Aula 15: Compactos

Universidade de São Paulo

São Carlos - SP, Brasil

 1^o Semestre de 2023 - Curso de Topologia

Definição 1

Seja (X, τ) um espaço topológico. Dizemos que \mathcal{A} é uma cobertura (ou recobrimento) de X se $\bigcup_{A \in \mathcal{A}} A = X$. Neste caso, chamamos \mathcal{A} de cobertura aberta se os elementos de \mathcal{A} são abertos.

Definição 2

Dizemos que o espaço topológico (X,τ) é um espaço compacto se para toda cobertura aberta \mathcal{A} de X existe uma subcobertura \mathcal{A}' (i.e., $\mathcal{A}'\subset\mathcal{A}$ e $\bigcup_{A\in\mathcal{A}'}A=X$) finita.

Exemplo 3

Qualquer espaço finito é compacto.

Vamos apresentar agora um conceito que vai nos ajudar a mostrar que certos espaços são compactos.

Definição 4

Seja (X, τ) um espaço topológico. Dizemos que \mathcal{B} é uma sub-base para (X, τ) se $\{B_1 \cap \cdots \cap B_n : B_1, \ldots, B_n \in \mathcal{B}, n \in \mathbb{N}\}$ é uma base para X.

Um pouco sobre teoria de conjuntos

Relação de ordem

Seja X um conjunto não-vazio. Uma relação de ordem parcial em X é uma relação \leq com as seguintes propriedades:

(Reflexiva)
$$x \le x$$
 para todo $x \in X$
(Transitiva) Se $x \le y$ e $y \le z$, então $x \le z$
(Antissimétrica) Se $x \le y$ e $y \le x$, então $x = y$
Se além disso

(Total)
$$x \le y$$
 ou $y \le x$ para quaisquer $x, y \in X$

então \leq é dita uma relação de ordem total e X é dito totalmente ordenado.

Um pouco sobre teoria de conjuntos

Definição 5

- ▶ Se X é parcialmente ordenado por \leq , um elemento $x \in X$ é dito maximal (minimal) se, e só se, $x \leq y$ ($y \leq x$) implica x = y.
- ▶ Se $A \subset X$, então um elemento $x \in X$ é dito limitante superior (inferior) para A se, e só se, $a \le x$ ($x \le a$) para todo $a \in A$.

Lema de Zorn

Se X é um conjunto parcialmente ordenado e todo subconjunto totalmente ordenado de X tem um limitante superior, então X tem um elemento maximal.

O próximo resultado é útil para mostrar que certos espaços são compactos e será bastante útil na prova do Teorema de Tychonoff (produtos de compacto é compacto).

Proposição 6 (Lema da sub-base de Alexander)

Sejam (X, τ) espaço topológico e $\mathcal B$ uma sub-base para X. Se toda cobertura para X feita por elementos de $\mathcal B$ admite subcobertura finita, então X é compacto.

Demonstração. Suponha que X não seja compacto.

Considere $\mathcal C$ a família de todas as coberturas abertas para X que não possuam subcobertura finita e, sobre $\mathcal C$, a relação de ordem dada pela inclusão

$$C_1 \leq C_2$$
 se " $A \in C_1$ implica $A \in C_2$ ".

Note que, se $S \subset C$ é um subconjunto totalmente ordenado, então $\bigcup_{S \in S} S \in C$ (ver exercício) é um limitante superior para S.

Desta forma, pelo Lema de Zorn, podemos tomar $C \in \mathcal{C}$ elemento maximal.

Por hipótese, temos que $C \cap \mathcal{B}$ não é uma cobertura (pois C não admite subcobertura finita).

Então existe $x \in X$ tal que $x \notin B$ para todo $B \in C \cap B$.

Mas, como C é cobertura, existe $A \in C$ tal que $x \in A$.

Como \mathcal{B} é sub-base, existem $B_1,\ldots,B_n\in\mathcal{B}$ tais que

$$x \in B_1 \cap \cdots \cap B_n \subset A$$
.

