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a  b  s  t  r  a  c  t

In  this  study,  the  performance  of  nine  widely  used  and accessible  crop  growth  simulation  models  (APES-
ACE,  CROPSYST,  DAISY,  DSSAT-CERES,  FASSET,  HERMES,  MONICA,  STICS  and  WOFOST)  was  compared
during  44  growing  seasons  of  spring  barley  (Hordeum  vulgare  L.)  at seven  sites  in Northern  and  Central
Europe.  The  aims  of this  model  comparison  were  to examine  how  different  process-based  crop  models
perform  at  multiple  sites  across  Europe  when  applied  with  minimal  information  for  model  calibration  of
spring  barley  at field  scale,  whether  individual  models  perform  better  than  the  multi-model  mean,  and
what the uncertainty  ranges  are  in  simulated  grain  yields.  The  reasons  for differences  among  the  models
and how  results  for  barley  compare  to  winter  wheat  are  discussed.

Regarding  yield  estimation,  best  performing  based  on  the  root  mean  square  error  (RMSE)  were  models
HERMES,  MONICA  and  WOFOST  with  lowest  values  of 1124,  1282  and 1325  (kg  ha−1), respectively.  Apply-
ing  the index  of agreement  (IA),  models  WOFOST,  DAISY  and  HERMES  scored  best  having  highest  values
(0.632,  0.631  and  0.585,  respectively).  Most  models  systematically  underestimated  yields,  whereby  CROP-
SYST showed  the  highest  deviation  as  indicated  by the  mean  bias  error  (MBE)  (−1159  kg  ha−1). While  the
wide  range  of  simulated  yields  across  all sites  and  years  shows  the  high  uncertainties  in  model  estimates
with  only  restricted  calibration,  mean  predictions  from  the  nine  models  agreed  well with  observations.
Results  of  this  paper  also  show  that models  that were  more  accurate  in predicting  phenology  were  not
necessarily  the  ones better  estimating  grain  yields.  Total  above-ground  biomass  estimates  often  did  not

follow  the patterns  of  grain  yield  estimates  and, thus,  harvest  indices  were  also  different.  Estimates  of
soil  moisture  dynamics  varied  greatly.

In comparison,  even  though  the  growing  cycle  for  winter  wheat  is  several  months  longer  than  for
spring  barley,  using  RMSE  and IA as  indicators,  models  performed  slightly,  but  not  significantly,  better  in
predicting  wheat  yields.  Errors  in  reproducing  crop phenology  were  similar,  which  in  conjunction  with
the  shorter  growth  cycle  of barley  has  higher  effects  on  accuracy  in yield  prediction.
∗ Corresponding author. Tel.: +358 40 353 4506.
E-mail address: reimund.rotter@mtt.fi (R.P. Rötter).

378-4290/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.fcr.2012.03.016
© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

Various model-based tools are used to support the deci-

sion making and planning in agriculture (Brouwer and van
Ittersum, 2010; Ewert et al., 2011). Crop growth simulation
models (hereafter referred to as crop models) are increasingly
being applied, particularly in climate change-related agricultural

dx.doi.org/10.1016/j.fcr.2012.03.016
http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
mailto:reimund.rotter@mtt.fi
dx.doi.org/10.1016/j.fcr.2012.03.016
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mpact assessments (Rosenzweig and Wilbanks, 2010; White et al.,
011).

Recently, there has been renewed interest and discussion about
he need for improved understanding and reporting of the uncer-
ainties related to crop growth and yield predictions (Rötter et al.,
011a; Ferrise et al., 2011; Børgesen and Olesen, 2011). Compari-
on of different modelling approaches and models can reveal the
ncertainties involved. Variation of model results in model com-
arisons involves also the uncertainty related to model structure,
hich is probably the source of uncertainty most difficult to quan-

ify. Model comparisons, when combined with experimental data
f the compared variables, may  also be used to test the performance
f different models. However, comprehensive data sets that would
llow such thorough comparisons (see, e.g. Groot and Verberne,
991 or Kleemola et al., 1995), are scarce and in most cases have
lready been utilized or published for model calibration or valida-
ion. This situation calls for a concerted effort to exploit existing
unused) and develop new high quality data sets for different loca-
ions (agro-climatic conditions) and crops (Rötter et al., 2011a).
ince the 1980s, there have been many studies on comparing differ-
nt process-based crop models on their performance in predicting
ield variability in response to climate and other factors (see, e.g.
ersebaum et al., 2007; Palosuo et al., 2011), including a very active
eriod during the 1990s (Porter et al., 1993; Diekkrüger et al., 1995;
wert et al., 2002; Goudriaan et al., 1994; Jamieson et al., 1998;
abat et al., 1995; Wolf et al., 1996). Most of these comparisons have
een made for wheat while other crops such as barley, received
uch less attention (Tubiello and Ewert, 2002; see, e.g. Eitzinger

t al., 2004 for an exception).
Since proper understanding and modelling of crop responses

o heat and drought stress becomes increasingly important in cli-
ate impact assessments (Semenov and Shewry, 2011; Lobell et al.,

012), we also looked into this issue. In a couple of studies in
ifferent parts of the world specific responses of barley to heat
nd drought stress have been investigated (e.g. Jamieson et al.,
995; Passarella et al., 2005). For the critical growth stages during
nd immediately after flowering (Savin and Nicolas, 1999), it has
een found that significant yield reduction is experienced if thresh-
ld temperatures of 28–30 ◦C are exceeded. Yield-reducing effects
epend, however, on the timing and intensity of events (Passarella
t al., 2005). Moreover, there is considerable response diversity
mong barley cultivars (see, e.g. Hakala et al., 2012). For drought
tress, Jamieson et al. (1995) found no clear thresholds, but rather
he importance of timing of drought for reduction in final biomass
f barley, whereby final biomass was especially sensitive to soil
oisture deficit for the early drought treatments.
To analyze sources of crop model uncertainties in climate impact

ssessments for Europe, four crop model intercomparisons were
et-up during 2009–2010 in the framework of COST action 734,
eeking coverage of the most widely used and accessible crop sim-
lation models: one comparison for winter wheat (Palosuo et al.,
011) and another one for spring barley (this study) across multiple
ites in Europe with restricted calibration, one on the sensitivity of
rop models to extreme weather conditions for maize and winter
heat (Eitzinger et al., in press), and one with a detailed calibra-

ion using comprehensive barley datasets from one Finnish location
Salo et al., companion paper, in preparation).

