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Introduction 
 

 Accurate recoverable resource estimation and grade 
control procedures are the foundation of successful mining 
ventures. Long, medium and short term planning in a min-
ing operation are all dependent upon precise estimations.  
For example, poor estimation may result in the long term in a 
pit being incorrectly optimised, in the medium term cash-
flow forecasts may be disastrously inaccurate, and in the 
short term the allocation of ore and waste material by grade 
control may be erroneous. Many open pit gold mines in 
Australia suffer from a lack of reconciliation between ex-
ploration and in-pit estimates and actual head grades deliv-
ered to the mill. This is often despite very good grade control 
sampling and geological control. Often correction factors   
are applied to the resource model and grade control estimates 
in order to approximate reconciliation with production 
figures. Some of the main reasons for erroneous estimation 
are the failure to account for one or many of the following: 

— the statistical distribution of the sample data, 
— the spatial continuity of the sample data, 
— the regression-effect and the volume-variance relation-

ship, 
— the degree of mining selectivity (ie., dilution) that is 

practised, and 
— the selection of an appropriate estimation method to 

calculate recoverable tonnes and grade. 
 Statistical and geostatistical analysis and modelling 
procedures are capable of investigating and overcoming the 
problems listed above. It must be emphasised that if there    
is a sampling bias present, in either the exploration, grade-
control or production data, then no method will arrive at the 
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 correct answer without correction, or otherwise by chance. 

 This paper presents the steps involved in improving 
orebody/grade control modelling and reconciliation and 
highlights the modelling and reconciliation benefits that a 
geostatistical approach can give to a mining operation. For 
this purpose a case study is presented from a typical Western 
Australian open pit gold mine. 

 
 
The frequency distribution of sample data 

 
 The frequency distribution of sample grades will de-
termine the method used to calculate the average grade of a 
population of data. The arithmetic mean of normally 
distributed data will give the average grade, but unfortunately 
normal distributions are very rare amongst mineralized 
phenomena. Examples of orebodies with a normal data 
distribution include some massive copper or manganese 
deposits. It is more common for sample grades to correspond 
to a skewed distribution. The arithmetic average of a 
positively skewed distribution will overestimate the average 
grade (e.g., lognormally distributed gold mineralisation) and 
underestimate it if negatively skewed (e.g., iron ore). 
Positively skewed distributions are common amongst pre-
cious metals, base metals, mineral sands and contaminants 
(e.g., phosphorous in iron ore). The lognormal distribution    
is characterised by the property that the logarithms of the 
sample values correspond to a normal distribution. Most 
observations are small compared to the mean, but a few are 
very large. A distribution may be positively skewed, but not 
exactly lognormal, in which case it may be termed mixed-
lognormal or pseudo lognormal. In such cases it may be 
possible to ad a constant to the values of the distribution       
in order to normalise their natural logarithms. This is known 
as a three parameter lognormal distribution [i.e., logn (value + 

� ) is normally distributed] and is common in stratabound gold 
deposits of gold accumulation values across a reef of variable 
width. The failure to separate distinct geological/ 
mineralogical domains may result in a bimodal mixed grade 
distribution. 

 Figure 1 displays a histogram of the logarithms of a 
bench of gold grade control data. Note the normal distribution 
of the logarithms of the sample values, demonstrating their 
lognormality. Separate “unmineralised”  and “high grade/ 
outlier”  sub-populations are visible on either side of the 
histogram. Figure 2 displays a logarithmic cumulative fre-
quency diagram of the same data. The majority of the data 
corresponds to a straight line representing a single lognormal 
population between points A and B. At point A the deflection 
in this straight line is interpreted as the boundary between   
the “unmineralized”  and “mineralized”  sub-populations and  
is referred to as the mineralization indicator grade. This   
value is typically between 0.05 and 0.3 g/t in gold deposits. 
The deflection at point B represents the boundary between  
the “mineralized”  and the “high grade/outlier”  sub- 
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FIGURE 1 Logarithmic histogram of grade control data for gold. 
 
populations. The presence of the latter sub-population may 
typically be accentuated by assay bias at higher grades. 

 Negatively skewed distributions are characterised by 
those where the metal values are mostly very high, with 
much fewer low values. Iron ore is typically distributed in 
this fashion and may be converted to equal or approximate    
a normal distribution by taking the logarithm of (maximum 
Fe value – Fe value). In this way the tendency to under-
estimate the average grade is removed and an unbiased 
estimate should result after conversion back to a normalised 
value. 

