4.5 Parametric Spectral Estimation

The methods of the previous section lead to what is generally referred to as non-
parametric spectral estimators because no assumption is made about the parametric
form of the spectral density. In Property 4.4, we exhibited the spectrum of an ARMA
process and we might consider basing a spectral estimator on this function, substitut-
ing the parameter estimates from an ARMA(p, ¢) fit on the data into the formula for
the spectral density fy(w) given in (4.23). Such an estimator is called a parametric
spectral estimator. For convenience, a parametric spectral estimator is obtained by
fitting an AR(p) to the data, where the order p is determined by one of the model
selection criteria, such as AIC, AICc, and BIC, defined in (2.15)—(2.17). Parametric
autoregressive spectral estimators will often have superior resolution in problems
when several closely spaced narrow spectral peaks are present and are preferred
by engineers for a broad variety of problems (see Kay, 1988). The development of
autoregressive spectral estimators has been summarized by Parzen (1983).

If ¢§ s (132, o q§,, and 6}% are the estimates from an AR(p) fit to x;, then based on
Property 4.4, a parametric spectral estimate of fy(w) is attained by substituting these
estimates into (4.23), that is,
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The asymptotic distribution of the autoregressive spectral estimator has been obtained
by Berk (1974) under the conditions{ p— oo, p’/ln—0asp, n— oo,lwhich may be
too severe for most applications. The limiting results imply a confidence interval of

the form N -
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where C = 4/2p/n and z,, is the ordinate corresponding to the upper @ /2 probability
of the standard normal distribution. If the sampling distribution is to be checked, we
suggest applying [the bootstrap estimator{to get the sampling distribution of fre(w)
using a procedure similar to the one used for p = 1 in Example 3.36. An alternative
for higher order autoregressive series is to put the AR(p) in state-space form and use
the bootstrap procedure discussed in Section 6.7.

An interesting fact about rational spectra of the form (4.23) is that any spectral
density can be approximated, arbitrarily close, by the spectrum of an AR process.

(4.84)




Property 4.7 AR Spectral Approximation
Let g(w) be the spectral density of a stationary process. Then, given € > 0, there
is a time series with the representation
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where w; is white noise with variance oﬁ., such that
| fi(w)—g(w)| <€ forall we[-1/2,1/2].

Moreover, p is finite and the roots of ¢(z) = 1 — Z:] ok are outside the unit circle.

Example 4.18 Autoregressive Spectral Estimator for SOI
Consider obtaining results comparable to the nonparametric estimators shown in
Figure 4.7 for the SOI series. Fitting successively higher order AR(p) models for
p=12,...,30 yields a minimum BIC and a minimum as shown
in Figure 4.13. We can see from Figure 4.13 that BIC is very definite about which
model it chooses; that is, the minimum BIC is very distinct. On the other hand, it
is not clear what is going to happen with AIC; that is, the minimum is not so clear,
and there is some concern that AIC will start decreasing after p = 30. Minimum

AlCc selects the p = 15 model, but suffers from the same uncertainty as AIC. The
spectrum is shown in Figure 4.14, and we note the strong peaks near the four year

and one year cycles as in the nonparametric estimates obtained in Section 4.4. In
addition, the harmonics of the yearly period are evident in the estimated spectrum.
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Fig. 4.13. Model selection criteria AIC and BIC as a function of order p for autoregressive
models fitted to the SOI series.
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Fig. 4.14. Autoregressive spectral estimator for the SOI series using the AR(15) model selected
by AIC, AICc, and BIC.



4.6 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas extends
to the case in which there are several jointly stationary series, for example, x; and y;.
In this case, we can introduce the idea of a correlation indexed by frequency, called
the coherence. The results in Section C.2 imply the covariance function

| Yy (h) = El(xsn — p) (e — )] |

has the representation

-

Yay(h) = fo(@)e?™ " doy h=0,+1,+2, ..., (4.86)
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where the cross-spectrum is defined as the Fourier transform

fop(w) = Z Yoy(W)e @ _1/2 < w < 1/2, (4.87)

h=-co

assuming that the cross-covariance function is absolutely summable, as was the case
for the autocovariance. The cross-spectrum is generally a complex-valued function,
and it is often written as

Fry(@) = exy (W) — igxy(w), (4.88)
where -
Cxp(w) = Z Yay(h) cos(2nwh) (4.89)
h=—c0
and .
oy (@)= ). yuy(h) sin(rwh) (4.90)
h=—o00

are defined as the cospectrum and quadspectrum, respectively. Because of the rela-
tionship yyx(h) = yxy(=h), it follows, by substituting into (4.87) and rearranging,
that

Fr(w) = fiy (@), 491)

with * denoting conjugation. This result, in turn, implies that the cospectrum and
quadspectrum satisfy
Cyx(w) = cxy(w) (4.92)

and
qyx(w) = _qu(w)- (4.93)



An important example of the application of the cross-spectrum is to the problem
of predicting an output series y, from some input series x, through a linear filter
relation such as the three-point moving average considered below. A measure of the
strength of such a relation is the squared coherence function, defined as

T @l
Py = T @)

where fix(w)and f;,(w) are the individual spectra of the x; and y, series, respectively.
Although we consider a more general form of this that applies to multiple inputs later,
it is instructive to display the single input case as (4.94) to emphasize the analogy
with conventional squared correlation, which takes the form

(4.94)
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for random variables with variances o and o7 and covariance oy, = 0y,. This
motivates the interpretation of squared coherence and the squared correlation between
two time series at frequency w.

