Universidade de São Paulo Instituto de Física de São Carlos 7600023 - Termodinâmica e Física Estatística - 2023-2

Prof. Leonardo Paulo Maia

Lista 02

1. Mostre que, para qualquer fluido homogêneo, a capacidade térmica a volume constante,

$$C_V = \frac{dQ_V}{dT},$$

corresponde a

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V.$$

- 2. Mostre que $C_P = C_V + nR$ para um gás ideal.
- 3. Mostre que a adiabata que passa por um dado ponto do diagrama PV de um gás ideal sempre é mais íngreme do que a isoterma que passa pelo mesmo ponto.
 - 4. Mostre que o trabalho adiabático reversível realizado sobre um gás ideal é

$$W = \frac{\Delta(PV)}{\gamma - 1},$$

onde $\gamma \equiv C_P/C_V$ é o coeficiente adiabático do gás.

- 5. Escolha algumas máquinas térmicas caracterizadas por ciclos termodinâmicos reversíveis em um diagrama PV e calcule seus rendimentos.
- 6. A presença de duas fontes térmicas, uma "quente" à temperatura T_1 , e a outra, "fria", à temperatura T_2 , com $T_1 > T_2$, é condição indispensável para a operação de uma máquina térmica. Enquanto um refrigerador é tão mais eficiente quanto mais próximas entre si forem T_1 e T_2 , o oposto vale para um motor. Um engenheiro tem à sua disposição um motor que opera entre 300 K e 400 K e um outro que opera entre 350 K e 450 K e diz para seu amigo, que é um físico competente, "tanto faz, o gradiente de temperatura é igual". O físico concorda ou discorda do engenheiro?
- 7. Qual é a máxima eficiência de um motor térmico operando entre dois reservatórios de temperaturas 20° C e 500° C? Qual é a eficiência de um motor real que opera entra essas mesmas temperaturas realizando 120 J de trabalho enquanto descarta 180 J à fonte fria em cada ciclo de operação?

- 8. Determine o trabalho necessário para extrair uma caloria do compartimento interno de um refrigerador reversível, mantido a 8° C, enquanto descarta-se calor no ambiente externo, a 20° C.
- 9. O rendimento de um refrigerador é denominado, na verdade, **coeficiente de desempenho** (COP coefficient of performance), e é definido de forma distinta de um motor, $\boxed{\text{COP} \equiv Q_2/W}$, onde Q_2 é calor extraído da fonte fria e W é o necessário trabalho externo. Qual é o COP de um refrigerador que consome 3 kW de potência elétrica enquanto extrai calor da fonte fria a uma taxa de 40 kW? Qual é o máximo COP de um refrigerador operando entre 25° C e 40° C?
- 10. Um ar condicionado ideal absorve calor Q_2 de uma casa à temperatura T_2 e descarta calor Q_1 no ambiente externo de temperatura T_1 , com $T_1 > T_2$, às custas de uma quantidade E de energia elétrica. No mesmo ciclo temporal de operação do ar condicionado, um calor $Q = A(T_1 T_2)$, onde A é uma constante positiva, invade a casa vindo do ambiente (lei de Newton).
 - a. No estado estacionário, determine T_2 em termos de A, T_1 e E.
 - b. O sistema é controlado por um termostato para manter sempre a casa a 20° C. A demanda energética do aparelho depende da temperatura externa, mas há um limite para o fornecimento desse trabalho elétrico. Quando o ambiente está a 30° C, o sistema atende o que dele se pede consumindo 30% da sua "alimentação limite". Qual é a máxima temperatura ambiente na qual é possível o controle desejado?
- 11. Resfriamento radiativo Um motor de Carnot realiza trabalho a uma potência P operando entre uma fonte quente à temperatura T_1 e uma fonte fria à temperatura T_2 . Mas a fonte fria é um corpo finito, que mantém sua temperatura constante (apesar de receber descarte térmico) emitindo radiação eletromagnética a uma taxa $\sigma_B A(T_2)^4$, onde σ_B é uma constante universal e A é a área superficial do corpo.
 - a. Determine P em termos de σ_B , A, T_1 e T_2 .
 - b. Pensando na área A como uma função de T_2 (todas as demais variáveis mantidas constantes), qual é a menor área que o corpo frio pode apresentar para viabilizar a operação do motor à potência P?
- 12. Motor térmico com 3 reservatórios Em um ciclo, um motor térmico reversível extrai calor Q_1 de uma fonte quente à temperatura T_1 e calor aQ_1 (a>0) de uma segunda fonte quente, à temperatura T_3 , $T_3 \leq T_1$. Enquanto isso, descarta calor Q_2 em uma fonte fria à temperatura T_2 . Usando apenas as constantes a, T_1 , T_2 e T_3 , determine a eficiência dessa máquina térmica, definida como o quociente entre o trabalho total realizado pelo sistema e o calor total extraído das fontes quentes. Mostre também que tanto $a \to 0$ quanto $T_3 \to T_1$ levam a um resultado conhecido. DICA: esse ciclo de 3 reservatórios pode ser decomposto em dois ciclos de Carnot.