This paper presents the results of the spring barley (Hordeum
ulgare L.) comparison across multiple sites in Europe. Barley is
urrently the third most important cereal in Northern and Cen-
ral Europe after wheat and grain maize (EUROSTAT, 2011). Since
pring barley has been much less considered in crop modelling than

inter wheat, and assuming that accordingly wheat models were
eveloped with more experimental data than those for barley, we
ypothesized that the uncertainties in simulation results for barley
re higher.
Fig. 1. Locations of the study sites.

The specific objectives of this model intercomparison study
were to examine (1) how different process-based crop models per-
form at multiple sites across Europe in estimating grain yield when
applied with minimal information for model calibration of spring
barley at field scale, (2) whether individual models perform better
than the multi-model mean, and (3) what the uncertainty ranges
are in simulated grain yields. Furthermore, an initial effort is made
to discuss the reasons for differences among the models and inves-
tigate how results for barley compare to winter wheat (Palosuo
et al., 2011).

We applied nine crop models altogether for 44 growing seasons
of spring barley at seven different study sites in Europe: in the Czech
Republic, Denmark, Finland and Slovakia.

2. Material and methods

2.1. Models

Nine crop simulation models, APES-ACE, CROPSYST, DAISY,
DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST were
applied at seven different study sites in Northern and Central
Europe (Fig. 1). Details about these models can be obtained from
the main references gathered by Palosuo et al. (2011),  except for
model MONICA, which has been described by Nendel et al. (2011).
Table 1 gives an overview of the model version applied, model cal-
ibrations and their major applications for barley in Europe, while
Table 2 provides an overview with characterization of basic pro-
cess descriptions and how the models deal with heat and drought
stress.

All models are summary models and work on a daily time
step. The models differ considerably in the way they treat growth-
defining, -limiting and -reducing factors (van Ittersum et al., 2003)
and, correspondingly, in their structure, associated input data
requirements and model parameters. One can group the mod-
els according to different criteria, such as the approach used for
describing daily biomass or dry matter accumulation under non-

limiting conditions (e.g. Confalioneri et al., 2009 distinguished
three groups: SUCROS/WOFOST type; CERES type and a simpler
one; in Table 2 we  distinguished two types for light utilization or
biomass growth – see, also Adam et al., 2011); but our models also
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Table  1
Model version applied in this study, references to papers with data for model parameterization, applications, and model web address.

Model Reference to relevant earlier model parameterizations Documentation/accessibility (weblink)
Version (other evaluations/applications for barley in Europe)

APES-ACE Ewert et al. (2011) Request from frank.ewert@uni-bonn.de
V.  1.0
CROPSYST Unpublished calibration for Poland (1995–2005) http://www.bsyse.wsu.edu/CS Suite/CropSyst/index.html
V.  3.04.08 Donatelli et al. (1997)
DAISY Hansen et al. (1990) http://code.google.com/p/daisy-model/
V.  4.01 Svendsen et al. (1995), Smith et al. (1997),  Refsgaard

et  al. (1998)
DSSAT-CERES Hlavinka et al. (2010) http://www.icasa.net/dssat/
V. 4.0.1.0 Eitzinger et al. (2004) and Trnka et al. (2004)
FASSET Olesen et al. (2000) http://www.fasset.dk
V.  2.0 Berntsen et al. (2004) and Doltra et al. (2011) and

Sapkota et al. (2012)
HERMES Franko et al. (2007) http://www.zalf.de/en/forschung/institute/lsa/forschung/oekomod/hermes
V.  4.26 Kersebaum et al. (2007)
MONICA Nendel et al. (2011) http://monica.agrosystem-models.com
V.  1.0
STICS Corre-Hellou et al. (2009) and Launay et al. (2009) http://www.avignon.inra.fr/agroclim stics eng/
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V.  6.9
WOFOST Boons-Prins et al. (1993) and Rötter et al. (2011b) 

V.  7.1 Eitzinger et al. (2004)

perate under growth-limiting conditions (water and/or nutrient
imitation), and, hence, can be classified according to other cri-
eria, e.g. how they treat the soil moisture balance (see, Table 2
r van Ittersum et al., 2003), which makes it more difficult to
ank models according to their complexity. Based on the char-
cteristics provided in Table 2 and in related literature (Bouman
t al., 1996; Brisson et al., 2003; Jones et al., 2003; Stöckle et al.,
003; van Ittersum et al., 2003), we can, however, roughly clas-
ify them: DAISY as the most complex, is followed by a group
ontaining MONICA, HERMES and STICS. Then come the less com-
lex WOFOST, FASSET, DSSAT-CERES and, finally, APES-ACE and
ROPSYST. Much more complex models than DAISY are usually not
pplied in regional climate impact assessments due to their much
igher data requirements.

.2. Study sites
The model comparison was carried out using data from seven
esearch sites in North and central Europe, Denmark, Czech Repub-
ic, Finland and Slovakia (Fig. 1). The principal characteristics of
hese sites are summarized in Table 3. Data contained altogether

able 2
odelling approaches applied in this study regarding the major processes determining c

Model LA development
and LIa

Light
utilizationb

Yield
formationc

Root distribution
over depthd

APES D RUE Y(Prt) Exp 

CROPSYST S RUE Y(HI,B) Lin 

DAISY D P-R Y(PRT) Exp 

DSSAT S RUE Y(HI(Gn),B) Exp 

FASSET D RUE Y(HI,B) Exp 

HERMES D P-R Y(Prt) Exp 

MONICA D P-R Y(Prt) Exp 

STICS  D RUE Y(HI(Gn),B) Sig 

WOFOST D P-R Y(Prt,B) Lin 

a Leaf area development and light interception; simple (=S) or detailed (=D) approach.
b Light utilization or biomass growth: RUE = simple (descriptive) Radiation use efficie
ore  details, see e.g. Adam et al. (2011)).
c Y(x) yield formation depending on: HI = fixed harvest index, B = total (above-ground) 

d Root distribution over depth: linear (Lin), exponential (Exp), sigmoidal (Sig).
e Heat stress around flowering described in the model: Yes/No.
f Drought stress: Ta/Tp or ETa/ETp, or crop/crop group specific cl-SM = critical limits for
g Water dynamics approach: C = capacity approach, R = Richards approach.
h Method to calculate evapo-transpiration: P = Penman; PM = Penman–Monteith,