 Sichel’s ‘ t’  estimate (the “Sichel Mean” ) is the best 
estimator of the mean of a lognormal distribution. It may be 
used to arrive at a suitable assay cutting value for high  
grades in order to avoid overestimation when the arithmetic 
mean is used. 

The Sichel mean = geometric mean * f (V, n), 
 Where f (V, n) is Sichel’s tabulated ‘ t’  factor, 
 V = sample variance, and 
 N = sample size. 

The geometric mean is the antilog of the mean of the logs. 
For three parameter lognormal distributions: 

the Sichel mean = { (geometric mean + � ) * f (V, n)}  – � , 
where �  is the third parameter constant. 

Therefore by experimentation it is possible to apply a pro-
gressively more severe high grade cut until the cut arithme- 

 tic mean of a lognormal distribution equals the uncut Sichel 
mean, in order to arrive at a suitable high grade cut for the 
sample data. 
 

Semivariogram analysis 
 
 One of the most useful tools available to development 
and mine geologists is the semivariogram. It is a graph of    
the variability between pairs of samples against the distance 
(or lag) between them in a specific direction (Figure 3). It     is 
capable of quantifying the range of influence and direction of 
geological/mineralogical continuity and as such can be used 
to investigate and support geological interpretation. 
Semivariogram analysis is based on the theory of regionalised 
variables developed by Matheron in the early 1960s. The 
technique is applicable to any spatially correlated data set, 
that is, for sample values where the closer spaced samples   
are likely to be less variable than samples which are spaced 
further apart. 

 The semivariogram value for sample pairs at a certain 
distance (n) apart is half of the average squared difference 
between grades at this distance. 

 
� (h) = (1/(2 n)) � (X i – X i+n)

2 (absolute semivariogram), 
 where h = lag between members of a sample 
    pair, 
  X i = grade of first member, 
  X i+n = grade of second member, and 
   n = number of pairs. 
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FIGURE 2 Logarithmic cumulative frequency diagram of gold control data for gold. 

 
FIGURE 3 Across-strike variogram. 
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FIGURE 4 Illustration of the regression effect.  FIGURE 5 Illustration of the volume-variance relation-

ship. 
 Semivariograms are calculated for specific geological   
or structural directions (e.g., down dip, down plunge, hori-
zontal strike, perpendicular to strike, etc. ). The quality of 
the experimental semivariogram may be improved by its 
calculation using only data above the mineralisation indica-
tor grade and/or below the high grade/outlier boundary. This 
results in the definition of semivariogram parameters for 
only the mineralized material, that is, the continuity of 
mineralization rather than the continuity of unmineralized 
material or of abnormally variable mineralization. 

 When h is equal to zero, that is, the two samples that are 
compared have exactly coincident location, the variability 
between them may not be equal to zero. A practical example 
of this is the difference in assay values that can be expected 
from two halves of an equal length of diamond drill core. 
The presence of variability between samples at or very close 
to zero distance apart is termed the nugget effect (Co). This 
inherent variability is most serious where there are very 
small scale structures such as coarse gold or small scale 
veining. The nugget effect is very important in the evalu-
ation of precious metal deposits, but it should be noted that 
sampling or assaying error may make a significant contri-
bution to its magnitude. The more massive orebodies tend  to 
have a very low nugget effect (i.e., iron ore), where there is a 
high degree of reproducibility between immediately adjacent 
samples. The best estimate of the nugget effect is usually 
obtained from a semivariogram calculated in the direction of 
closest sample spacing, that is, the down hole/ along drive 
direction when using exploration data or in the blast hole 
line/ditch witch trench direction during grade control. 

 As the distance between samples increases, the 
semivariogram value rises until it levels off at what is known 
as the sill value (C). This is the distance at which samples 
are no longer spatially correlated and is known as the range 
of influence (a). More than one sill value may be present, in 
which case a semivariogram is defined with so called nested 
structures. The first sill (short range structure) defines a 
range of influence up to which the variance between samples 
may rise very rapidly with increasing distance (C1 and a1). 
Beyond a1 the variability may increase less rapidly with 
distance until the longer range structure is defined at the 
point where samples are no longer spatially related (C2 and 
a2). Values of C and a are defined for each experimental 
semivariogram by fitting a theoretical model to the 
semivariogram trace. A spherical model is found most 
 

 commonly to fit experimental semivariograms, but expo-
nential, Gaussian and linear models may also be appropriate. 

