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[RC] Stochastic search.

General iterative formula for optimizing a function h is

θt+1 = θt + εt,

which makes the sequence (θn) a Markov chain. The simulated
annealing generate ε’s in the following way. “Rather than aim-
ing to follow the slopes of the function h, simulated annealing
defines a sequence {πt} of densities whose maximum arguments
are confounded with the arguments of maxh and with higher
and higher concentrations around this argument. Each θt in the
sequence is then simulated from the density πt according to a
specific update mechanism.”
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[RC] Simulated annealing.

“The construction of the sequence of densities {πt} is obviously
the central issue when designing a simulated annealing algo-
rithm. The most standard choice is based on the Boltzman-
Gibbs transforms of h,

πt(θ) ∝ exp
(
h(θ)

Tt

)
, (1)

where the sequence of temperatures, {Tt}, is decreasing (under
the assumption that the right-hand side is integrable). It is in-
deed clear that, as Tt decreases toward 0, values simulated from
πt become concentrated in a narrower and narrower neighbor-
hood of the maximum (or maxima) of h.”
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[RC] Simulated annealing.

“The choice (1) is a generic solution to concentrate (in t) the
distribution πt around the maxima of an arbitrary function h, but
other possibilities are available in specific settings. For instance,
when maximizing a likelihood `(θ | x), the pseudo-posterior dis-
tributions

πt(θ | x) ∝ `(θ | x)mtπ0(θ),

associated with a nondecreasing integer sequence {mt} and an
arbitrary prior π0, enjoy the same property.”
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[RC] Simulated annealing.

“Two practical issues that hinder the implementation of this
otherwise attractive algorithm are

(a) the simulation from πt and

(b) the selection of the temperature sequence (or schedule)
{Tt}.

While the second item is very problem-dependent, the first item
allows a generic solution, related to the Metropolis-Hastings al-
gorithm.”
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[RC] Simulated annealing.

The update from θt to θt+1 is indeed based on the Metropolis-
Hastings step: ζ is generated from a distribution with symmetric
density g, and the new value θt+1 is generated as

θt+1 =
{

θt + ζ with probability ρ = exp(∆h/Tt) ∧ 1,
θt with probability 1− ρ,

where ∆h = h(θt + ζ)− h(θt).

By allowing random moves that may see h decrease, the sim-
ulated annealing method can explore multimodal functions and
escape the attraction of local modes as opposed to deterministic
(and to some extent stochastic) gradient methods.
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Algorithm 2 Simulated Annealing
At iteration t,

1. Simulate ζ ∼ g(ζ);
2. Accept θt+1 = θt + ζ with probability

ρt = exp{∆ht/Tt} ∧ 1;
take θt+1 = θt otherwise.

the density g being symmetric (around 0) but otherwise almost arbitrary.
An R version of this algorithm is associated with a random generator from

g, randg, as in Algorithm 1,

> theta=rep(theta0,Nsim)

> hcur=h(theta0)

> xis=randg(Nsim)

> for (t in 2:Nsim){

+ prop=theta[t-1]+xis[t]

+ hprop=h(prop)

+ if (Temp[t]*log(runif(1))<hprop-hcur){

+ theta[t]=prop

+ hcur=hprop

+ }else{

+ theta[t]=theta[t-1]}}

where the temperature sequence Temp needs to be defined by the user.
Obviously, the performance of the algorithm will depend on the choice

of g. For instance, if g corresponds to perturbations with a large scale, the
moves will most often be rejected because ∆ht will be negative most of the
time. On the other hand, if the scale of g is small, the sequence {θt} will have
difficulties in exploring several modes and will most likely end up being stuck
at the mode it started with, thus cancelling the appeal of the method. As
will be discussed in Chapter 6, a proper scaling of g should correspond to an
acceptance rate between .2 and .6.

Example 5.8. (Continuation of Example 5.3) For the simple function
from Example 5.3, h(x) = [cos(50x) + sin(20x)]2 , we can compare the impact
of using different temperature schedules on the performance of the simulated
annealing sequences. Note that, besides setting a temperature sequence, we also
need to set a scale value (or sequence) for the distribution g of the perturbations
as well as a stopping rule. Since the domain is [0, 1], we use a uniform U(−ρ, ρ)
distribution for g and our stopping rule is that the algorithm will stop when the
observed maximum of h has not changed in the second half of the sequence {xt}.

An R rendering of this simulated annealing algorithm is

> x=runif(1)

> hval=hcur=h(x)
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[LA] Simulated annealing.