W  = Shuttleworth and Wallace (resistive model).
i No heat stress was  reported by the model at any test site.
http://www.wofost.wur.nl

44 growing seasons of spring barley. The longest time series, 14
and 13 years, were available for the two Czech sites at Verovany
and Lednice, respectively. For the rest of the sites data from three
to four years were available. Soils varied widely in their soil mois-
ture retention characteristics, ranging from less favorable sandy
soils (Jyndevad, Denmark) to favorable silt loams (at the Czech
and Slovakian sites) (Table 3). Irrigation was applied at the Dan-
ish sites of Jyndevad (2006: 153 mm,  2007: 68 mm,  2008: 178 mm)
and Foulum (2006: 103 mm,  2007: 53 mm,  2008: 94 mm).

In all experiments, the plots were kept weed free and plant pro-
tection was applied as necessary to avoid the presence of pests and
diseases. Years during which the yields were reported to be affected
by pests or diseases in spite of these plant protection activities were
excluded from the study.

For Bratislava site, we selected three years (1996, 1999 and
2002) to illustrate how high temperature stress events between
flowering and maturity (with Tmax > 30 ◦C) combined with three

distinctly different seasonal soil moisture patterns influenced
simulated and observed total above-ground biomass production
(TAGB) and simulated actual evapotranspiration. The soil moisture
patterns were characterized as: (i) moderate early drought with

rop growth and development.

Heat stress around
floweringe

Drought
stressf

Water
dynamicsg

Evapo-transpirationh

No ETa/ETp C P
No Ta/Tp C PT
No cl-SM R PM
Noi Ta/Tp C PT
No ETa/ETp C MA
No Ta/Tp C PM
Yes ETa/ETp C PM
No cl SM C SW
No cl-SM C P

ncy approach, P-R = detailed (explanatory) Gross photosynthesis–respiration; (for

biomass, Gn = number of grains, Prt = partitioning during reproductive stages.

 plant available soil moisture in root zone.

 PT = Priestley–Taylor, TW = Turc–Wendling, MA  = Makkink, HAR = Hargreaves,

mailto:frank.ewert@uni-bonn.de
http://www.bsyse.wsu.edu/CS_Suite/CropSyst/index.html
http://code.google.com/p/daisy-model/
http://www.icasa.net/dssat/
http://www.fasset.dk/
http://www.zalf.de/en/forschung/institute/lsa/forschung/oekomod/hermes
http://monica.agrosystem-models.com/
http://www.avignon.inra.fr/agroclim_stics_eng/
http://www.wofost.wur.nl/
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Table 4
Input data provided to models.

Category Variable Type

Meteorological data Minimum temperature Daily minimum [◦C]
Maximum temperature Daily maximum [◦C]
Relative air humidity Daily average [%]
Global radiation Daily sum [MJ  m−2]
Wind speed Daily average [m s−1]
Precipitation Daily sum [mm]

Soil data (0 cm to
maximum rooting
depth)

Texture Per layer clay, silt, sand
[mass%]

Corg Per layer [mass%]
C:N ratio Per layer [unitless]
Bulk density Per layer [cm3 cm−3]
pH Per layer [unitless]
Field capacity Per layer [cm3 cm−3]
Wilting point Per layer [cm3 cm−3]
Total pore space Per layer [cm3 cm−3]
Max. rooting depth [cm]

Crop data Cultivar
Crop density Crops per m2

Flowering (or heading) doy (=day of year)
Yellow ripeness doy

Initial status Water contenta Per layer [cm3 cm−3]
Soil mineral Na Per layer [kg ha−1]

Management Sowing date doy
Harvest date doy
N fertilization doy, fert. type, amount

[kg N ha−1]
Irrigation doy, amount [mm]
Tillage doy, type, depth [cm]
Previous crop
sowing/harvest

doy

Previous crop Res. export (y/n), amount
−1
yield/residues [t  ha ]

aEstimated for all but Bratislava site.

pronounced depletion around flowering (year 1996); (ii) favorable
conditions with only short and moderate dry spell (year 1999), and
(iii) steady depletion with terminal drought (year 2002).

2.3. Setup of model intercomparison

2.3.1. Information available for model users
The current study was  implemented as a “blind test”, i.e. the

model users were not provided with the information on the vari-
ables they were asked to deliver as model results before they
submitted the results. For the simulations, the input data provided
are listed in Table 4. These also included information on key phe-
nological dates during the growing period for each of the various
spring barley cultivars used in different sites and seasons.

2.3.2. Calibration of the models
Phenological data were the only ones used in calibrating the

models for the various barley cultivars grown at the different sites.
It was  further agreed that only one crop phenology parameter set is
derived per cultivar to best match the phenological dates observed
in the experiments. That set was  then applied to all seasons in
which the specific barley cultivar was grown. However, we did
not exactly specify a procedure how model users should interpret
and convert this information into parameter values. We  further
only recommended that all other crop parameters needed for the
models were taken from earlier applications of the models thought
to be eco-physiologically relevant (see, references in Table 1). But
here again, the definition of “relevance” was  left to the individual
modeller. These parameters were then kept unchanged for all

years and locations. While daily weather variables, basic soil
physical characteristics and estimates of soil moisture and mineral
nitrogen at start of the growing seasons were provided (Table 4),
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simulated phenology can have quite an effect on simulated dry mat-
ter increase and final grain yield. Hence, we also examined, whether
R.P. Rötter et al. / Field Cro

t was not prescribed exactly how that information should be used
o generate initial soil moisture and soil nitrogen conditions.

