UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA DE SÃO CARLOS

Operações Unitárias I

Introdução a transferência de quantidade de movimento Dinâmica dos Fluidos – FLUIDOS EM ESCOAMENTO AULA 19

Profa. Dra. Bianca Chieregato Maniglia

biancamaniglia@usp.br

biancamaniglia@iqsc.usp.br

Equação de Bernoulli para Fluidos Reais ✓ Correção

$$\frac{P_1}{\gamma} + \frac{v_1^2}{2g} + z_1 + W_e = \frac{P_2}{\gamma} + \frac{v_2^2}{2g} + z_2 + h_f$$

Trabalho de Bomba

PERDA DE CARGA

Energia perdida pelo fluido entre 2 pontos

PERDA DE CARGA (hf)

Energia por unidade de peso perdida no trecho de tubulação reta.

PERDAS DE CARGA NORMAL OU DISTRIBUÍDA (h_{fN})

Trechos retos da tubulação

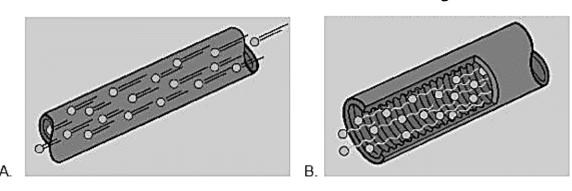
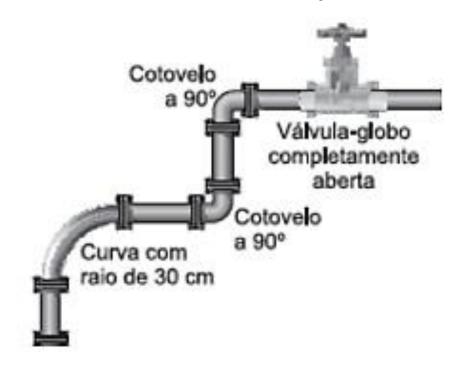



Figura 7. Perda de carga no interior de tubos

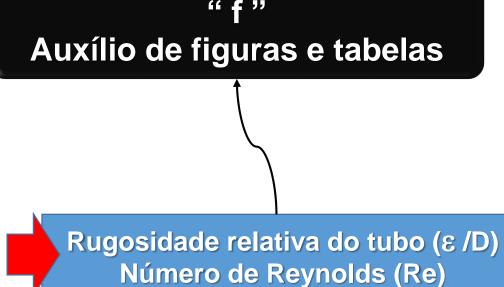
$$h_f = h_{fN} + h_{fL}$$

PERDA DE CARGA LOCALIZADA (hfl.)

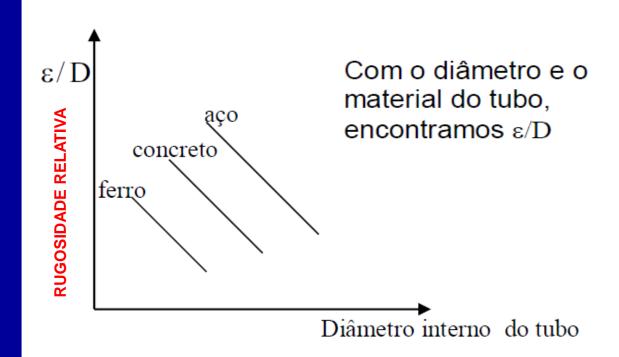
Acessórios na tubulação "acidentes na tubulação"

Perda de carga normal ou distribuída (h_{fN})

(1) Equação de Darcy

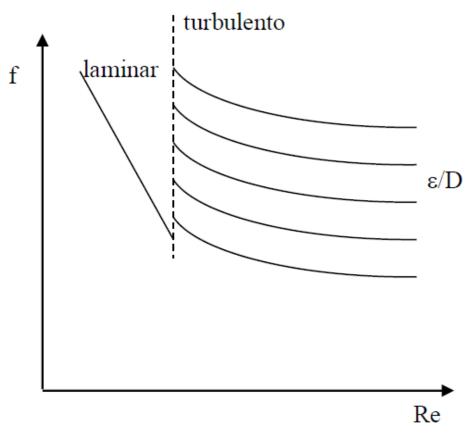

$$h_{fin} = f \frac{Lv^2}{D2g}$$

onde: D = diâmetro interno da tubulação


L = comprimento do trecho reto do tubo

v = velocidade de escoamento

f = fator de atrito ou coeficiente de atrito



Perda de carga normal ou distribuída (h_{fN})

