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[RC] Stochastic search.

General iterative formula for optimizing a function h is

Orr1 = 0 + &4,

which makes the sequence (6,) a Markov chain. The simulated
annealing generate ¢'s in the following way. “Rather than aim-
ing to follow the slopes of the function h, simulated annealing
defines a sequence {m;} of densities whose maximum arguments
are confounded with the arguments of maxh and with higher
and higher concentrations around this argument. Each 6; in the
sequence is then simulated from the density n; according to a
specific update mechanism.”
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[RC] Simulated annealing.

“The construction of the sequence of densities {m;} is obviously
the central issue when designing a simulated annealing algo-
rithm. The most standard choice is based on the Boltzman-
Gibbs transforms of h,

h(@)) | (1)

m(0) o< exp ( T

t

where the sequence of temperatures, {T;}, is decreasing (under
the assumption that the right-hand side is integrable). It is in-
deed clear that, as T; decreases toward 0O, values simulated from
m become concentrated in a narrower and narrower neighbor-
hood of the maximum (or maxima) of h."”
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[RC] Simulated annealing.

“The choice (1) is a generic solution to concentrate (in t) the
distribution m around the maxima of an arbitrary function h, but
other possibilities are available in specific settings. For instance,
when maximizing a likelihood £(8 | ), the pseudo-posterior dis-
tributions

(0 | ) < £(0 | )™ 7o (6),

associated with a nondecreasing integer sequence {m:} and an
arbitrary prior mg, enjoy the same property.”



Aula 10. Simulated Annealing. 4

[RC] Simulated annealing.

“Two practical issues that hinder the implementation of this
otherwise attractive algorithm are

(a) the simulation from m; and

(b) the selection of the temperature sequence (or schedule)

{1t}

While the second item is very problem-dependent, the first item
allows a generic solution, related to the Metropolis-Hastings al-
gorithm.”
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[RC] Simulated annealing.

The update from 6; to 6;4; is indeed based on the Metropolis-
Hastings step: ( is generated from a distribution with symmetric
density g, and the new value 6,4, is generated as

0 . 0: + ¢ with probability p = exp(Ah/T:) N 1,
t+1 =3 o, with probability 1 — p,

where Ah = h(0; + () — h(6,).

By allowing random moves that may see h decrease, the sim-
ulated annealing method can explore multimodal functions and
escape the attraction of local modes as opposed to deterministic
(and to some extent stochastic) gradient methods.
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Algorithm 2 Simulated Annealing
At iteration ¢,
1. Simulate ¢ ~ g(();
2. Accept 6441 =60, 4+ ( with probability
pr = exp{Ah/Ti} N 1;
take 611 = 0; otherwise.

the density g being symmetric (around 0) but otherwise almost arbitrary.
An R version of this algorithm is associated with a random generator from
g, randg, as in Algorithm 1,

> theta=rep(thetal,Nsim)

> hcur=h(thetal)

> xis=randg(Nsim)

> for (t in 2:Nsim){

+  prop=thetal[t-1]+xis[t]

hprop=h(prop)

if (Temp[t]*log(runif (1))<hprop-hcur){

thetal[t]=prop

hcur=hprop

Yelsed{
theta[t]=thetal[t-1]1}}

+ + + + + +

where the temperature sequence Temp needs to be defined by the user.
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[LA] Simulated annealing.

“As early as 1953, Metropolis et al. [MET53] proposed an al-
gorithm for the efficient simulation of the evolution of a solid
to thermal equilibrium. It took almost thirty years before Kirk-
patrick et al. [KIR82] and, independently, Cerny [CERS85] re-
alized that there exists a profound analogy between minimiz-
ing the cost function of a combinatorial optimization problem
and the slow cooling of a solid until it reaches its low energy
ground state and that the optimization process can be realized
by applying the Metropolis criterion. By substituting cost for
energy and by executing the Metropolis algorithm at a sequence
of slowly decreasing temperature values Kirkpatrick and his co-
workers obtained a combinatorial optimization algorithm, which
they called simulated annealing. Since then, the research into
this algorithm and its applications has evolved into a field of
study in its own."”
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[LA] Simulated annealing.