.4. Methods used for evaluating model performance and
ssessing uncertainties

The methods of how to assess and compare the performance
f models have been discussed widely (see e.g. Bellocchi et al.,
009; Kobayashi and Salam, 2000; Wallach et al., 2006; Willmott,
981). The combined use of various statistical indicators is seen

mportant to achieve a balanced picture. Grain yields and growth
uration (from emergence to flowering and maturity) simulated by
he various models were compared with observed values.

For assessing and comparing model performance we calculated
 set of statistical parameters in line with those reported by Palosuo
t al. (2011):  the root mean square error (RMSE) was  taken as a mea-
ure of the relative average difference between the model estimates
nd measurements. CV(RMSE) is defined as RMSE normalized to the
ean of the observed values:

V(RMSE) =

√
N−1

∑N
i=1(Pi − Oi)

2

Ō
,  (1)

here N is the number of estimate-observation-pair, Pi is the model
rediction, Oi is the observed value and Ō is the mean of observa-
ions.

Mean bias error (MBE) was taken as an indicator telling whether
he models under- or overestimate the yields, i.e. the direction and

agnitude of bias:

BE = N−1
N∑

i=1

(Pi − Oi) (2)

The variance of the distribution of differences (s2
d
) was  used to

uantify the error variability:

2
d = (N − 1)−1

N∑
i=1

(Pi − Oi − MBE)2 (3)

Overall systematic error relative to total mean squared error
MSES/MSE) was used to identify how much or what proportion of
MSE is systematic in nature. It is calculated as a share between
he systematic error and mean square error.

SES = N−1
N∑

i=1

(P̂i − Oi)
2

(4)

here P̂ is derived from P̂i = a + bOi.
Index of agreement (IA) developed by Willmott (1981) was used

s a more general indicator of modeling efficiency.

A = 1 − N · MSE
PE

(5)

here PE =
∑N

i=1(|Ṗ| + |Ȯ|)
2

and where Ṗ = Pi − P and Ȯ = Oi − P,
A can have values within the range [0,1], and the values closer to

 indicate the better simulation quality.
Above this, for comparison, the traditional r2 regression statis-

ic (least-squares coefficient of determination) was calculated even
hough it does not take into account model bias, which is central
hen assessing the performance of simulation models.

We provide an indication of uncertainties in model simulations
ttributable to using a variety of crop models (representing dif-

erent complexity) and model user groups (representing different
pplication skills) by showing outcomes from the nine individual
odels, and comparing these to observed mean yields. Uncertainty

s represented by a distribution of simulated model results, whereas
search 133 (2012) 23–36 27

error is the difference between observed and predicted values,
applying to cases where we have the true value (Wallach et al.,
2006). Bias means an average (over sites or years, etc.) over- or
under-estimates by the models (illustrated by the MBE). Here, we
need to stress that the observed data presented in this study cannot
unambiguously be considered as true values, but for the evaluation
we use them as such.

3. Results

3.1. Assessment of model performance

3.1.1. Crop phenology
Calibration results for spring barley phenology show consider-

able discrepancies with observations, amounting to ±11 days for
the start of flowering (Zadoks 61) and up to +12 days for physiologi-
cal maturity (Zadoks 90). The most accurate estimates of phenology
were provided by models STICS and WOFOST (Fig. 2a and b). The
grain filling period was  longest for FASSET and notably short for
CROPSYST and HERMES (Fig. 2a).

3.1.2. Grain yield
A detailed comparison of the grain yield estimates with

observed values showed that none of the models perfectly repro-
duced observations at all sites and in all years (Figs. 3–5a). However,
some models (e.g. HERMES) clearly performed better than oth-
ers. Two models (CROPSYST, DAISY) systematically underestimated
yields, while one model (WOFOST) mostly overestimated yields
(Figs. 3 and 4b). The statistical analysis of the grain yield results
show that the best performance regarding yield estimation was
found for HERMES, MONICA, WOFOST and DAISY, for which the
RMSE values were lowest and the IA values highest (Fig. 4a and e).
IA was lowest for FASSET and CROPSYST, and highest for WOFOST
and DAISY (Fig. 4e).

The overall or average systematic error (MSEs/MSE) was low-
est for HERMES (Fig. 4d), whereas CROPSYST had by far the highest
systematic error (Fig. 4d). DSSAT-CERES and FASSET showed the
highest variance of model residuals (Fig. 4c) indicating some high
individual discrepancies between simulated and observed yields.
Clearly, DAISY model showed the highest coefficient of determina-
tion (r2 = 0.48) (Fig. 4f).

The ability of the models to capture the variability of grain yield
at field-level was studied using the Verovany study site with the
longest time series (14 years), with results similar to the Palosuo
et al. (2011) study. Observed mean yields and its variability were
best captured by model DSSAT-CERES, followed by MONICA and
HERMES (not shown). This result was  confirmed by statistical indi-
cators RMSE (573, 719 and 897 kg ha−1, respectively) and by IA
(0.78, 0.59 and 0.51, respectively).

When comparing the performance of multi-model mean (here-
after referred to as MMM)  and individual models in estimating grain
yields, we  found that the MMM  is a better predictor over all sites
and seasons (Fig. 3). When taking RMSE and IA as indicators, we  find
that several models like HERMES, MONICA, WOFOST and DAISY do
not perform much worse than the MMM  (Fig. 4a and e). How this
comparison looks for individual sites and seasons is presented in
Section 3.2.

For a short duration crop like barley inaccuracies of a few days in
accuracy in estimating phenology is correlated to the accuracy
of models in estimating grain yield. Results of associated regres-
sion analyses (not shown), however, suggested that the correlation
between the accuracies in phenology and yield estimation is weak.
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.1.3. Root biomass, above-ground biomass and harvest index
Maximum root biomass estimates were available for all mod-

ls except CROPSYST. According to Fig. 5b, there are two groups
f models performing quite differently in estimating root biomass.
PES-ACE, DAISY, DSSAT-CERES and HERMES estimated average
oot biomass around 1000 kg ha−1 or less while FASSET, MON-
CA, STICS and WOFOST estimates were at 1750 kg ha−1 or higher.
bservations of root biomass only were available from the Foulum

ite in 2008, amounting to 1730 kg ha−1 (Chirinda et al., in press).
In terms of simulated total above-ground biomass (TAGB) mod-

ls followed a slightly different order than for simulating grain
ields. DSSAT-CERES clearly showed the highest TAGB estimates,
ollowed by DAISY, APES-ACE and WOFOST. FASSET and CROPSYST
ere the models with lowest estimates of TAGB (Fig. 5c).

