is valid, then the

Schoenfeld residuals should look like a random scatter around zero.15 When examining a

categorical predictor like a medical treatment or disease status, it is easiest to compare a log-

log transformation of the Kaplan-Meier survival curves for the different categories. Under

proportional hazards, the curves should be approximately parallel and should not intersect

after time apart. Note that a bit of crossing at early time points may be a product of noise in

the survival estimates and may not constitute a violation of the proportional hazards

assumption. Both Schoenfeld residuals and Kaplan-Meier estimates can be easily obtained

from statistical software such as SAS.

PARAMETRIC REGRESSION MODELS

An alternative to the Cox model is a parametric survival model wherein a particular form of

the survival distribution is assumed. There are several classes of parametric models: (1)

parametric proportional hazards model which takes the form of the Cox model but assumes

a parametric form on the baseline hazard; (2) the additive hazards model where the

predictors affect the hazard function in an additive manner instead of multiplicative; and (3)

the AFT model which is most similar to conventional linear regression.

Unlike the proportional hazards model and the additive hazards model, which examine how

predictors affect the hazard function, the AFT model postulates a direct relationship between

the predictors and the survival time, making its interpretation easier. Suppose there is only

one predictor denoting the presence or absence a disease. The AFT model assumes that the

disease either accelerates or decelerates the rate of decrease of the survival function. In other

words, if S1(t) and S2(t) denote the survival functions of the presence and absence of the

disease, respectively, then the AFT model assumes the relationship S1(t) = S2(ηt), where η is

the acceleration factor. If median time-to-event is of interest, then the AFT model implies

that the median time for those with the disease is η times the median time of those without

the disease. If η > 1 (or η < 1), then the group with the disease has a longer (or shorter)

median time-to-event relative to those without the disease. This interpretation is true for

other percentiles of the survival distribution.

In general, the AFT model can be expressed two ways:

or

where T is the time-to-event (the failure time); x1,…,xp, and β1,…,βp are predictor variables

and their corresponding coefficients, respectively; ε is the error term assumed to have a

particular parametric distribution; and ln(ε) is the natural log of the error term. Traditional

regression and the AFT model differ in the following points: (1) predictor variables in the
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AFT model affect the event time multipli-catively; (2) the AFT model accommodates

censored observations; and (3) the error terms in the AFT model, although still independent

and identically distributed, no longer follow a normal distribution. Some commonly

assumed parametric distributions in survival models include (see for instance Klein and

Moeschberger15 for discussions regarding properties of these distributions): exponential,

Weibull, generalized gamma, log-normal, and log-logistic. These are used in place of a

normal distribution since the event times are positively valued and generally have a skewed

distribution, making the symmetric normal distribution a poor choice for fitting the data

closely.

In practice, the choice of which parametric distribution to use is done by comparing the

model fit for a variety of different distributions. The choice of candidate distributions to be

considered is driven by prior assumptions or scientific insight about the data. The

comparison may be done graphically using probability plots which will show how the

observed data follow an assumed parametric model. Distributions with multiple parameters

defining their shape may have a better fit, but if parsimony is desired, it would be better to

rely on a penalized metric provided by model selection indices such as the Akaike

information criterion (AIC)16 or Bayesian information criterion (BIC)17 to choose which

distribution gives the best fit with the fewest parameters among candidate distributions.

These indices allow for numeric comparison which may be less subjective than comparing

graphs. However, there is no formal statistical test associated with these indices. The choice

of the distribution should not be based on which distribution gives a favorable P value. It

should be noted that there is no distribution that provides a perfect fit, and it is possible that

more than one distribution may fit the data well.

Once the distribution of the outcome has been decided, an investigator can focus on the

effects of variables of interest on the time to an event. As previously noted, the effects of

individual predictors in the AFT model are interpreted using time ratios (TR) where the ratio

denotes the acceleration factor. Contrary to HR, a time ratio greater than one means that an

event is less likely to occur as it means that an investigator must wait longer for the event to

happen. Similarly, a time ratio less than one implies that the event is more likely to happen.

An important point to note is that when the survival distribution of the event of interest

follows a Weibull distribution, the AFT model and the Cox proportional hazard model

coincide.15 In other words, the AFT model assumes proportional hazard if the distribution is

Weibull and vice versa. For all other parametric distributions, the AFT model assumes non-

proportional hazards. This underlines the important distinction between the two models: for

a given set of data, the AFT model and the Cox model (without covariates that vary with

time) cannot both be correct, unless the survival distribution is Weibull.