Example 4.19 Three-Point Moving Average
As a simple example, we compute the cross-spectrum between x; and the three-
point moving average y; = (x,—1 + x; + x;+1)/3, where x, is a stationary input
process with spectral density fy.(w). First,
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where we have use (4.16). Using the uniqueness of the Fourier transform, we argue
from the spectral representation (4.86) that

foy(w) = % [l + 2cos(2nw)] fex(w)
so that the cross-spectrum is real in this case. Using Property 4.3, the spectral
density of y, is
. _ 2
fiy(@) = § [ 4 1 25 fr@) = § [1+20052n0)| furt).
Substituting into (4.94) yields,
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that is, the squared coherence between x; and y, is unity over all frequencies. This is
a characteristic inherited by more general linear filters; see Problem 4.30. However,
if some noise is added to the three-point moving average, the coherence is not unity;
these kinds of models will be considered in detail later.



Property 4.8 Spectral Representation of a Vector Stationary Process
Ifx; = (X1, X2, - . ., X;p) is a pX 1 stationary process with autocovariance matrix

I(h) = E[(x+h — p)(xe = p)'] = {y;x(h)} satisfying

> (k)] < oo (4.95)

h=—c0

forall j,k =1,...,p, then I'(h) has the representation

-

I'(h) = / 1 ¥t fwydw h=0,%1,+2,.., (4.96)
as the inverse transform of the spectral density matrix, f(w) = {fjx(w)}, for j k =
1,...,p. The matrix f(w) has the representation

fwy= ), Fe ™« —12<0x<1/2. (4.97)

h=—c0

The spectral matrix f(w) is Hermitian, f(w) = f*(w), where * means to conjugate
and transpose.

Example 4.20 Spectral Matrix of a Bivariate Process

Consider a jointly stationary bivariate process (x;, y;). We arrange the autocovari-
ances in the matrix

_ [ ¥xx(h) Yx)'(h)
B = (mm) m(h)) '
The spectral matrix would be given by
. Srx(w) fxy(w)
i) = (fy,\-(w) fiy(@) )

where the Fourier transform (4.96) and (4.97) relate the autocovariance and spectral
matrices.



The extension of spectral estimation to vector series is fairly obvious. For the

vector series x; = (X/1, X2,..., X;p)", We may use the vector of DFTs, say d(w;) =
(d(wj), dr(wj), ..., dp(wj))’, and estimate the spectral matrix by
_ m
flwy=17">" Iw;+k/n) (4.98)
k=—m
where now
1((1)4,) = d((x)j) d*(ﬂ)j) (499)

is a p X p complex matrix. The series may be tapered before the DFT is taken in (4.98)
and we can use weighted estimation,

f@)= )] hd(w; +k/n) (4.100)

k=-m

where {h;} are weights as defined in (4.64). The estimate of squared coherence
between two series, y; and x; is

| fx@)?
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If the spectral estimates in (4.101) are obtained using equal weights, we will write
[Jf,_x(w) for the estimate.

Under general conditions, if pf,_x(w) > ( then

Py.(w) = (4.101)

1By (@) ~ AN (Ipy s (@)} (1 = p20@)* /2L (4.102)

where Ly, is defined in (4.65); the details of this result may be found in Brockwell and
Davis (1991, Ch 11). We may use (4.102) to obtain approximate confidence intervals
for the squared coherence, p;‘, Llw).

We n_lay also test the nuii 'ﬁypothesis that if we use pf,,x(w) for the

estimate with L > 1,*!! that is,

" | fyx(@)I?
Pi.x(w) SR~ o — (4.103)
fxx(w)fyy(w)
In this case, under the null hypothesis, the statistic
52 (w)
PR gy (4.104)
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has an approximate F-distribution with 2 and 2L — 2 degrees of freedom. When the
series have been extended to length n’, we replace 2L — 2 by df — 2, where df is
defined in (4.60). Solving (4.104) for a particular significance level @ leads to

UIfL = 1 then p2  (w) = 1.

Frapa(a)
L—1+Fopafa)

Cy = (4.105)

as the approximate value that must be exceeded for the original squared coherence to
be able to reject p‘;',_x(cu) = () at an a priori specified frequency.



Example 4.21 Coherence Between SOI and Recruitment

Figure 4.15 shows the squared coherence between the SOI and Recruitment series
over a wider band than was used for the spectrum. In this case, weused L = 19, df =
2(19)(453/480) =~ 36 and F> 45_2(.001) = 8.53 at the significance level « = .001.
Hence, we may reject the hypothesis of no coherence for values of ,c')%, (w) that
exceed Cgo; = .32. We emphasize that this method is crude because, in addition to
the fact that the F-statistic is approximate, we are examining the squared coherence
across all frequencies with the Bonferroni inequality, (4.63), in mind. Figure 4.15
also exhibits confidence bands as part of the R plotting routine. We emphasize that
these bands are only valid for w where pf, F(w) > 0.

In this case, the two series are obviously strongly coherent at the annual seasonal
frequency. The series are also strongly coherent at lower frequencies that may be
attributed to the El Nifio cycle, which we claimed had a 3 to 7 year period. The
peak in the coherency, however, occurs closer to the 9 year cycle. Other frequencies
are also coherent, although the strong coherence is less impressive because the
underlying power spectrum at these higher frequencies is fairly small. Finally, we
note that the coherence is persistent at the seasonal harmonic frequencies.
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Fig. 4.15. Squared coherency between the SOI and Recruitment series; L = 19, n = 453, n’ =

480, and @ = .001. The horizontal line is C ).