Como x não é coberto por $C \cap \mathcal{B}$, temos que cada $B_i \notin C \cap \mathcal{B}$. Ou seja, cada $B_i \notin C$.

Pela maximalidade de C, temos que, para cada $i=1,\ldots,n,\ C\cup\{B_i\}$ admite subcobertura finita, digamos $\{B_i\}\cup C_i$, onde $C_i\subset C$ é finito.

Vamos mostrar que $\{A\} \cup C_1 \cup \cdots \cup C_n$ é uma cobertura para X (o que é uma contradição, já que tal família seria uma subcobertura finita de C).

De fato, seja $y \in X$. Se $y \in A$, nada temos que mostrar. Mas, se $y \notin A$, então existe j tal que $y \notin B_j$ (pois $\bigcap_{i=1}^n B_i \subset A$). Como $\{B_j\} \cup C_j$ é cobertura, algum aberto de C_j contém y.

Com o Lema da sub-base, podemos provar de maneira fácil o seguinte resultado.

Proposição 7

O intervalo [0,1] com a topologia usual é compacto.

Demonstração. Note que $\mathcal{B}=\{[0,b):b\in(0,1]\}\cup\{(a,1]:a\in[0,1)\}$ é uma sub-base para [0,1]. Seja $\mathcal{C}\subset\mathcal{B}$ uma cobertura para [0,1]. Seja

$$\beta = \sup\{b \in [0,1] : [0,b) \in \mathcal{C}\}.$$

Note que o próprio eta não é coberto por algum conjunto da forma $[0,b)\in\mathcal{C}$.

Assim, existe a tal que $(a, 1] \in C$ e $\beta \in (a, 1]$.

Seja b tal que $a < b < \beta$ e tal que $[0, b) \in \mathcal{C}$ (existe por β ser supremo).

Note que $[0, b) \cup (a, 1] = [0, 1]$.

Ao contrário do intervalo [0,1] ser compacto, a reta toda não é.

Exemplo 8

Com a topologia usual, \mathbb{R} não é compacto.

Para ver isso basta tomar a cobertura $\{(-n, n) : n \in \mathbb{N}\}$.

Como verificar a compacidade pela definição muitas vezes é trabalhoso, o seguinte resultado é bem prático.

Proposição 9

Seja (X, τ) espaço compacto e seja $F \subset X$ fechado. Então F é compacto.

Demonstração. Seja \mathcal{A} uma cobertura aberta para F e, para cada $A \in \mathcal{A}$, seja A^* aberto em X tal que $A^* \cap F = A$. Seja $A^* = \{A^* : A \in \mathcal{A}\}$. Note que $A^* \cup \{X \setminus F\}$ é uma cobertura aberta para X. Como X é compacto, tal cobertura admite subcobertura finita \mathcal{B} . Note, então que

$$\widetilde{\mathcal{A}} = \{B \cap F : B \in \mathcal{B} \setminus \{X \setminus F\}\} \subset \mathcal{A}$$

é uma subcobertura finita de F.

Vamos provar que se um espaço é de Hausdorff, então ele separa pontos de compactos (isto será melhorado - separar compactos).

Proposição 10

Seja (X, τ) um espaço de Hausdorff. Sejam $x \in X$ e $K \subset X$ compacto tal que $x \notin K$. Então existem A e B abertos tais que $x \in A$, $K \subset B$ e $A \cap B = \emptyset$.

Demonstração. Para cada $y \in K$, sejam A_y e B_y abertos tais que $x \in A_y$, $y \in B_y$ e $A_y \cap B_y = \emptyset$. Como K é compacto, existem $y_1, \ldots, y_n \in K$ tais que $\bigcup_{i=1}^n B_{y_i} \supset K$. Agora, sejam

$$A = \bigcap_{i=1}^n A_{y_i}$$
 e $B = \bigcup_{i=1}^n B_{y_i}$.