ILLUSTRATIVE EXAMPLE

A fictitious study enrolled a selected cohort of 200 patients with New York Heart

Association (NYHA) Class II-III diastolic heart failure who were followed over time.

Suppose that 100 of these patients have diabetes mellitus (DM), while the other 100 patients

are non-diabetic (non-DM). Let the goal of the study be the comparison of cardiovascular-
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related mortality between diabetics and non-diabetics who all have NYHA Class II-III

diastolic heart failure. Using the statistical package SAS version 9.3, data on time to death

for both groups were artificially generated through simulation based on the mathematical

model that generated the survival curves in Figure 1A, which are Weibull survival functions.

Censoring was also artificially generated by assuming a maximum length of follow-up of 10

years and allowing for dropouts and loss to follow-up (Details of the simulation and

analyses are in Appendix A.4).

In the simulated data, there were 38 deaths in the DM group and 22 deaths in the non-DM

group. Figure 2 displays the Kaplan-Meier curve for the two groups and the P value of the

log-rank test. Patients with diabetes have significantly lower survival than those without

diabetes (P = .002). Kaplan-Meier curves do not go all the way down to zero when the

largest observed time (which is around 9.5 years for both groups for this example) is

censored.

Fitting a Cox model with only one predictor variable (i.e., presence of DM), a significant

group difference (P = .003) was found just as in the log-rank test. However, in the Cox

model, one can estimate the hazard ratio. In this case, the estimate of the model coefficient

(β) for diabetes is 0.809 where non-DM is the reference group. Thus, the hazard ratio

estimate is HR = e0.809 = 2.24 (95% confidence interval (CI): 1.3–3.8). This means that the

DM group is estimated to have a hazard rate about twice that of the non-DM group. Figure 3

displays a graphical check for proportionality of hazards showing the transformed Kaplan-

Meier (also known as the product limit estimator) curves. Since the curves in Figure 3 are

approximately parallel to each other, there is no evidence of violation of the proportional

hazard assumption from Figure 3.

In fitting an AFT model, it is worth noting that since the data were simulated, the survival

distribution (Weibull in this case) is known. However, in practice, the true distribution of the

event times is unknown. Therefore, in the analysis of data collected, it is recommended to fit

several parametric distributions. In this case, the Weibull, log-normal, log-logistic, and

Gamma distributions were fitted. Weibull was chosen to be the best fitting model using the

AIC and BIC criteria (see Table 1). The fact that Weibull was the best fit model also

supports the appropriateness of the proportional hazards assumption of the Cox model.

As in the log-rank and Cox models, the Weibull AFT model with only DM as a predictor

variable found significant group differences (P = .0034). The estimate for the model

parameter associated with DM is −0.58 (95% CI: −0.96, −0.19) where non-DM is the

reference group. Consequently, the estimate of the TR ratio is exp{−0.58} = 0.56 (95% CI:

0.38, 0.83), meaning DM shortened the survival time.

One may also prefer to provide estimates of the median time to death for each group. Table

2 displays the estimates of the median and its 95% CI for each group. Using this

information, it is estimated that a patient from this artificially generated population with DM

has a median time to death of 5.76 years (95% CI: 54.59–7.23). Note that the ratio of the

median time-to-death estimates for patients with DM and non-DM is 0.56 (=5.76 ÷ 10.26),

which was the TR obtained previously.
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SUMMARY AND CONCLUSIONS

This paper reviews some basic concepts of survival analyses including discussions and

comparisons between the semiparametric Cox proportional hazards model and the

parametric AFT model. The appeal of the AFT model lies in the ease of interpreting the

results, because the AFT models the effect of predictors and covariates directly on the

survival time instead of through the hazard function. If the assumption of proportional

hazards of the Cox model is met, the AFT model can be used with the Weibull distribution,

while if proportional hazard is violated, the AFT model can be used with distributions other

than Weibull.

It is essential to consider the model assumptions and recognize that if the assumptions are

not met, the results may be erroneous or misleading. The AFT model assumes a certain

parametric distribution for the failure times and that the effect of the covariates on the failure

time is multiplicative. Several different distributions should be considered before choosing

one. The Cox model assumes proportional hazards of the predictors over time. Model

diagnostic tools and goodness of fit tests should be utilized to assess the model assumptions

before statistical inferences are made.