“As early as 1953, Metropolis et al. [MET53] proposed an al-
gorithm for the efficient simulation of the evolution of a solid
to thermal equilibrium. It took almost thirty years before Kirk-
patrick et al. [KIR82] and, independently, Cerny [CER85] re-
alized that there exists a profound analogy between minimiz-
ing the cost function of a combinatorial optimization problem
and the slow cooling of a solid until it reaches its low energy
ground state and that the optimization process can be realized
by applying the Metropolis criterion. By substituting cost for
energy and by executing the Metropolis algorithm at a sequence
of slowly decreasing temperature values Kirkpatrick and his co-
workers obtained a combinatorial optimization algorithm, which
they called simulated annealing. Since then, the research into
this algorithm and its applications has evolved into a field of
study in its own.”
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[LA] Simulated annealing.

It is generally known as simulated annealing, due to
the analogy with the simulation of the annealing of
solids it is based upon, but it is also known as

Monte Carlo annealing, statistical cooling, probabilis-
tic hill climbing, stochastic relaxation or probabilistic
exchange algorithm.
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[H] Cooling schedule.

 MATHEMATICS OF OPERATIONS RESEARCH

 Vol. 13, No. 2, May 1988
 Printed in U.S.A.

 COOLING SCHEDULES FOR OPTIMAL ANNEALING*t

 BRUCE HAJEK

 University of Illinois at Champaign- Urbana

 A Monte Carlo optimization technique called "simulated annealing" is a descent algorithm
 modified by random ascent moves in order to escape local minima which are not global
 minima. The level of randomization is determined by a control parameter T, called tempera-
 ture, which tends to zero according to a deterministic "cooling schedule". We give a simple
 necessary and sufficient condition on the cooling schedule for the algorithm state to converge
 in probability to the set of globally minimum cost states. In the special case that the cooling
 schedule has parametric form T(t) = c/log(l + t), the condition for convergence is that c be
 greater than or equal to the depth, suitably defined, of the deepest local minimum which is not
 a global minimum state.

 1. Introduction. Suppose that a function V defined on some finite set Y is to be
 minimized. We assume that for each state x in y that there is a set N(x), with
 N(x) c y', which we call the set of neighbors of x. Typically the sets N(x) are small
 subsets of pY. In addition, we suppose that there is a transition probability matrix R
 such that R(x, y) > 0 if and only if y E N(x).

 Let T1, T2,... be a sequence of strictly positive numbers such that

 (1.1) T > T2> ... and

 (1.2) lim Tk = 0.
 k -* oo

 Consider the following sequential algorithm for constructing a sequence of states
 Xo, X1,.... An initial state XO is chosen. Given that Xk = x, a potential next state Yk
 is chosen from N(x) with probability distribution P[Yk = ylXk = x] = R(x, y). Then
 we set

 tYk with probability Pk,
 Xk+l = Xk otherwise, where

 - [V(Yk) - V(x)]+-
 Pk = exp T Tk

 This specifies how the sequence X1, X2,... is chosen. Let 9Y* denote the set of
 states in Y at which V attains its minimum value. We are interested in determining

 *Received March 13, 1985; revised December 19, 1986.
 AMS 1980 subject classification. Primary: 65C05; Secondary: 60J27.
 IAOR 1973 subject classification. Main: Probabilistic Programming; Cross References: Simulation.
 OR/MS Index 1978 subject classification. Primary: 663 Stochastic methods of optimization; Secondary: 761
 Simulation.

 Key words. Simulated annealing, Randomized optimization, Monte Carlo methods of optimization.
 tThis work was supported by the Office of Naval Research under Contract N000-14-82-K-0359 and the
 National Science Foundation under contract NSF-ECS-83-52030.
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[H] Cooling schedule.

According this paper, instead of θt we will use here
Xk as a state of a discrete Markov chain with a state
space S. The optimize problem is to minimize a func-
tion V . Let S∗ be the set of state in S at which V
attains its minimum value. We are interested in de-
termining whether

lim
k→∞

P(Xk ∈ S∗) = 1.
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[H] Cooling schedule.

Let πT(x) be stationary distribution for Markov chain

(Xk) and let as before πT(x) ∝ exp
(
−V (x)

T

)
. The fact

that the chain is aperiodic and irreducible means that

lim
k→∞

P(Xk ∈ S∗) =
∑
x∈S∗

πT(x).

Examination of πT soon yields that the right-hand
side can be made arbitrary close to one by choosing
T small. Thus

lim
T→0

(
lim

k→∞,Tk≡T
P(Xk ∈ S∗)

)
= 1.
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[H] Cooling schedule.

State y is reachable at height E from state x if x = y and
V (x) ≤ E, or if there is a sequence of states x = x0, x1, ..., xp = y
for some p ≥ 1 such that xk+1 ∈ N(xk) for 0 ≤ k < p and
V (xk) ≤ E for 0 ≤ k ≤ p.

Property WR (Weak reversibility): For any real number E and
any two states x and y, x is reachable at height E from y if and
only if y is reachable at height E from x.