 Logarithmic variograms may be calculated for nega-
tively skewed data. The method of calculation is the same   
as for the absolute variogram, except the data is first 
transformed to the log values. Logarithmic variograms are 
far less sensitive to data outliers and therefore the resultant 
variograms are much more robust. 

 In summary, the semivariogram allows the geologist to 
investigate and quantify the spatial variability of the min-
eralisation that is being evaluated or mined. The quality of 
semivariograms and the parameters that they define allow 
informed decisions to be made on the sample spacing re-
quired to investigate the mineralisation. In this way over or 
under sampling of the orebody may be prevented. By de-
fining the range of influence and the change in variance  
with distance for specific directions, parameters may be     
selected to allow more sophisticated and meaningful grade 
interpolation to ease the degree of manual intervention and 
decision making in defining ore/waste boundaries. 

 

The regression effect and the 
volume-variance relationship 

 

 The regression effect is the term applied to the phe-
nomenon of exploration or grade control sampling underes-
timating the actual grades that are mined in low grade areas 
and overestimating the head grade produced from high grade 
areas. This is because real mining units have a different 
distribution of average grades than the distribution of sam-
ple grades. Figure 4 illustrates this effect with the ellipse 
defined by the scatter of points when sample values are 
plotted against corresponding actual block values. A re-
gression line may be drawn through the ellipse which does 
not define a 1:1 relationship between sample and block 
grades. Thus a cutoff applied to sample grades may be 
equivalent to a different effective cutoff on production 
grades. For example in the context of an open pit gold   
mine, the application of a nominal 1.0 g/t Au cutoff to blast 
hole samples used to design polygonal ore outlines may 
result in an effective production cutoff of 1.2 g/t Au. 
Therefore if the economic cutoff of the deposit at a particular 
time is 1.0 g/t Au, a significant quantity of profitable ma-
terial may be allocated to waste because of the imposition   
of an effective production cutoff of 1.2 g/t Au. Similarly, in 
an iron ore mine, the selection of saleable ore by interpo- 
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lation of blast hole assays of contaminant such as phospho-
rous or silica may result in a higher effective production 
cutoff being placed on the contaminants than is required,   
the result of which would be the misallocation of some of  
the saleable material to the waste dumps. 

 The regression effect is caused by the change in vari-
ance of a data set according to the degree of support (or 
volume) of the data. Therefore a population of sample grades 
will have a higher variance than a population of mining block 
grades. Similarly larger blocks will have a lower variance 
than smaller blocks. Figure 5 displays combined frequency 
diagrams of sample grades and block grades from a 
hypothetical orebody. This diagram demonstrates that if     
the cutoff grade is below the mean grade of the orebody,        
the distribution of blocks will define a greater tonnage at a 
lower average grade than the distribution of samples. The 
opposite is true if the cutoff grade is higher than the mean 
grade. This phenomenon is known as the volume-variance 
relationship. This relationship explains why it is important to 
standardise the support of exploration and grade control 
sampling that are combined for statistical and geostatistical 
analysis. For example if the total data set available for the 
evaluation of an orebody consisted of 50 reverse circulation 
drill holes with samples taken at 2 m intervals, and 50 
diamond drill holes with samples taken at 0.5 m or smaller 
intervals, the diamond drill hole samples can be expected to 
have a higher variance than the reverse circulation drill hole 
samples because of the variation in support of the two sample 
sets. Therefore in order to be able to combine the data for 
analysis, the diamond drill holes have to be composited into 
2 m sample lengths. 

 
Mining selectivity 

 
 There is more than one way to mine an orebody de-
pending upon the degree of selectivity that is to be practised. 
The objective of selective mining is to reduce the amount    
of dilution by waste of the valuable ore material. The 
controls on selective mining include the following critical 
parameters: 

— the geological or structural complexity of the orebody, 
— the cutoff grade that is used, 
— the degree of continuity of ore material above the cut- off 

grade, 
— the size and accuracy of mining equipment, and 
— the required production rate. 
These controls are used in the selection of a selective mining 
unit (SMU) which represents the minimum resolution cap-
able of being mined. The selection of a large SMU in a struc-
turally complex orebody will result in greater internal and 
external dilution. The volume-variance relationship has 
demonstrated that cutoff grades should be placed on SMUs 
and not sample grades, as SMU grades represent fully di-
luted estimates that are capable of being recovered. The 
degree of continuity of the mineralisation will increase with a 
decrease in cutoff grade. Therefore the selection of the    
SMU size is related to the operational cutoff that is chosen.  
For example in a highly variable gold stockwork orebody   
the selection of a 1.5 g/t cutoff would require a much small 
SMU than a high volume/low grade operation at a 0.7 g/t 
cutoff. Similarly if in such an operation it is intended to   
mine highly selectively above a 1.5 g/t cutoff in order to 
produce a reasonable head grade, the size of the equipment 
used may set a restriction on the maximum output of the 
operation. 