In conclusion, although the Cox proportional hazards model tends to be more popular in the

literature, the AFT model should also be considered when planning a survival analysis. It

should go without saying that the choice should be driven by the desired outcome or the fit

to the data, and never by which gives a significant P value for the predictor of interest. The

choice should be dictated only by the research hypothesis and by which assumptions of the

model are valid for the data being analyzed.
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APPENDIX

See Tables 3, 4, 5, 6.

Table 3

Glossary of statistical quantities used in this paper

Term Symbol Description

Survival function S(t) Proportion of subjects who are event-free at time t

Hazard function h(t) Instantaneous rate of experiencing an event, given the subject is event-
free at time t

Predictor variable/covariates x1, x2,…,xp The P independent variables in a regression model such as age, sex, race,
and treatment group

Predictor parameters β1, β2,…,βp The values corresponding to the P predictors that quantify how the
predictor affects the outcome
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Table 4

Glossary of statistical abbreviations used in this paper

Term Definition Explanation

AIC
BIC

Akaike’s information criteria
Bayesian information criteria

Indices that quantify how well the statistical model fits the data, with a
penalty for added complexity (model parameters)

AFT Accelerated failure time Statistical model that can test the effects of multiple predictors on survival,
controlling for the others. Assumes the event times follow a parametric
distribution defined by the analyst

HR Hazard ratio The proportion of the hazard changes in the presence of a categorical predictor
variable or from a one-unit increase in a continuous predictor. Calculated
from the Cox model

TR Time ratio The proportion of the time-to-event changes in the presence of a categorical
predictor variable or from a one-unit increase in a continuous predictor.
Calculated from the AFT model

SAS Statistical analysis system Commercial software for statistical analysis. Developed by SAS Institute Inc.,
Cary, NC

Table 5

List of commonly used survival distributions

Name # of parameters Notes

Exponential 1 Assumes constant hazard
Special case of Weibull

Weibull 2 Assumes proportional hazards
Hazard is monotonically increasing or decreasing
Special case of gamma

Gamma 3 Hazard is monotonically increasing or decreasing

Log-normal 2 Hazard increases and later decreases

Log-logistic 2 Hazard is monotonically increasing or decreasing

Note that the number of parameters relates to the model complexity; if a simpler model is desired, a survival distribution
with fewer parameters is preferred. Furthermore to a limited extent, additional parameters results in a greater fit to the data

Table 6

SAS Program to simulate and analyze data

%macro simsurv (seed=,DATA=,g=,a=);

data &DATA; length group $ 7.;

group=&g;

b=1.5;

n=100;

call streaminit(&seed);

do i = 1 to n;

    T=RAND(‘WEIBULL’,b,&a);

    U=RAND(‘UNIFORM’);

    C=u*10;

    Z=min(T,C);

    if T>C then censor=0; else censor=l;
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    output;

end;

run;

%mend simsurv;

% simsurv (seed=246195,data=gl,g=‘DM’,a=8);

% simsurv (seed=950127,data=g2,g=‘NonDM’,a=12);

data HF;

set gl g2;

run;

/*Kaplan-Meier plots and log rank test*/

proc lifetest data=HF plots=(survival(test) lls);

time z*censor(0);

strata group;

run;

/*Fitting Cox Model*/

proc phreg data=HF;

class group;

model z*censor(0)=group;

hazardratio group;

run;

/*Fitting Weibull AFT model*/

proc lifereg data=HF;

class group;

model z*censor(0)=group/dist=weibull alpha=0.05;

output out=outb quantiles=.5 std=std p=predtime;

run;

/*computes the median and its 95% CI*/

proc sort data=outb; by group;

data out;

  set outb;by group;

  if first.group;

run;

data outl;

  set out;

  ltime=log(predtime);

  stde=std/predtime;

  upper=exp(ltime+1.96*stdE);

  lower=exp(ltime−1.96*stdE);

  keep group predtime upper lower;

run;

proc print;run;

George et al. Page 10

J Nucl Cardiol. Author manuscript; available in PMC 2014 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

1. Kaplan EK, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc.
1958; 53(282):457–481.

2. Savage IR. Contributions to the theory of rank order statistics: The two sample case. Ann Math Stat.
1956; 27(3):590–615.

3. Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodol). 1972; 34(2):187–220.

4. Xu Y-Z, Cha Y-M, Feng D, Powell BD, Wise HJ, Hua W, et al. Impact of myocardial scarring on
outcomes of cardiac resyn-chronization therapy: Extent or location? J Nucl Med. 2012; 53(1):47–
54. [PubMed: 22159181]

5. Bourque JM, Velazquez EJ, Tuttle RH, Shaw LK, O’Connor CM, Borges-Neto S. Mortality risk
associated with ejection fraction differs among resting nuclear perfusion findings. J Nucl Cardiol.
2007; 14(2):165–173. [PubMed: 17386378]

6. Hachamovitch R, Berman DS. The use of nuclear cardiology in clinical decision making. Semin
Nucl Med. 2005; 35(1):62–72. [PubMed: 15645395]

7. Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Ko-bayashi H, et al. Cardiac death
prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing
and nonfailing hearts. J Nucl Cardiol. 1998; 5(6):579–590. [PubMed: 9869480]

8. Duvall WL, Wijetunga MN, Klein TM, Razzouk L, Godbold J, Croft LB, et al. The prognosis of a
normal stress-only Tc-99m myocardial perfusion imaging study. J Nucl Cardiol. 2010; 17(3):370–
377. [PubMed: 20390394]

9. Hachamovitch R, Hayes S, Friedman JD, Cohen I, Shaw LJ, Germano G, et al. Determinants of risk
and its temporal variation in patients with normal stress myocardial perfusion scans: What is the
warranty period of a normal scan? J Am Coll Cardiol. 2003; 41(8):1329–1340. [PubMed:
12706929]

10. Acampa W, Evangelista L, Petretta M, Liuzzi R, Cuocolo A. Usefulness of stress cardiac single-
photon emission computed tomographic imaging late after percutaneous coronary intervention for
assessing cardiac events and time to such events. Am J Cardiol. 2007; 100(3):436–441. [PubMed:
17659924]

11. Petretta M, Acampa W, Evangelista L, Daniele S, Ferro A, Cuo-colo A. Impact of inducible
ischemia by stress SPECT in cardiac risk assessment in diabetic patients: Rationale and design of a
prospective multicenter trial. J Nucl Cardiol. 2008; 15(1):100–104. [PubMed: 18242486]

12. Daniele S, Nappi C, Acampa W, Storto G, Pellegrino T, Ricci F, et al. Incremental prognostic
value of coronary flow reserve with single-photon emission computed tomography. J Nucl
Cardiol. 2011; 18(4):612–619. [PubMed: 21626091]

13. Acampa W, Petretta M, Cuocolo R, Daniele S, Cantoni V, Cuo-colo A. Warranty period of normal
stress myocardial perfusion imaging in diabetic patients: A propensity score analysis. J Nucl
Cardiol. 2014; 21(1):50–56. [PubMed: 24092273]

14. Kalbfleisch, JD.; Prentice, RL. The statistical analysis of failure time data. 2nd ed. Hoboken: John
Wiley and Sons; 2002.

15. Klein, JP.; Moeschberger, ML. Survival analysis: Techniques for censored and truncated data.
New York: Springer; 2003.

16. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;
19(6):716–723.

17. Schwarz GE. Estimating the dimension of a model. Ann Stat. 1978; 6(2):461–464.

George et al. Page 11

J Nucl Cardiol. Author manuscript; available in PMC 2014 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Plot of sample Weibull survival functions (A) and the corresponding hazard functions (B)

The solid red curve represents the hazard function of Group 1, and the blue dashed curve

represents the hazard function of Group 2.
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Figure 2.
Plot of Kaplan-Meier curves.
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Figure 3.
Plot to check proportional hazards assumption of the Cox model.
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Table 1

Model selection indices using several parametric distributions

Distribution AIC BIC

Weibull 295.6 305.5

Log-logistic 297.5 307.4

Gamma 297.3 310.5

Log-normal 309.7 319.6

Exponential 302.7 309.3

Smaller values indicate a ‘better’ model, with the smallest denoted in bold
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Table 2

Estimates of median time to death for each group

95% Confidence interval

Group
Median

estimate
Lower
limit

Upper
limit

DM 5.76 4.59 7.23

Non-DM 10.26 7.45 14.13
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