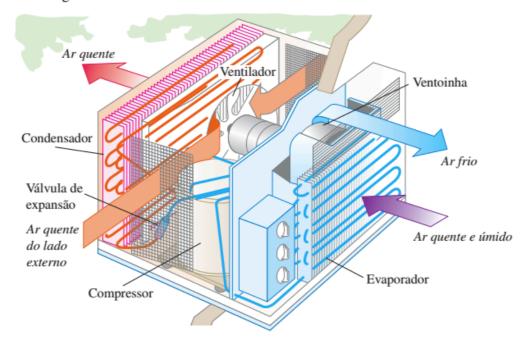
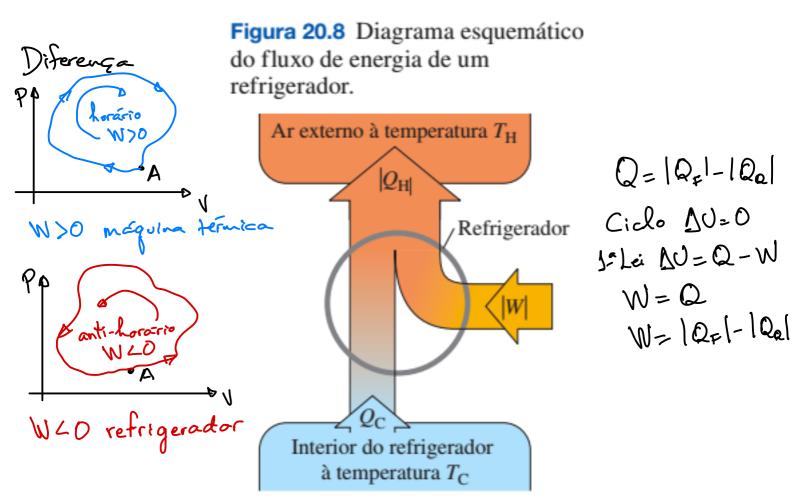


Figura 20.10 Um aparelho de ar-condicionado funciona conforme os mesmos princípios de um refrigerador.





Sempre é preciso realizar um trabalho para transferir calor de um corpo frio para um corpo quente. O calor flui espontaneamente de um corpo quente para um corpo mais frio, e o fluxo inverso necessita de um trabalho externo. A segunda Lei da Termodinâmica mostra que é impossível fazer um refrigerador que transporte calor de um corpo frio para um corpo quente sem realização de trabalho.

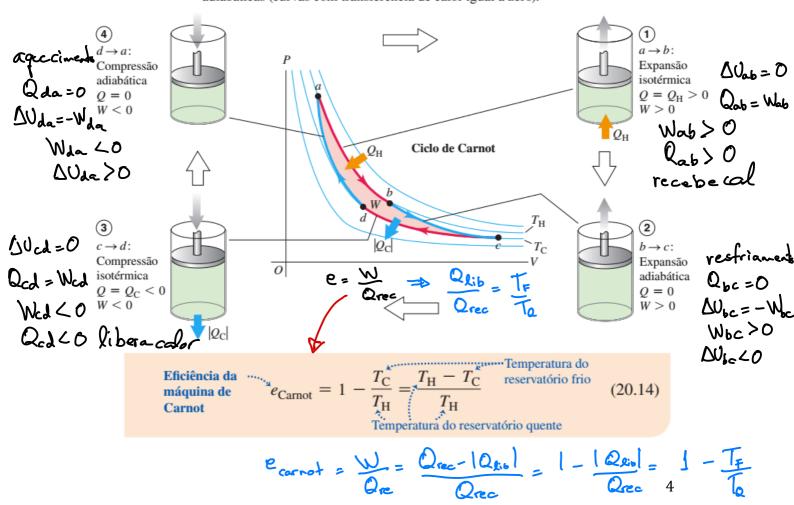
É impossível a realização de qualquer processo que tenha como única etapa a transferência de calor de um corpo mais frio para um corpo mais quente.