Harvest indices (HI) varied more widely among models than
rain yield or TAGB (Fig. 5d). HI estimates ranged from 0.4 to 0.6,
hich is plausible for spring cereals according to the literature

Peltonen-Sainio et al., 2008). DSSAT-CERES, DAISY and STICS were
ound at the low end, while HERMES and WOFOST were at the high
nd. DSSAT, MONICA and WOFOST showed highest variation in HI
stimates across sites and seasons, whereas HI applied in CROPSYST
ere almost constant (at 0.48) (Fig. 5d).

.1.4. Dynamics of above-ground biomass and soil moisture
Observed TAGB in years 1996 and 2002 at Bratislava site were

lmost the same (approx. 6200 kg ha−1), but almost twice as high in
999 (with approx. 11,900 kg ha−1) (Fig. 6a–c). That was mainly due
o a relatively good water availability in 1999 (Fig. 6g–i) compared
o the other two years. This is also expressed by a generally higher
umulative actual evapotranspiration than simulated in 1996 and
002 (Fig. 6d–f). Soil moisture stock was largely replenished during
he period of peak water requirements, whereas in year 2002 there
as a steady soil moisture depletion right from the start till values

ot close to wilting point at the late growth stages. Year 1996 was
ntermediate in terms of soil moisture conditions; however, the
attern was one of relatively high soil moisture contents till about
ay 150 (31st of May). Thereafter, we see a rapid decline, and at
bout the same time, a high number of (five) hot days – unlike in
ther years where only one such event was observed (Fig. 6d–f).
Simulated TAGB show large variations among models. Simu-
ated soil moisture availability in 1996 was higher than in 2002
ut lower than in 1999 (Fig. 6g–i). However, an early depletion of
oil water during April (Fig. 6g) led to a reduction in simulated and
or date of start of anthesis (Zadoks 61) (black tetragons around left column) and (b)

observed biomass production (Fig. 6a) which is the lowest of all
three years. This is also expressed by the distinctly lower LAI (not
shown) simulated by nearly all models relative to the other seasons.
In all three years one of the nine models (DSSAT-CERES) consider-
ably overestimated TAGB, while another one (CROPSYST) mostly
underestimated TAGB. In the favorable year 1999, apart from these
two models, others estimated TAGB fairly accurately. In 1996, mod-
els showed higher discrepancies to observed biomass and among
model estimates than in 2002 (with the exception of DSSAT-CERES).
In 2002 all (except for one model) were overestimating biomass
which can be attributed to the fact that they also overestimated
soil moisture (Fig. 6i).

We calculated statistical performance indicators (MBE, RMSE,
IA and ME)  and regressed RMSE water on RMSE grain yield and
biomass. There was  a comparable positive correlation with r2 val-
ues of 0.25 and 0.26, respectively. Model DAISY clearly showed
best performance for estimating soil water (RMSE = 14.1 mm/90 cm
profile; IA = 0.986), followed by HERMES and WOFOST with IAs of
0.93 and 0.864, respectively. DAISY also clearly performed best
in estimating total above-ground biomass (RMSE = 2034 kg ha−1).
Furthermore, we  found a strong correlation when regressing MBE
water on MBE  grain yield (r2 = 0.58).

3.2. Uncertainties

A wide range of model estimates of grain yield (Figs. 3, 5a and 7)
indicates the magnitude of uncertainty related to model estimates.
This also applies to estimates of soil moisture contents, total above-
ground biomass and other indicators (see Fig. 6).

There is a considerable spread of simulated yields among the
models for most of the 44 growing seasons (Fig. 7). The highest
ranges of model-based yield estimates (in the extreme case almost
5000 kg ha−1) can be found at Lednice site. For other sites the range
of model estimates is much lower (on average about 2500 kg ha−1).
There are six out of 44 studied seasons (14%) in which observed
yields are not covered by the range of model estimates: at Lednice,
observed yields exceed simulated yields in 1987–89 and in 1998;
at Verovany, observed exceeds simulated yield in year 1994, while
at Foulum in 2007, all simulated yields exceed the observed.
For the two Czech sites (27 growing seasons) the multi-model
mean (MMM)  underestimates observed yields with one excep-
tion, year 1993, at Lednice. On the contrary, at the other sites
MMM overestimates observed yields in most of the 17 seasons.
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xceptions include Bratislava in 1994, Flakkeberg in 2006 and
okioinen in 2005.

At the two Czech sites, the “best model” HERMES estimates
ields slightly better than the MMM  (Fig. 7). Overall, however,
he MMM  is a slighly better predictor than HERMES as indicated

y RMSE and IA (Fig. 4). Two other models, DAISY and WOFOST
lmost perform as well as the “best model”. However, their “best
erformances” look quite different, as we found when plotting yield
stimates by the individual models vis a vis observed (not shown)
d growing seasons. Simulation results are shown for nine individual models and
e is shown, representing perfect agreement.

as in Fig. 7. Except for Bratislava site, DAISY tends to underesti-
mate observed yields and remains below the MMM.  This is most
pronounced for the Czech and Finnish sites. WOFOST, on the other
hand, in most cases overestimates observed yields, on average by
about 1000 kg ha−1.
For all growing seasons, and for Verovany site separately,
we also calculated Spearman’s rank correlations (not shown) to
examine how well the models are in reproducing the order of
observed yields. Models DAISY and WOFOST, with Spearman’s
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ank correlation coefficients of 0.552 and 0.49, respectively, were
erforming best for all seasons (N = 44), while for Verovany site
N = 14), models DSSAT-CERES, WOFOST and HERMES showed
ighest rank correlation coefficients (0.539, 0.537 and 0.488,
espectively).