 COOLING SCHEDULES FOR OPTIMAL ANNEALING

 The idea of the simulated annealing algorithm is to try to achieve (1.3) by letting Tk
 tend to zero as k (time) tends to infinity.

 We now return to the original case that the sequence (Tk) is nonincreasing and has
 limit zero. We will not require that R be reversible. Instead, a much weaker assump-
 tion will be made with the help of the following definition. We say that state y is
 reachable at height E from state x if x = y and V(x) < E, or if there is a sequence of
 states x = x0, x1,..., xp = x for some p > 1 such that xk+l E N(xk) for 0 < k <p
 and V(xk) < E for 0 < k < p. We will assume that (p, V, N) has the following
 property.

 Property WR (Weak reversibility): For any real number E and any two states x and
 y, x is reachable at height E from y if and only if y is reachable at height E from x.

 State x is said to be a local minimum if no state y with V(y) < V(x) is reachable
 from x at height V(x). We define the depth of a local minimum x to be plus infinity if
 x is a global minimum. Otherwise, the depth of x is the smallest number E, E > 0,
 such that some state y with V(y) < V(x) can be reached from x at height V(x) + E.
 These definitions are illustrated in Figure 1.1.

 We define a cup for (y, V, N) to be a set C of states such that for some number E,
 the following is true: For every x E C, C = {y: y can be reached at height E from
 x }. For example, by Property WR, if E > V(x) then the set of states reachable from x
 at height E is a cup. Given a cup C, define V(C) = min{V(x): x E C) and
 V(C) = min{V(y): y 1 C and y E N(x) for some x in C}. The set defining V(C) is
 empty if and only if C = Y, and we set V(y) = + oo. We call the subset B of C
 defined by B = {x E C: V(x) = V(C)} the bottom of the cup, and we call the number
 d(C) defined by d(C)= V(C)- V(C) the depth of the cup. These definitions are

 t
 12-

 10-

 FIGURE 1.1. The graph pictured arises from a triplet (', V, N). Nodes correspond to elements in Y.
 V(x) for x in y" is indicated by the scale at left. Arcs in the graph represent ordered pairs of states (x, y)
 such that x E N(y). Property WR is satisfied for the example shown.

 States xl, x2 and x3 are global minimum. States x4, x6 and x7 are local minima of depths 5.0, 6.0, and
 2.0, respectively. State x5 is not a local minimum. State x2 is reachable at height 1.0 from x1 and states x3
 is reachable at height 12.0 from x1.
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[H] Cooling schedule.
 BRUCE HAJEK

 * V
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 FIGURE 1.2. A cup C is enclosed with dashed lines. V(C) = 5, V(C) = 12, d(C) = 7 and the bottom B
 of C contains two states.

 illustrated in Figure 1.2. Note that a local minimum of depth d is an element of the
 bottom of some cup of depth d.

 THEOREM 1. Assume that (5a, V, N) is irreducible and satisfies WR, and that (1.1)
 and (1.2) hold.

 (a) For any state x that is not a local minimum, liMk oP[ Xk = x] = 0.
 (b) Suppose that the set of states B is the bottom of a cup of depth d and that the states

 in B are local minima of depth d. Then limk oP[Xk e B] = 0 if and only if
 Ekllexp(- d/Tk) = +oo.

 (c) (Consequence of (a) and (b)) Let d* be the maximum of the depths of all states
 which are local but not global minima. Let Y5* denote the set of global minima. Then

 (1.5) lim P[Xk E Y*] = 1
 k- oo

 if and only if

 00

 (1.6) E exp(-d*/Tk) = + o.
 k=l

 REMARKS. (1) If Tk assumes the parametric form

 c

 (1.7) Tk= og(k + 1) log( k + l)

 then condition (1.6), and hence also condition (1.5), is true if and only if c > d*. This
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[H] Cooling schedule. Main theorem.

Assume (Xk) is irreducible and satisfies WR property, and let
(Tk) be a sequence of strictly positive numbers such that T1 ≥
T2 ≥ . . . and limk→∞ Tk = 0.

(a) For any state x that is not a local minimum,

lim
k→∞

P(Xk = x) = 0.

(b) Let B be a bottom of a cup of depth d (states in B are
local minima of depth d). Then

lim
k→∞

P(Xk ∈ B) = 0 iff

∞∑
k=1

exp(−d/Tk) =∞.
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[H] Cooling schedule. Main theorem.

Consequence of (a) and (b): Let d∗ be the maximum of the
depths of all states which are local but not global minima. Then

lim
k→∞

P(Xk ∈ S∗) = 1 iff

∞∑
k=1

exp(−d∗/Tk) =∞. (2)

Remark: If Tk assumes the parametric form

Tk =
c

log(k + 1)

then (2) is true if and only if c ≥ d∗.
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