 

 Estimating the recoverable tonnes 
and grade 

 

 A recoverable resource/reserve estimate represents the 
tonnes and grade which can actually be mined above a cutoff 
set on SMU grades. The calculation of the recoverable tonnes 
and grade from a bench of grade control data is a relatively 
straight forward procedure: 

— there is a large amount of closely spaced data, and 
consequently statistical and semivariogram analysis will 
provide very robust parameters; and 

— grades may be estimated for SMU size blocks without 
severe computational overheads. 

 In order to calculate estimated grades for each block in 
the bench, a suitable estimation method has to be chosen. 
Most people who read this paper will be familiar with the 
inverse distance weighting method (IDW). With IDW the 
estimate for the average grade of a block is a weighted 
average of sample grades in and around the block, with the 
weight of any given sample inversely proportional to the 
distance to the power n, between the sample and the centre of 
the block. Generally a search ellipse is chosen to define  
those samples to be used in the estimation of the grade of 
each block, which is shaped according to the geometric 
anisotropy of the mineralization. This ellipse may of course 
be provided by the ranges of influence defined from 
semivariograms calculated in the main structural directions. 
The selection of the power n is somewhat arbitrary and 
usually bears little resemblance to the change in variance of 
the mineralization with distance in each direction as defined 
by the semivariograms. Some people use just the inverse of 
the distance, others the inverse squared or cubed. Beyond n  
= 3 the value of the estimate becomes very similar to a 
polygonal approach. 

 Kriging is a distance weighted estimate of the block 
grade from the surrounding samples. Unlike IDW, the weight 
of each sample is a function of the distance and orientation 
from the centre of the block and is defined by the shape of 
semivariogram models. The advantages of the kriging esti-
mate are that it is unbiased and has the minimum variance.  
The assumption is made that stationarity of grades exists,  
that is, the mean grade of the data values is the same as the 
mean grade of the sample values. 

 There are a number of different kriging methods 
available and selection of a suitable estimator should be 
made according to the distribution of sample data and the 
robustness of semivariogram parameters. Normally distrib-
uted samples may be modelled with ordinary kriging using 
absolute semivariogram parameters. 

 If the sample data corresponds to a lognormal distri-
bution and logarithmic semivariograms have been calculated, 
there are two methods available. For the first method the 
logarithmic semivariogram parameters may be transformed 
into absolute semivariogram parameters and block estima-
tions may be made using the transformed parameters with 
ordinary kriging. This has been termed pseudo-lognormal 
kriging. The formula for the transformation is: 

 
V(h) = µ2 exp (V2) x { 1.0 – exp [-V1(h)]} , 
 where V1(h) is the log variogram, 
  V(h) is the absolute variogram, 
  V2 is the sill of the log variogram, and, 
  µ is the mean grade of the deposit. 
 
This transformation tends to enhance the relative magnitude 
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of the nugget effect or short range structures, as a function   
of the size of V2. 

 The other alternative is to do lognormal kriging where  
the estimator is obtained by using ordinary kriging of the log-
transformed sample data with the lognormal variogram 
model. The exponent of the log value is then taken and 
multiplied by a correction factor greater than 1.0. The 
correction factor is calculated using the kriging variance of 
the log values and the log variogram. It is therefore important 
to note that the accuracy of the lognormal variogram model 
has a direct effect on the final estimate. If the sill of the 
lognormal variogram is under or over-estimated by X%, the 
estimate will also be under- or over-estimated by a similar 
amount. Ordinary kriging or pseudo-lognormal kriging do 
not suffer from this sensitivity to the variogram sill, but 
lognormal kriging is much less influenced by outlier values. 

 Therefore in conclusion, if lognormal variograms are 
robust and without significant zonal anisotropy (the 
semivariogram sill changes in different directions), and 
outliers are present in the distribution (as is often the case in 
precious metal orebodies), then lognormal kriging may be 
used. 