. Discussion

.1. Uncertainty levels
Our results from this barley model comparison show that sim-
lated grain yields vary widely, ranging from 1700 to 8100 kg ha−1

or all sites and seasons, being similar to the observed range
it the inter-quartile range (25–75 percentiles) and whiskers show the high and low

(2400–8100 kg ha−1). However, there were considerable differ-
ences in estimates for individual sites and years among the models
(Figs. 3–5 and 7). Under conditions of limited data available for cal-
ibration (as in this blind test), uncertainty ranges in yield estimates
from individual models are mostly not acceptable and beyond the
measurement error of about 10–15% found in field experiments
(Joernsgaard and Halmoe, 2003). This result is similar to the winter
wheat study by Palosuo et al. (2011) and confirms that the differ-
ences in estimates of grain yield between models, and between

the models and field observations have not much decreased when
compared to earlier model comparisons for wheat, where yields
were off by 20% and more (Goudriaan et al., 1994; Jamieson et al.,
1998).
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Since our study focusing on spring barley is part of a series of
odel comparisons conducted in the framework of COST action 734

www.cost734.eu/), we also aimed to compare results to the study
or winter wheat by Palosuo et al. (2011),  which was implemented
n a similar way as the study here. Regarding that comparison,

e hypothesized that uncertainties in model simulation results for
arley exceed those for winter wheat, because there has been less
odelling efforts and experimental data for barley than there has

een for wheat.
For spring barley grain yield, RMSE of model estimates ranged

rom 1120 to 1940 kg ha−1, while this was 1400–2300 kg ha−1 for
inter wheat, and IA values for barley model estimates ranged from

.31 to 0.63, while that range was between 0.40 and 0.74 for wheat
ield estimates. If one acknowledges that mean observed yields dif-
ered to some degree (5800 and 6100 kg ha−1 for barley and wheat,
espectively), results look in the end quite similar. In the winter
heat study, the range of simulated yield estimates did not cover

he observed yield in 4 out of 49 (9%) seasons – and in those four
ases, all models overestimated observed yield. The comparable
gure for spring barley was 6 out of 44 (14%) seasons.

For estimating crop phenology there was not much difference
n terms of accuracy. For instance, RMSE for estimating matu-
ity of wheat had maximum values of 12.6 days, for barley this
as 11.5 days. Such considerable discrepancies between simulated

nd observed phenology are not very surprising as the models

ust consider temperature and daylength in calculating numerical
henological development rate. However, a whole range of other
actors, such as water deficits or nitrogen deficits can delay or
asten phenological development, and whether it is delaying or
 and grain yield (short lines) with observed biomass and grain yield (�) at harvest
> 30 ◦C) between flowering and maturity (length of bar) (d–f), and simulated and

hastening depends on the timing of the stress (e.g. Jamieson et al.,
1995; Asseng et al., 2011). None of the nine models describes these
complex interactions sufficiently.

In summary, although there are some differences in results
between spring barley and winter wheat, uncertainties in simu-
lated yields appear to be at a comparable level, which is contrary
to our initial hypothesis. The simulation period for winter wheat is
longer and contains processes such as vernalization that are not rel-
evant for spring barley. This may  make model predictions of winter
wheat more difficult. On the other hand, it should be borne in mind
that these two  model comparisons are not fully comparable: the
seven sites in the barley exercise are more homogeneous than the
nine sites used for wheat, both in terms of climate and soil condi-
tions. From the 44 barley growing seasons analyzed, for instance,
30 experiments were conducted on Chernozems (Table 3).

Our results also further support the use of multi-crop model
estimates in impact assessments. Apart from providing information
on uncertainty ranges in model-based yield estimates, similar to the
winter wheat study (Palosuo et al., 2011), the MMM  appeared to be
a better yield predictor than any individual model over all sites and
seasons (Figs. 3 and 4) as well as at most individual sites (Fig. 7).

However, unlike in the winter wheat exercise and somewhat
unexpectedly, the MMM  (5253 kg ha−1) over all sites is approxi-
mately 360 kg ha−1 lower than the observed mean (5617 kg ha−1)
(Figs. 4b and 5a).  This overall underestimation can, to a large extent,

be attributed to large underestimations of yields in several distinct
seasons at Lednice, and to lesser extent at Verovany (Fig. 7).

Here we do not face the situation of one or more ‘bad’ models
affecting the robustness of multi-model ensemble estimates, and

http://www.cost734.eu/
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hether to exclude them (see Knutti, 2010), but rather a problem
f inadequate parameterization and calibration which has possi-
ly co-determined the underestimation at the Czech sites (for a
etailed discussion, see Section 4.2).

.2. Sources of uncertainties in model simulations

.2.1. Parameterization and calibration method
Like for the model comparison for winter wheat (Palosuo

t al., 2011), the model users were only allowed to calibrate crop
henology-related parameters based on provided phenological
bservations. Other parameters were taken from default values
n the models or from some earlier applications of the models
Table 1). The applicability and quality of these parameters were
ot systematically tested due to the lack of suitable experimen-
al data. But some part of systematic errors of model estimates is
ertainly related to these parameters.

As described in Section 3.2,  the three models (HERMES, WOFOST
nd DAISY) that performed best in estimating grain yield, achieved
his in different ways. What were the reasons for the differences
mong the models and the uncertainty sources? While this ques-
ion goes beyond the scope of the current paper, we present some
deas as an initial contribution to what should become a more gen-
ral, comprehensive discussion for crop model applications.

The most important reason for fairly systematic overestimation
y WOFOST is the assumption that at no time nutrients are yield-

imiting. Still, WOFOST underestimates the highest yields observed
t Lednice and Verovany. This may  be due to the fact that most of
he experimental data used to parameterize barley in WOFOST are
rom the early 1980s (see Boons-Prins et al., 1993).