Ciclo de Carnot

De acordo com a segunda lei, nenhuma máquina térmica pode ter 100% de eficiência. Qual é a eficiência máxima que uma dada máquina pode ter, a partir de dois reservatórios de calor a temperaturas T_O e T_F ?

Essa pergunta foi respondida em 1824 pelo engenheiro francês Sadi Carnot (1796-1832), que desenvolveu uma máquina hipotética ideal que fornece a eficiência máxima permitida pela segunda lei. O ciclo dessa máquina é conhecido como ciclo de Carnot e o objetivo desta máquina térmica é obter a conversão de calor em trabalho com a maior eficiência possível. Portanto, deve-se evitar todo processo irreversível. Como o fluxo de calor entre o sistema e o reservatório com temperatura diferente é um processo irreversível, a transferência de calor no ciclo de Carnot, nenhuma diferença de temperatura, ou seja, um não deve existir processo isotérmico. Por outro lado, em qualquer processo no qual a temperatura da substância do sistema deve mudar (exemplo: de T_O para T_F) não pode ocorrer nenhuma transferência de calor, porque essa transferência de calor não poderia ser reversível. Portanto, qualquer processo no qual a temperatura T do sistema varia deve ser um processo adiabático.

Figura 20.13 Ciclo de Carnot para um gás ideal. No diagrama *PV*, as linhas finas azuis são isotermas (curvas com temperatura constante) e as linhas grossas azuis são curvas adiabáticas (curvas com transferência de calor igual a zero).



ATENÇÃO Use a escala Kelvin em todos os cálculos de Carnot Em todos os cálculos envolvendo o ciclo de Carnot, você deve tomar cuidado e usar sempre temperaturas *absolutas* (escala Kelvin). A razão é que o conjunto formado pelas equações 20.10 até 20.14 foi deduzido a partir da equação do gás ideal PV = nRT, em que T é a temperatura absoluta.

Exercícios

- 1) Uma certa máquina de Carnot absorve 2.000 J de calor de um reservatório a 500 K, realiza trabalho e descarta calor para um reservatório a 350 K. Qual foi o trabalho realizado, qual a quantidade de calor rejeitada e qual a eficiência dessa máquina?
- 2) Suponha que 0,200 mol de um gás ideal diatômico ($\gamma = 1,40$) passe por um ciclo de Carnot (4 processos quase-estáticos: expansão isotérmica, expansão adiabática, compressão isotérmica e compressão adiabática) com temperaturas entre 227°C e 27°C, começando na pressão inicial de10⁶ Pa. O volume dobra durante a etapa de expansão isotérmica. Determine:
- (a) os valores de temperatura, pressão e volume ao final de cada processos termodinâmico da máquina;
- (b) a quantidade de trabalho realizado, a quantidade de calor dissipado e a eficiência teórica do maquina.
- (c) a eficiência da máquina com os valores obtidos do item anterior e compare com o valor obtido a partir da Equação 20.14.

n=0,2 mol diatômico v=5

Cv= 5 R; cp= 7R

TQ = 227°C = 500K

Tr= 27°C = 300K

					しいこと に・しのことに
Estados	T(K)	P(R)	V (m3)		CV= 2 K; Cp=2 K
a	500	106	Va=	=> Va=nRTa	8=cx= = 14
Ь	500		2 Va =	ra-	W 5 .
С	300		Vc= (Is) 2Va	P=nRT	
d	300		Vg= (I) 8-1 Va	J \[\sqrt{1}	

Processos	$\nabla\Omega(2)$	Q (J)	W(J)	
arb exp. isotérn.	0	nRTh2	nRTah2	Qab = Wab
byc exp. adiab.	-ncv (Ta-TF)	0	ncv (Ta-Ta)	
C>d comp, isotérm.	Ď	-nRT=h2	-nRTFh2	Qcd = Wed
dea compadiab.	ncv (Ta-TF)	0	-ncv (Ta-Tz)	

Wab = nRTah (Vb) = nRTah 2

Wed = nRTF h (Vd)