 From the experience of the authors it has been observed 
that the use of lognormal kriging when modelling a bench   
of gold grade control data into SMU size blocks will pro- 
vide the sharpest boundaries between what is clearly ore    
and waste. That is to say, there is less smoothing and ore 
outlines may be accurately defined. A general order of 
decreasing smoothing across such boundaries according to 
the chosen estimator may be defined as: 

IDW* >> ordinary kriging >> pseudo-lognormal kriging >> 
lognormal kriging 
* depending on power chosen 

 To establish the recoverable tonnes and grade within 
SMU size blocks for the whole orebody may be more 
difficult. Even if the orebody is adequately sampled, and 
robust variograms have been defined, the use of SMU size 
blocks may result in: 

— unacceptably high estimation variances for the block 
values 

— impractical computing overheads 
 An alternative approach is to use larger blocks that 
overcome the difficulties given above (so called bulk blocks). 
The selection of the block size is related to the sample 
spacing. From what we know of the regression effect and the 
volume variance relationship, kriged bulk block values can 
be expected to have a different distribution and lower 
variance than kriged SMU values. Consequently, a resource 
calculation based on bulk blocks may be expected to define   
a different estimate of tonnes and grade above a specific 
cutoff, than that which is actually recoverable using the 
SMU. 

 In order to be able to predict the recoverable tonnes      
and grade above a specific cutoff from bulk blocks, a 
technique has been defined that uses a recovery function to 
predict what is recoverable using a specific SMU size. This 
rationale proposed by David (1977) is the so called 
lognormal shortcut. 

 The lognormal shortcut uses the concept of SMUs within 
bulk kriged blocks that have the same lognormal grade 
distribution (similarly, the normal shortcut assumes a nor-
mal distribution). The mean of the distribution is the value   
of the bulk kriged block. The variance of the distribution is 
 

 dispersion variance, which is defined thus: 

 

σ2(SMU/Bulk Block) = σ2(point in bulk block) –  
     σ2(point in SMU) 
 

 The semivariogram model is used during the calcula- 
tion of the point variances for the bulk block and the SMU.  
Therefore, combining the kriging variance of the kriged bulk 
block with the dispersion variance and the kriged average 
grade, will represent the distribution of the SMUs within the 
bulk block. The probability is then calculated of the 
proportion of SMUs above the specified cutoff and the 
selective grade above this cutoff. Similarly the proportion 
and grade of waste material may also be realised. 

 The lognormal shortcut technique therefore uses a 
probabilistic estimate of the grade and proportion of SMUs 
above the specified cutoff to estimate the recoverable tonnes 
and grade.If the size of the SMU is changed a new dispersion 
variance may be calculated and the recoverable tonnes and 
grade at this new level of mining selectivity may be esti-
mated. For example the change in recoverable reserves may 
be investigated if it is proposed to change the size of mining 
equipment. 

 It must be remembered that it is usually the case that 
only bulk blocks inside or peripheral to the main ore zone 
will contain material that will be mined. Therefore in order 
to obtain a meaningful estimate of what is truly recoverable 
one must have an idea of which bulk blocks will form the 
mineable area, that is, the area that will be subject to grade 
control. 

 Therefore the selection of bulk blocks for use with the 
lognormal shortcut technique may be made by the subdi-
viding of the bulk block model, including, say, only those 
above a certain grade (0.5 g/t Au for example), or within a 
digitised envelope. 

 The lognormal shortcut estimate will provide a theo-
retical maximum recoverable tonnes and grade using the 
parameters that are provided (i.e., ideal selectivity). In 
practice the production of a mining operation will be some-
where between the bulk and selective estimate depending on 
the success achieved in the selective mining. In a carefully 
controlled mining operation the actual production will be 
much closer to the selective estimate than the bulk and may 
even equal it, depending upon the nature of the orebody. 

 Indicator kriging (Journel, 1982) is another method that 
may be used to estimate recoverable tonnes and grade. It is 
especially useful in addressing orebodies with complex 
distributions as the assignment of ore proportions above 
indicator grades is distribution independent. An indicator 
cutoff grade is chosen and all samples above this indicator 
are set to 1’s, and the grades below to 0’s. Semivariograms 
are calculated for the 0’s and 1’s and these are then kriged. 
The resulting block values represent the probability (or 
percentage) of that block that would be above the indicator 
cutoff grade and hence this represents the recoverable 
tonnage within a block. The grade of the portion of the  
block above the cutoff is the arithmetic mean of the sample 
grades within this indicator category. This procedure may be 
repeated at numerous indicator grades with proportions     
and average grade calculated for each indicator bin. This 
method has been refined by the use of nested (or relative) 
indicators where indicator values for a given cutoff are only 
defined for samples above the previous cutoff. If twenty 
indicators are defined to model the orebody, then twenty  
sets of variograms must be defined, and twenty kriging 
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operations completed. Consequently the time and computa-
tional overheads may be significant. 