Note que ambos são abertos, $x \in A$ e $F \subset B$.

Vamos mostrar que $A \cap B = \emptyset$.

Suponha, por contradição, que $z \in A \cap B$. Seja i tal que $z \in B_{y_i}$. Note que, assim, $z \in A_{y_i}$, que é contradição com o fato que $A_{y_i} \cap B_{y_i} = \emptyset$.

Topologia

Em espaços de Hausdorff, os compactos são fechados.

Proposição 11

Sejam (X, τ) espaço de Hausdorff e $F \subset X$ compacto. Então F é fechado.

Demonstração. Pelo resultado anterior, temos em particular que se $x \notin F$, existe A aberto tal que $x \in A \subset X \backslash F$.

Corolário 12

Sejam (X, τ) um espaço compacto de Hausdorff e $F \subset X$ um conjunto. Então, F é fechado se, e somente se, F é compacto.

Em espaços de Hausdorff compactos disjuntos podem ser separados por abertos.

Proposição 13

Seja (X, τ) espaço Hausdorff. Sejam $F, G \subset X$ compactos disjuntos. Então existem A, B abertos disjuntos tais que $F \subset A$ e $G \subset B$

Demonstração. Sejam $F,G\subset X$ compactos disjuntos. Pela Proposição 10, para cada $y\in G$, existem A_y,B_y abertos tais que $A_y\supset F,y\in B_y$ e $A_y\cap B_y=\emptyset$. Como G é compacto, existem $y_1,y_2,\ldots,y_n\in G$ tais que $\bigcup_{i=1}^n B_{y_i}\supset G$. Sejam

$$A = \bigcap_{i=1}^n A_{y_i}$$
 e $B = \bigcup_{i=1}^n B_{y_i}$.

Note que A e B são abertos, $F \subset A$, $G \subset B$ e $A \cap B = \emptyset$.

Com isso, temos que em espaços compactos, basta a propriedade de Hausdorff para termos a normalidade.

Lembrar: Normal = $T_1 + T_4$ e $T_2 \Rightarrow T_1$

Proposição 14

Todo espaço compacto de Hausdorff é normal.

Demonstração. Basta notar que fechados são compactos e aplicar a Proposição 13.

Outro resultado importante sobre a compacidade é que ela é preservada pela continuidade.

Proposição 15

Sejam $(X, \tau), (Y, \sigma)$ espaços topológicos onde X é compacto e $f: X \to Y$ uma função contínua e sobrejetora. Então Y é compacto.

Demonstração. Seja \mathcal{A} uma cobertura aberta para Y. Note que $\mathcal{B} = \{f^{-1}(A) : A \in \mathcal{A}\}$ é uma cobertura aberta para X. Então, existe \mathcal{B}' subcobertura finita. Assim, se para cada $B \in \mathcal{B}'$ tomamos $A_B \in \mathcal{A}$ tal que $B = f^{-1}(A_B)$, temos que $\{A_B \in \mathcal{A} : B \in \mathcal{B}'\}$ é uma subcobertura finita para Y. De fato:

$$Y = f(X) = f\left(\bigcup_{B \in \mathcal{B}'} B\right) = \bigcup_{B \in \mathcal{B}'} f(B) = \bigcup_{B \in \mathcal{B}'} A_B.$$

Corolário 16

Sejam (X,τ) e (Y,σ) espaços topológicos, sendo Y espaço de Hausdorff, e seja $f:X\to Y$ uma função contínua. Se $F\subset X$ é compacto, então f(F) é compacto e, portanto, fechado.

Demonstração. A compacidade segue da Proposição anterior (não precisa da hipótese Y ser Hausdorff) e o fato de ser fechado da Proposição 11.

Corolário 17

Sejam (X,τ) e (Y,σ) espaços de Hausdorff, sendo X compacto, e seja $f:X\to Y$ uma função contínua e bijetora. Então, f é um homeomorfismo.

Demonstração. Basta usar o resultado que se imagem inversa de fechado é fechado, então a função é contínua.