CROPSYST, on the other hand, has been noted to underestimate
rop yields in Europe when applied with the default parameter set
Moriondo et al., 2010). The same was noted in this study with
he initial model simulations strongly underestimating the yields,
efore the team was allowed to re-assess the parameters. They

evised two parameters, radiation and water use efficiencies (RUE
nd WUE, respectively). RUE was set to 4.5 g MJ−1 (default = 3) and
UE  to 6.5 kPa kg m−3 (default = 5) based on an unpublished sim-

lation study for Poland.
s simulated yields are given as grey crosses. Results for one of the best performing
 model estimates (Bra = Bratislava, Fla = Flakkebjerg, Jyn = Jyndevad, Fou = Foulum,

As  illustrated in Figs. 3, 4b and 5a,  on average models showed
a tendency to underestimate observed yield – and in particular for
the Lednice and Verovany study sites, which covered 27 out of 44
studied seasons. Especially, all models failed to predict the high
yields harvested in years 1987–89 and 1998 at Lednice, and in 1994
at Verovany. The underestimation of barley yield at the Lednice
and Verovany sites suggests that none of the models’ featured crop
parameter sets suited to reproduce the growth and yield poten-
tial of that spring barley cultivar (cv Orbit) during those seasons
(Table 3). This is surprising, as the DSSAT-CERES model had been
calibrated for the same cultivar, and at nearby sites (Hlavinka et al.,
2010), but obviously not under a ‘potential production situation’.

Following the ‘Wageningen approach’ for calibration (van
Ittersum et al., 2003), a crop model is first calibrated using data
from experiments in the potential production situation, i.e. where
crop growth, production and yield are only defined by radia-
tion, temperature, CO2 concentration of the atmosphere and crop
characteristics. Subsequently, calibration is continued using exper-
iments under (water and/or nitrogen) limited growth conditions,
and finally, the gap to actual yields observed on farms can be
attributed to yield-reducing factors, such as pest and diseases.
Although yields observed on farms are usually subject to water
or nutrient limitations (temporarily), and somewhat reduced by
pest or disease occurrence, ‘near-potential’ production situations
do exist, not only under irrigated (Dobermann et al., 2000), but also
under rainfed conditions (Semenov et al., 2009). If crop models are
not calibrated according to the approach sketched above, models
easily fail to reproduce yields attainable in very favorable years (van
Ittersum et al., 2003).

When we  look at the barley cultivars, sites or growing envi-
ronments the individual models were calibrated (Table 1), we  find
some similarities to the studied sites (Table 3). For instance, DAISY
has been calibrated at sites near Bratislava, however, not for the
same years or cultivars. DSSAT-CERES was calibrated for cultivars
‘Akcent’ and ‘Orbit’, not for the same, but at some nearby sites.
It should be stressed, however, that previous versions of DSSAT-

CERES (i.e. 3.0 and 3.5) were far easier to calibrate correctly for the
local conditions than version 4.0. used in this study and that the
calibration parameters are not easily transferable. WOFOST was
calibrated for cultivar ‘Scarlett’ at Jokioinen, however, in earlier
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ears and on different soils. While most models were calibrated
t field scale for a number of experimental sites, models APES-ACE
nd CROPSYST were calibrated using actual yields at regional level
NUTS-2 level) within Europe. While this, for instance, explains
he relatively good performance of DAISY at Bratislava (Fig. 4), and

odel DSSAT-CERES at Verovany (not shown), the model calibra-
ion and evaluation conditions only provide a partial explanation
f the (site-specific and overall) differences among models and
ncertainty sources.

.2.2. Model input
While checking the field logbooks of the two Czech sites, we

ound additional explanations for the high yields that were related
o input information provided for the modellers. At those sites
pring barley was cultivated as a “second crop” with moderate
oses of nitrogen, and yields crucially depended on fertilization
f the previous crop. It has been suggested that estimates of ini-
ial nitrogen mistakenly have been too low. For example, there was
n exceptionally high manure application to the previous (maize
rop) in Lednice 1987, high manure applications and improved
and preparation (new plough) in 1988; highest nitrogen applica-
ion rates, and ideal weather with record yields in 1989, and crop
esidue effects in 1998. These examples highlight the challenges
elated to correct description of the cultivation conditions in the
odelling exercise.

.2.3. Model structure and complexity
Similar to Lednice 1987–1988, conditions at Verovany in 1994

re described as ‘potential production situations’, which was  also
onfirmed by examining data from a second independent trial con-
aining the same cultivar, and, by high yields of 20 other cultivars
ncluded in the experiment. According to the field logbook descrip-
ions, the weather during the spring 1994 (March and April) was
ery favorable with the high positive effect on tillering (described
s the best within the last decade) (Chmielewski and Köhn, 1999).
his was supported by the observed high number of productive
illers. It was about 830 tillers per square meter in 1994 (e.g. in
993 it was less than 500). Analyzing the weather records showed
hat in none of the years the amplitude between maximum and

inimum temperature was as high as in 1994 in combination with
ery high irradiation levels. That means, low temperature minima
mplying low respiration losses during the night while having, at
he same time, high assimilation rates during daytime. It is likely
hat the effects of weather conditions on tillering is not adequately
escribed in our models.

Fig. 6 indicates another deficit in the structure (i.e. the processes
overed) of most models, and that is their deficiency in adequately
escribing heat stress effects on cereal yields (Porter and Semenov,
005; Semenov and Shewry, 2011), which can have considerable
ffects for climate change impact assessments (Lobell et al., 2012).
lthough heat is inherently considered in models with detailed
hotosynthesis-respiration approach (see Table 2) using optimum
unctions for temperature-gross assimilation relation and expo-
ential increase of respiration with temperature, stress on grain

ormation is rarely explicitly considered. Only one model, MONICA,
xplicitly describes heat stress effects around flowering (Table 2). In
ONICA, heat stress is described by a reduction factor that is depen-

ent on calculated day and night temperature with a heat impact
actor according to Challinor et al. (2005),  using a critical and a lim-
ting temperature threshold on the daytime temperature. Finally,
he fraction of open flowers calculated according to Moriondo et al.
2011) is multiplied with the heat impact factor. Similar approaches

ave been applied to other models not included in the comparison,
uch as APSIM (Asseng et al., 2011).