 Other more elaborate methods for the estimation of 
recoverable tonnes and grade include disjunctive kriging 
(Marechal, 1975) and multigaussian kriging (Verly and 
Sullivan, 1985), which both involve the normalisation of 
sample data. Probability kriging (Kim et al., 1987) and rank 
order kriging (Francois-Bongarcon, 1986) are two further 
estimators that involve conversion of data to rank order 
transforms, that is, samples are sorted by increasing grade 
and assigned their respective cumulative frequencies. 

 

Reconciliation and the 
grade/tonnage relationship 

 

 It is possible to explain many reconciliation anomalies   
by the regression effect and the volume-variance relation-
ship. The classification of ore and waste during mining is 
sensitive to whether the cutoff grade is based on sample 
grades or on recoverable block grades. This is due to the 
regression effect and results in some real waste blocks being 
falsely classified as ore and some real ore blocks being 
discarded as waste. Therefore in order to improve this 
misclassification error, ore and waste should be classified 
according to recoverable block estimates. This will lead to    
a reduction in the variance of estimation and hence to less 
potential misclassification. 

 When attempting to reconcile exploration estimates with 
grade control estimates and finally with true head grades  
and production tonnages, it is important to understand the 
grade tonnage relationship. For example, considering a 
hypothetical orebody represented by a bulk kriged block 
model, if the tonnage estimates are plotted against the est-
imated grade for various cutoffs, the resulting curve is called 
a grade/tonnage diagram. This will illustrate the relation-
ship between tonnes and grade at different cutoffs. If a more 
selective estimate for the same deposit is plotted on the 
grade/tonnage diagram the resulting curve will be above the 
bulk block curve and will demonstrate the change in tonnes 
and grade estimated for each cutoff. With increasing 
selectivity tonnes may either decrease, stay the same or in-
crease, and grade will stay the same or more likely increase. 
Therefore a line joining a specific cutoff on the bulk curve to 
the same cutoff on the selective curve will indicate the 
direction of change in tonnes and grade with increasing 
selectivity for this cutoff. 

 For example at a high cutoff, both tonnes and grade    
may increase with greater selectivity while at a low cutoff 
the grade may rise while the tonnage falls. It is then pos- 
sible to plot on the same figure the estimates derived from 
comparable grade control data, either by manual allocation 
of blasthole assays or by kriging. In this way the difference 
between blasthole and SMU size estimates may be compared 
in order to ascertain the effective mining cutoff and these 
estimates may be reconciled with bulk and selective ex-
ploration models. Finally real production data may be plotted 
on the diagram in order to investigate how robust the models 
are and what level of selectivity is actually being achieved. 

 A thorough reconciliation in this manner, carried out 
using carefully calculated and at all times comparable data, 
may provide the following valuable information on the 
operation. 

(i) The selective resource model may (if required) be 
modified to reconcile with production data. Conse-
quently, optimisation may be carried out on a model 
 

 that accurately predicts the recoverable tonnes and grade. 

(ii) Grade control cutoffs and interpolation methods may    
be modified in order to arrive at a procedure that ac-
curately defines coherent ore zones using recoverable 
SMU block cutoffs, that is, the regression effect is 
minimised and misclassification errors are reduced. 

 It is of paramount importance to compare “ like with  
like”  when attempting to reconcile any aspect of a mining 
operation. The use of incomparable estimates and assump-
tions will result in spurious results. Therefore initial diffi-
culties in obtaining satisfactory reconciliation may require 
that all critical estimates and parameters are reviewed to 
account for possible error. Sampling bias is by far the 
greatest problem and can be investigated by reference to the 
final metallurgical balance of the operation. Where multiple 
pits are feeding a single mill, the processing of test parcels 
from each deposit may be required in order to investigate rec-
onciliation difficulties. The effort involved can be very 
worthwhile if it leads to the meaningful optimisation of    
each deposit and the imposition of relevant cutoff grades. 