Compactos - versão local

Definição 18

Dizemos que o espaço topológico (X, τ) é localmente compacto se todo $x \in X$ admite um sistema fundamental de vizinhanças compactas.

Para espaços de Hausdorff, a propriedade global implica na local.

Lembrar: Regular = $T_1 + T_3$

Proposição 19

Se (X, τ) é um espaço compacto de Hausdorff, então X é localmente compacto.

Demonstração. Note que X é regular (pois é normal pela Proposição 14). Portanto, todo $x \in X$ admite um sistema fundamental de vizinhanças fechadas (equivalência de T_3 , Corolário 18 da Aula 4), logo, compactas (Proposição 9 de hoje).

Compactos - versão local

Já a propriedade local não implica na global.

Exemplo 20

Com a topologia usual, \mathbb{R} é localmente compacto, pois cada [a,b] é compacto.

Vimos que, para espaços de Hausdorff, a compacidade implica na normalidade. Para espaços localmente compactos, conseguimos garantir a propriedade de ser completamente regular.

Lembrar: Dizemos que (X,τ) é $T_{3\frac{1}{2}}$ se, para todo $x\in X$ e $F\subset X$ fechado tal que $x\notin F$ existir $f:X\to [0,1]$ contínua, tal que f(x)=0 e f(y)=1, para todo $y\in F$. No caso que (X,τ) também é T_1 , dizemos que (X,τ) é um espaço completamente regular.

Compactos - versão local

Proposição 21

Seja (X, τ) um espaço localmente compacto de Hausdorff. Então (X, τ) é completamente regular.

Demonstração. Sejam $x \in X$ e $F \subset X$ fechado tais que $x \notin F$. Então $x \in X \setminus F$, que é aberto. Logo, existe V vizinhança compacta de x, tal que $V \subset X \setminus F$ (usando compacidade local).

Seja A aberto tal que $x \in A \subset V$. Note que $V \setminus A$ é fechado (em V). Como V é compacto e Hausdorff, V é completamente regular (ele é normal pela Proposição 14, todo normal é completamente regular por Urysohn). Então existe $g: V \to [0,1]$ contínua tal que g(x) = 0 e $g(V \setminus A) = \{1\}$. Defina $f: X \to [0,1]$ como

$$f(a) = \begin{cases} g(a), & a \in V \\ 1, & a \notin V \end{cases}$$

Note que f é a função desejada (exercício a seguir).

- 1. Mostre que se S é uma cadeia de coberturas para um espaço, cada uma delas sem subcobertura finita, então $\bigcup_{S \in S} S$ também é uma cobertura sem subcobertura finita.
- 2. Mostre, sem usar o Lema da Sub-base, que a seguinte afirmação é equivalente a ser compacto: "toda cobertura formada por abertos básicos admite subcobertura finita".
- 3. Seja (X, τ) um espaço topológico. Seja $\mathcal B$ uma base para (X, τ) . Mostre que $\mathcal B$ é um recobrimento aberto para (X, τ) .
- 4. Mostre que a reta de Sorgenfrey não é compacta.
- 5. Caracterize os compactos discretos.
- 6. Dizemos que uma família de subconjuntos \mathcal{F} satisfaz a propriedade da intersecção finita (p.i.f.) se, para todo $F \subset \mathcal{F}$ finito, temos que $\bigcap_{G \in F} G \neq \emptyset$. Seja (X, τ) espaço topológico. Mostre que "X ser compacto" é equivalente a "toda \mathcal{F} família de fechados de X com p.i.f., é tal que $\bigcap_{G \in \mathcal{F}} G \neq \emptyset$ ".
- 7. Mostre que a função f da Proposição 21 é a função desejada.
- 8. Mostre que compacidade é um invariante topológico (isto é, é preservada via homeomorfismos).