As shown in Fig. 6, year 1996 in Bratislava that had the highest
ount of hot days, also had lowest yield. Nevertheless, it remains
search 133 (2012) 23–36

difficult to decide to what extent hot days and drought events lim-
ited yields – much depends on the exact timing of heat and drought
stress (Jamieson et al., 1995; Savin and Nicolas, 1999). The latter
authors found for barley that individual grain weight was  most sen-
sitive to heat stress and drought imposed early in grain filling, and
less sensitive to late drought. As reported by Jamieson et al. (1995),
early drought can cause both, long-lasting changes in the radiation
use efficiency, as well as a reduction in the radiation intercepted,
while, in contrast, later initiated drought usually leads to acceler-
ated leaf senescence, and thus only reduced radiation interception.
Although at Bratislava plant available soil moisture in 1996 was  on
average higher than in 2002, there was a moderate early drought
in May  followed by a pronounced drop of soil moisture by end of
June (just before flowering) (Fig. 6g–i). Both, model simulations and
observations showed reduced biomass production (Fig. 6a).

While we  definitely do not span the full range of accessible,
well-documented and widely applied models in climate change
impact studies (see, e.g. White et al., 2011 for an overview), for the
European situation we  cover almost all of the important “model
families”. When examining the history of simulation techniques
introduced to agricultural research, two schools play a predomi-
nant role, that of de Wit  (Bouman et al., 1996) and that of DSSAT
(Jones et al., 2003). While the ‘Wageningen C.T. de Wit  School’
comprises the moderately complex SUCROS/WOFOST type and the
less complex and less data demanding LINTUL-types (van Ittersum
et al., 2003), the DSSAT school combines the moderately complex
CERES and CROPGRO model families (see Bouman et al., 1996;
Stöckle et al., 2003). Both schools have strongly influenced oth-
ers such as the American CROPSYST, the Australian APSIM, and the
French STICS – which all developed during the 1990s. APES-ACE,
the most recent development, is largely based on LINTUL. In our
set, APES-ACE and CROPSYST are the most simple, and DAISY the
most complex. Results from our “blind tests” do not indicate a clear
connection between model complexity and prediction error.

4.3. Data quality and requirements

Yield variability due to soil variability is considered an important
aspect at several sites, as found in the Palosuo et al. (2011) study and
elsewhere (Lawless et al., 2008). Model input on soil characteristics
is given as point data, representative for the whole experiment and
cannot capture within-field soil variability. For instance, within-
field and -season yield variation at Verovany was  considerable in
some years, with the yield range exceeding 1000 kg ha−1 (>15% of
mean yield) in 1991 and 1993, which is more than the intra-field
variation reported for winter wheat elsewhere by Joernsgaard and
Halmoe (2003).  When looking for reasons for overestimating yields
at Foulum site, it has been suggested that the high within-field vari-
ability of soil properties has resulted in overestimation of available
soil moisture at that site.

Climate models and crop models have in common that they both
suffer from considerable structural and parameter uncertainty and
from lack of independent datasets to evaluate them thoroughly
(Knutti, 2010). In order not to raise the question of circular reason-
ing (on why models are getting better), we  strictly avoided to use
the same data for model calibration and evaluation. In our case, this
also resulted in some downsides, such as moderate data quality. As
shown in this paper and its sister study (Palosuo et al., 2011), among
others, in most European countries it is hardly possible to acquire
fresh data from experiments suitable for thorough model calibra-
tion, validation and comparison. Apart from the data requirements
listed in Table 4, such datasets also should include seasonal dynam-

ics of LAI, above-ground biomass and N-content. Moreover, for
comparison of crop models in drought stress or heat stress situ-
ations (e.g. Jamieson et al., 1998) additional data are needed and
these should be generated through “manipulated environment”
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xperiments. There will be no major progress in improving crop
odels without such new datasets (Semenov and Shewry, 2011;

obell et al., 2012).

.4. Perspectives on assessing uncertainties

A distinct merit of this study is that almost all major crop mod-
ls applied for barley in Europe participated. To our knowledge,
here is no earlier study for barley with such large number of

odels compared under various climatic conditions. Proposed next
teps, that is, performing such comparison with more comprehen-
ive and fresh datasets comprising sequential measurements of
ey variables, and for conditions of climatic change have already
een carried out. That is, for barley at a Finnish site (Salo et al.,
ompanion paper, in preparation), and, for current and future
limatic conditions for winter wheat in the framework of the Agri-
ultural Model Intercomparison and Improvement project (AgMIP)
www.agmip.org).

Renewed interest and awareness of the need of comparing and
mproving crop models (see, e.g. Rötter et al., 2011a; White et al.,
011; Lobell et al., 2012) has also led to a couple of new research

nitiatives in Europe deepening and extending the work initiated
nder COST action 734 and reported in this paper. In these ini-
iatives model intercomparisons for major food crops and crop
otations are being performed in contrasting locations, extending
he number of models involved and comparing model responses
o changes in temperature, precipitation and atmospheric CO2
oncentrations. The larger number of models, more contrasting
nvironments and inclusion of sensitivity analyses will allow a
ore systematic assessment of model uncertainty ranges and

reatment of questions related to the use of multi-crop model
nsembles.

. Conclusions

The results obtained suggest that application of crop mod-
ls with limited calibration leads to high impact (yield, length of
rowing period) uncertainties. Furthermore, the degree of uncer-
ainty for spring barley does not differ much from that for winter
heat (Palosuo et al., 2011). Another result parallel to the winter
heat comparison is that mean model predictions are in relatively

ood agreement with observed yields. This again supports the use
f multi-model ensembles rather than relying on single models
hat reportedly perform well for specific regions or agro-ecological
onditions. While some models performed better than others in
stimating grain yields in specific environments, none was clearly
uperior or more robust in terms of yield prediction accuracy across
ll sites, for which the multi-model mean proved as the best pre-
ictor.

For both, winter wheat and barley models applied with
estricted calibration, we conclude that uncertainty levels are not
cceptable and that the models require crop cultivar and region-
pecific calibration and improvements before being used with
onfidence in regional climate impact assessments.
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