 It is obviously preferable to carry out much of this    
work at the feasibility stage or early in the life of the de- 
posit. If this is done, correction may be made to the pit  
design before it becomes impractical to do so, and the 
wastage of ore by misclassification will be rapidly addressed. 
The following example presents a reconciliation study for a 
typical, shear zone hosted Western Australian, open pit gold 
mine. 

 
A Western Australian open pit gold mine 

 
Setting 
 Steeply dipping tabular gold deposit in greenstone hosted 
shear zone. 

 
Resource model 
 
Exploration data 370 reverse circulation drill-

holes sampled at 1 m inter-
vals. About 5000 samples. 
 

Software Geostat Systems International 
and Micromine. 
 

Statistics Lognormally distributed above 
a mineralisation indicator 
grade of 0.10 g/t Au. Mean 
grade above 0.1 g/t Au is 
1.33 g/t and Sichel mean is 
1.14 g/t Au. 
 

Semivariograms Lognormal semivariograms 
calculated for all data greater 
than 0.1 g/t Au. Nested 
spherical semivariogram mo-
dels defined for down plunge 
(-15˚ south), down dip (-80˚ 
west) and downhole (-60˚ east) 
directions. 
 

Kriged bulk block model Lognormally kriged block 
model using 10 m (N-S) by 
4 m (E-W) by 2.5 m (vertical) 
bulk blocks. Lognormal krig-
ing parameters:  
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 Co = 0.47 
C1 = 0.45 
C2 = 0.45 
rotation = 0, -80, 15 
a1 = 15 x 13 x 3 m 
a2 = 60 x 45 x 6.5 m 
All assays above 0.01 g/t Au 
used during estimation. Maxi-
mum number of samples used 
per block = 30 
 

Selective mining model Kriged bulk block model in-
vestigated by lognormal 
shortcut technique using a 
5 m (N-S) by 4 m (E-W) by 
2.5 m (vertical) SMU – with a 
calculated dispersion variance 
of 0.0731, and for bulk blocks 
>0.5 g/t Au. 

  
Grade control models 

  
Setting Bench 837.5 mRL blasthole 

data. 
 

Software Geostat Systems International 
and Micromine. 
 

Statistics Lognormally distributed 
above a mineralization 
indicator grade of 0.1 g/t Au. 
Mean grade above 0.1 g/t Au 
is 1.21 g/t Au and Sichel 
mean is 1.02 g/t Au. 
 

Semivariograms Lognormal semivariograms 
calculated using all data 
>0.1 g/t Au in N-S and E-W 
directions. 
 

Kriged grade control 
model 

Lognormally kriged using 
10 m by 4 m by 2.5 m blocks         
and 5 m by 4 m by 2.5 m  
blocks to produce two 
models. Lognormal kriging 
param- eters: 
Co = 0.45 
C1 = 0.45 
C2 = 0.30 
rotation = 90, 0, 0 
a1 = 12 x 5 x 5 m 
a2 = 40 x 14 x 18 m 
All assays above 0.01 g/t Au 
used during estimation, maxi-
mum number of samples used 
per block = 15. 
 

 
 
 

Reconciliation 
 The bulk and selective resource models were screened    
for topography and by the existing pit outline to determine 
mined and unmined estimates. Figure 6 displays a combined 
grade tonnage diagram for the total bulk and selective re-
source models and for material within and outside the pit 
limits at the time of the study. The bulk and selective curves 
demonstrate the relationship between recoverable tonnes and 
 

 grade at various cutoffs for increasing selectivity. For ex-
ample at a 0.8 g/t Au cutoff the grade increases and the 
tonnage decreases with greater selectivity, while at a 2.0 g/t 
Au cutoff the grade and tonnage increase for the same 
improvement in selectivity. Therefore there is a particular 
cutoff for each pair of curves where increasing selectivity 
results in improvement in the grade with no significant 
change in the tonnage mined, that is, for the total resource 
model, at a cutoff of between 1.0 and 1.5 g/t Au. Also  
plotted on Figure 6 is the actual production estimate, 
comprising the mill throughput tonnage and the head grade, 
of material mined from within the existing pit outline. This 
point lies very close to the inpit bulk resource curve at 
slightly above the 1.0 g/t Au cutoff. Ore selection at the 
operation was made by manual contouring of blasthole assays 
using a nominal 0.9 g/t Au cutoff. The position of the actual 
production point in Figure 6 demonstrates that the operational 
procedure was approximately equivalent to an effective 1.0 
g/t Au resource model bulk block cutoff. The proximity of 
actual production to the bulk block curve indicates that 
mining selectivity at the operation was poor. It is known   
that problems were encountered with post-blasting dilution. 
The 0.8 g/t Au cutoff on the selective resource model curve 
demonstrates that if the selective mining procedures had  
been more successful a significant improvement in head 
grade would have been achieved. 