- 13. O teorema de Carnot estabelece que o rendimento de qualquer motor térmico operando entre dadas duas fontes térmicas (de temperaturas distintas) é limitado pelo rendimento de um motor de Carnot, reversível. Mas a demonstração é baseada na definição de rendimento para um motor, que não é universal para qualquer máquina térmica. Adapte os argumentos da demonstração do teorema de Carnot para demonstrar que ele também é válido (no sentido de máquinas reversíveis exibirem desempenhos ótimos) para refrigeradores e bombas térmicas (ver material da monitoria nesse tema), onde desempenho é medido pelo COP (ver exercício 8 desta lista) e por Q_1/W , respectivamente.
- 14. Como se estabelece a desigualdade de Clausius quando um sistema real, ao final de um ciclo de operação, extrai calor Q_1 de um reservatório à temperatura T_1 , extrai calor Q_2 de um reservatório à temperatura T_2 e cede calor Q_3 a um reservatório à temperatura T_3 ?
- 15. Uma corrente elétrica de $200\,\mathrm{mA}$ passa por um fio de resistência $20\,\Omega$ por 3 segundos. A temperatura do resistor permanece constante em $25\,\mathrm{^oC}$. Qual é a variação da entropia do resistor? Qual é a variação da entropia do resto do universo?
- 16. Custo entrópico de um banho Você misturou 50 L de água quente a 55° C a 25 L de água fria a 10° C em sua banheira para ter um banho agradável. Qual foi o aumento da entropia do universo? O calor específico da água é 1 cal/g ·° C e sua densidade, 1 g/cm³.
- 17. Custo entrópico da morte Estime a variação da entropia do universo quando um ser humano (água, essencialmente) morre. Por favor, imagine a temperatura ambiente inferior à temperatura de um ser humano vivo.
- 18. Reservatório como um limite Já estudamos bem o problema em que dois corpos finitos, de capacidades térmicas C_1 e C_2 , inicialmente em temperaturas T_1 e T_2 , respectivamente, são postos em contato térmico e alcançam uma temperatura comum T_f de equilíbrio, com um crescimento ΔS da entropia total desse sistema composto. Defina $\lambda \equiv C_1/C_2$ e troque C_2 por λ nas expressões desse problema. Note que $C_2 \to \infty$ corresponde a $\lambda \to 0$, de modo que podemos tratar λ perturbativamente $\lambda << 1$ para estudar o caso em que o corpo 2 é um reservatório térmico. Se preciso for, use $(1+x)^{-1} \approx 1-x$ e $\log(1+x) \approx x$ quando x << 1 para obter uma expressão para ΔS quando $\lambda << 1$ que deve ter alguma relação com a resposta do exercício anterior.
- 19. No problema clássico do processo de Joule (expansão livre), a variação da entropia é usualmente calculada mediante a análise de uma expansão isotérmica reversível cujos estados inicial e final coincidem com aqueles do processo irreversível em questão. Mas qualquer processo reversível com as mesmas extremidades cumpriria o mesmo papel. Confirme o resultado clássico com dois outros caminhos reversíveis: primeiro um caminho isobárico+isovolumétrico, nessa ordem, depois na ordem oposta.

Gabarito parcial

- 6. Discorda, mas não posso dizer o porquê, para não estragar o exercício.
- 7. 62%; 40%
- 8. $0.043 \, \text{cal}$
- 9. 13.34; 19.88
- $10. \approx 38.3^{\circ} \,\mathrm{C}$

11.

- a. resposta parcial: $P(T_1,T_2)=(T_1-T_2)f(T_2)$ para alguma função f de T_2 (mas não de T_1)
- b. A menor área ocorre quando $T_2 = (3/4)T_1$.

12.

$$1 - \frac{T_2}{1+a} \left(\frac{1}{T_1} + \frac{a}{T_3} \right)$$

- 15. Variação da entropia do resto do universo: $8\cdot 10^{-3}\,\mathrm{J/K}$
- 16. $\approx 179.4 \,\mathrm{cal/K}$