It is generally known as simulated annealing, due to
the analogy with the simulation of the annealing of
solids it is based upon, but it is also known as

Monte Carlo annealing, statistical cooling, probabilis-
tic hill climbing, stochastic relaxation or probabilistic
exchange algorithm.
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[H] Cooling schedule.
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A Monte Carlo optimization technique called “simulated annealing” is a descent algorithm
modified by random ascent moves in order to escape local minima which are not global
minima. The level of randomization is determined by a control parameter T, called tempera-
ture, which tends to zero according to a deterministic “cooling schedule”. We give a simple
necessary and sufficient condition on the cooling schedule for the algorithm state to converge
in probability to the set of globally minimum cost states. In the special case that the cooling
schedule has parametric form T(z) = ¢/log(l + t), the condition for convergence is that ¢ be
greater than or equal to the depth, suitably defined, of the deepest local minimum which is not
a global minimum state.
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[H] Cooling schedule.

According this paper, instead of 6; we will use here
X as a state of a discrete Markov chain with a state
space S. The optimize problem is to minimize a func-
tion V. Let &* be the set of state in § at which V
attains its minimum value. We are interested in de-
termining whether

lim P(X, € §") = 1.

k—o0
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[H] Cooling schedule.

Let mr(x) be stationary distribution for Markov chain
(X%) and let as before wp(x) o< exp (—@) The fact
that the chain is aperiodic and irreducible means that
lim P(X; € §%) = Z; mr(z).
reo*

Examination of wp soon vyields that the right-hand
side can be made arbitrary close to one by choosing
T small. Thus

lim ( lim P(X; e 8*)) =1.

T—0 \ k—oo, T, =T
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[H] Cooling schedule.

State y is reachable at height E from state x if z = y and
V(z) < E, or if there is a sequence of states x = xzo,z1,...,2p = ¥
for some p > 1 such that zx4y1 € N(xg) for 0 < k < p and
V(zp) < E for 0 <k < p.

Property WR (Weak reversibility). For any real number E and
any two states z and y, = is reachable at height E from y if and
only if y is reachable at height E from x.

We define a cup for (&, V, N) to be a set C of states such that for some number E,
the following is true: For every x € C, C = { y: y can be reached at height E from
x }. For example, by Property WR, if E > V(x) then the set of states reachable from x
at height E is a cup. Given a cup C, define ¥(C) = min{¥V(x): x € C} and
V(C) = min{¥(y): y & C and y € N(x) for some x in C}. The set defining V(C) is
empty if and only if C =%, and we set V(%) = + 0. We call the subset B of C
defined by B = {x € C: V(x) = V(C)} the bottom of the cup, and we call the number
d(C) defined by d(C) = V(C) — V(C) the depth of the cup. These definitions are
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[H] Cooling schedule.
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FIGURE 1.2. A cup C is enclosed with dashed lines. ¥ (C) = 5, V(C) = 12, d(C) = 7 and the bottom B
of C contains two states.
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[H] Cooling schedule. Main theorem.

Assume (X}) is irreducible and satisfies WR property, and let
(T.) be a sequence of strictly positive numbers such that Ty >
T> > ... and limg_ o T = 0.

(a) For any state x that is not a local minimum,

k—o0

(b) Let B be a bottom of a cup of depth d (states in B are
local minima of depth d). Then

kl|_>rr;o P(X, € B) =0 iff Zexp(—d/Tk) = o0o.
k=1
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[H] Cooling schedule. Main theorem.

Consequence of (a) and (b): Let d* be the maximum of the
depths of all states which are local but not global minima. Then

kll_)l"go P(X, € S8") =1 iff Zexp(—d /Ty) = oo. (2)
k=1

Remark: If 7, assumes the parametric form

C
"~ log(k + 1)
then (2) is true if and only if ¢ > d*.

T}
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