 In order to investigate the improvement in selectivity 
obtained from the use of closely spaced grade control in-
formation, two lognormally kriged models of grade control 
data from a single bench were constructed, using bulk (10    
x 4 x 2.5 m) and SMU (5 x 4 x 2.5 m) sized blocks re-
spectively. Figure 7 displays the grade tonnage curves for 
these models together with the curves for the same bench of 
the bulk and selective resource model. The latter two models 
were constrained by the area of the grade control sampling   
in order to make all the models comparable. 

 The bulk block grade control model curve sits above    
the bulk block resource model curve and therefore dem-
onstrates, as one would expect, that the additional grade 
control data has improved the potential selectivity. The SMU 
size block grade control model curve sits above the bulk 
block grade control model and is positioned very close to the 
selective resource model curve. This demonstrates the 
improved selectivity of ore classification using the SMU 
sized blocks and the successful simulation of the recover- 
able tonnes and grade on this bench by the selective resource 
model, that is, if ore selection was made on the basis of the 
log kriged grade control data using SMU size blocks, and 
blasting dilution was minimised, the actual production would 
be close to this curve. The mill throughput estimate for 
material mined from this bench was not available, but if the 
relationship observed for the entire pit production is valid   
for this bench, then it would be expected to fall close to the 
bulk block resource or grade control models at an effective 
cutoff of approximately 1.0 g/t Au. 

 

Conclusions 
 

 Although the above study is relatively concise (and 
somewhat academic in the context of this deposit) it 
demonstrates the ability of these techniques to provide the 
following benefits: 

— production estimates may be reconciled with the kriged 
recoverable resource model and grade control outlines; 

— the confidence is increased in short, medium and long 
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FIGURE 6  Grade/tonnage plot for a Western Australian open-pit gold mine showing total, in-pit and out-of-pit selective and bulk resources. 
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FIGURE 7  Grade/tonnage plot for a Western Australian open-pit gold mine showing the exploration and grade control models for the bench 827.5 m RL. 
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 term ore reserves for the purpose of production and 
financial planning; 

— effective operational cutoffs may be set on grades es-
timated for recoverable mining units; and 

— the optimisation and understanding of the operation may 
be considerably improved. 

 Grade control may be much improved and the opera-   
tion successfully optimised by applying careful considera- 
tion to the issues discussed in this paper. An understanding  
of the grade/tonnage relationship and the roles of the re-
gression effect and the volume variance relationship will 
considerably aid geologists and mining engineers in the 
calculation of recoverable tonnes and grade and in recon-
ciling estimates with actual production. Hopefully, such a 
rationale will be followed during feasibility and/or early in 
the production phase of the operation. 

 
Acknowledgements 

 
 Christine Standing is acknowledged for her work on the 
example gold deposit reconciliation and Sharyn Williams for 
her typing and editing. 
 
 
 

 References 
 
DAVID M., 1977. Geostatistical Ore Reserve Estimation.  

Elsevier, Amsterdam, 364 pp. 
KIM Y.C., ZHAO Y.X. & RODITIS I.S., 1987. Perform- 

ance comparison of local recoverable reserve estimates 
using different kriging techniques. In APCOM Pro-
ceedings, Volume 3: Geostatistics, Johannesburg. 

JOURNEL A.G., 1982.  The indicator approach to estima-
tion of spatial distributions. In Proceedings of the 17th 
APCOM Symposium, pp. 793-806. 

FRANCOIS-BONGARCON D., 1986.  Rank Order Kriging 
(R.O.K): A powerful, robust simple alternative to lin-   
ear kriging. In Proceedings of CIM Symposium on ore 
reserve estimation, Quebec, 1986, pp. 313-322. 

MARECHAL A., 1975. Forecasting a grade tonnage dis-
tribution for various panel sizes.  In Proceedings of the 
13th APCOM Symposium, Clausthal. 

VERLY G. & SULLIVAN J., 1985. Multigaussian and 
probability krigings – application to the Jerritt Canyon 
deposit. Mining Engineering 37. 

 

 