(1)
$$\left(\frac{\kappa R T_{a}}{V_{b}}\right) V_{b}^{x} = \left(\frac{\kappa R T_{F}}{V_{c}}\right) V_{c}^{x} \Rightarrow T_{a} V_{b}^{x-1} = T_{F} V_{c}^{x-1}$$

$$V_{c} = \left(\frac{T_{a}}{T_{F}}\left(2V_{a}\right)^{x-1}\right)^{\frac{1}{2}x-1} \Rightarrow V_{c} = \left(\frac{T_{a}}{T_{F}}\right)^{\frac{1}{2}x-1} 2V_{a}$$
(2) $\left(\frac{\kappa R T_{a}}{V_{a}}\right) V_{a}^{x} = \left(\frac{\kappa R T_{F}}{V_{c}}\right) V_{b}^{x} \Rightarrow T_{a} V_{a}^{x-1} = T_{F} V_{a}^{x-1}$

Agora vamos substituir os valores de PeV os estados:

$$V_{\alpha} = NRT_{\alpha} = 0.2 \times 8.3 \times 500 = 0.83 \times 10^{3} \text{ m}^{3} = 0.83 \text{ L}$$

$$V_{b} = 2V_{a} = 1,66 \times 10^{3} = 1,66 L$$

$$V_{c} = \left(\frac{T_{a}}{T_{F}}\right)^{\frac{1}{8}1} 2V_{a} = \left(\frac{500}{350}\right)^{\frac{1}{19}-1} 2 \times 0.83 \times 10^{3} = \frac{194}{194} \times 1$$

$$P_b = \frac{nRT_0}{V_b} = \frac{0.2 \times 8.3 \times 500}{1.66 \times 10^{-3}} = 5 \times 10^5 R_a = 5 atm$$

$$P_c = \frac{nRT_F}{V_c} = \frac{0.2 \times 8.3 \times 350}{194 \times 10^{-3}} = 3 \times 10^5 P_a = 3 \text{ atm}$$

$$P_{d} = \frac{nRT_{F}}{V_{d}} = \frac{0.2 \times 8.3 \times 350}{0.97} = 6 \times 10^{5} R = 6 \text{ a} \text{ m}$$

Resposta do item (a)

Estados T(K) P(atm) V(L)

a 500 10 0,83

b 500 5 1,66

c 350 3 1,94

d 350 6 0,97

$$\Delta V_{bc} = \Delta V_{da} = ncv (T_0 - T_F) = -0.2 \times \frac{5}{2} \times 8.3 \times (500 - 350) = -622.5 \text{ J}$$

 $Q_{ab} = nRT_0 h2 = 0.2 \times 8.3 \times 500 h2 = 575.3 \text{ J}$

Qcd = nRT= h2 = -0,2x8,3x350xh2=-402,75

Kesposta de	s item ((b)	
Processos	∆ U (t)	Q (T)	W(2)
arb exp. isoterm.	0	5 <i>7</i> 5,3	<i>575,</i> 3
b>c exp. adiab.	-622,5	0	622,5
c > d comp. isstern.	0	-402,7	-402,7
dra comp. colis.	622,5	0	-622,5
TOTAL	∆ 0 = 0	Q = 1726J	W. =1726 J=

TOTAL $\Delta U=0$ $Q_{total}=1726J$ $W_{total}=1726J$ $\Delta magnine$ $\Delta U=0$ $\Delta U=0$

$$e = 1 - \frac{T_F}{T_Q} = 1 - \frac{350}{500} = 0,3$$
 ou $\frac{30\%}{500}$ de eficiencia

Ambos procedimentos mostam uma eficiência de 30% para esta máquina termica. Sendo a expressão e= Whotal/Orec válido para qualquer máquina termica, enquanto a expresso e=1-Tefa 56 pode ser aplicada para máquina termica como o ciclo de Carnot, que apresenta a máxima eficiência de uma máquina termica hica que trabalha com reservatorios de temperatura 350 e 500 K.