- 9. Sejam $a, b \in \mathbb{R}$. Mostre que [a, b] é compacto (na topologia usual).
- 10. Seja (X,τ) espaço de Hausdorff. Mostre que (X,τ) é localmente compacto se, e somente se, para todo $x \in X$ existe V aberto tal que $x \in V$ e \overline{V} é compacto.
- 11. Este é um roteiro para mostrar diretamente que [0,1] é compacto (sem usar o Lema da sub-base). Considere A uma cobertura feita por abertos básicos. Considere

$$C = \left\{ x \in [0,1] : \exists \mathcal{A}' \subset \mathcal{A} \text{ finito, com } \bigcup_{A \in \mathcal{A}'} A \supset [0,x] \right\}$$

- Mostre que existe $\alpha = \sup C$.
- Mostre que $\alpha = 1$.
- (c) Encontre a subcobertura finita.
- 12. Mostre que [0,1] não é homeomorfo a \mathbb{R} .
- 13. Seja (X, d) espaço métrico. Mostre que se $F \subset X$ é compacto, então F é fechado e limitado (um conjunto A é dito limitado se existe $r \in \mathbb{R}_{>0}$ tal que $A \subset B_r(x)$ para algum $x \in X$).
- 14. Seja (X, τ) Hausdorff. Mostre que X é localmente compacto se, e somente se, para cada $x \in X$ existe \mathcal{V} sistema fundamental de vizinhanças para x tal que \overline{V} é compacto para cada $V \in \mathcal{V}$.

- 15. Seja (X, τ) de Hausdorff. Mostre que X é localmente compacto se, para todo $x \in X$ existe K vizinhança compacta de x.
- 16. Mostre que a reta de Sorgenfrey não é localmente compacta.
- 17. Seja (X,τ) espaço de Hausdorff. Dizemos que (Y,σ) espaço de Hausdorff é uma compactificação de X se X é um subsespaço denso de Y e (Y,σ) é compacto. Dizemos que uma compactificação (Y,σ) é uma compactificação de Alexandroff se $Y=X\cup\{x\}$ onde $x\notin X$.
 - (a) Seja (X, τ) espaço topológico de Hausdorff que admite uma compactificação. Mostre que (X, τ) é completamente regular.
 - (b) Considere (X, τ) espaço localmente compacto. Defina $Y = X \cup \{x\}$ onde $x \notin X$. Defina σ topologia sobre Y de forma que $\tau \subset \sigma$ e todo $\{x\} \cup (X \setminus K) \in \sigma$ onde $K \subset X$ é compacto. Mostre que (Y, σ) é uma compactificação de Alexandroff de X.
 - (c) Seja (X, τ) espaço de Hausdorff e suponha que exista (Y, σ) compactificação de Alexandroff para X. Mostre que (X, τ) é localmente compacto.
 - (d) Conclua que um espaço de Hausdorff é localmente compacto se, e somente se, admite uma compactificação de Alexandroff.

- 18. Considere \mathcal{F} o conjunto de todas as funções $f:\mathbb{R}\to\mathbb{R}$ (não necessariamente contínuas. Considere sobre \mathcal{F} a topologia produto (induzida por $\prod_{x\in\mathbb{R}}\mathbb{R}$). Chama-se de suporte de uma função f o conjunto $\overline{\{x\in\mathbb{R}:f(x)\neq 0\}}$. Mostre que o conjunto das funções contínuas de suporte compacto é denso em \mathcal{F} .
- 19. Sejam (X, d_X) e (Y, d_Y) espaços métricos, e $f: (X, d_X) \to (Y, d_Y)$ localmente Lipschitziana (i.e., para cada $x \in X$, existem $r_X > 0$ e $C_X > 0$ tais que $d_Y(f(a), f(b)) \le C_X d_X(a, b)$ para quaisquer $a, b \in B(x, r_X)$). Dado $K \subset X$ compacto, mostre que existe $\delta > 0$ tal que $f \mid_{K_\delta}$ é Lipschitziana. Aqui

$$K_{\delta} = \{x \in X : d_X(x,K) < \delta\}.$$