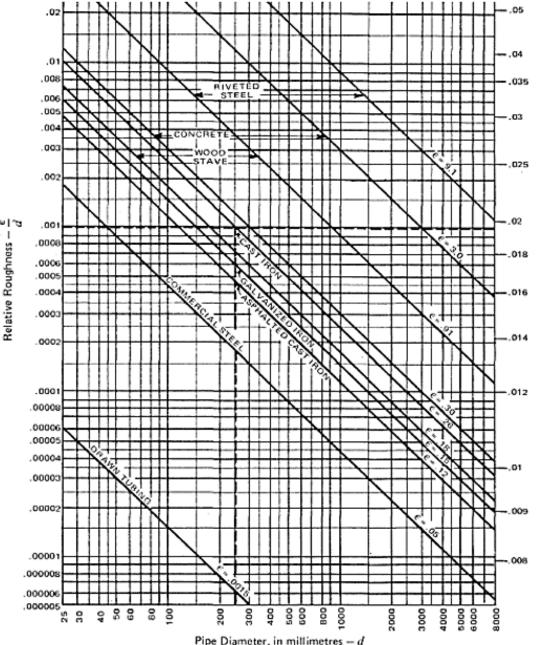

Rugosidade é um defeito ou alteração na parede interna do tubo que depende do material e do tempo de uso.

Diagrama de Moody

Observação: Se o escoamento é **Laminar** f = 64/ Re

Rugosidade relativa x diâmetro do tubo

Pipe Diameter, in millimetres - d

Diagrama de Moody

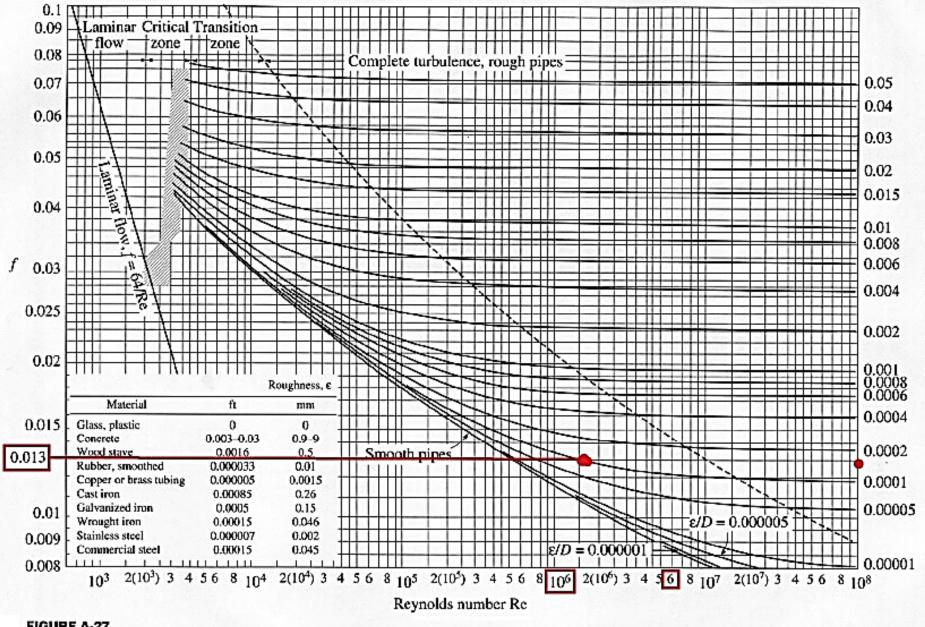


FIGURE A-27

The Moody chart for the friction factor for fully developed flow in circular tubes.

$\mathbf{F} x \mathbf{Re} x \mathbf{\epsilon} / \mathbf{D}$

Relative roughness &D

Perda de carga normal ou distribuída (h_{fN})

Tabela IV.1. Valores do coeficiente C da Equação de Hazen-Willians.

(1) Equação de Hazen-Willians

- ✓ Tubulações com diâmetros entre 5 cm e 350 cm,
- ✓ Qualquer material de construção dos tubos.

$$h_{fin} = 10,643 \frac{L}{D^{4,87}} \left(\frac{Q}{C}\right)^{1,85}$$

onde: h_f = perda de carga (m)

L = comprimento da tubulação (m)

Q = vazão volumétrica (m³/s)

D = diâmetro interno do tubo (m)

C = coeficiente que depende da natureza do material de fabricação dos tubos e da rugosidade interna das paredes (vide Tabela IV.1).

60
100
110
85
130
140
130
120
130
90
130
140
140
140

Perda de carga normal (h_{fN})

Equação de Darcy

$$h_{fin} = f \frac{Lv^2}{D2g}$$

onde: D = diâmetro interno da tubulação

L = comprimento do trecho reto do tubo

v = velocidade de escoamento

f = fator de atrito ou coeficiente de atrito

Equação de Hazen-Willians

$$h_{fin} = 10,643 \frac{L}{D^{4,87}} \left(\frac{Q}{C}\right)^{1,85}$$

onde: h_f = perda de carga (m)

L = comprimento da tubulação (m)

Q = vazão volumétrica (m³/s)

D = diâmetro interno do tubo (m)

C = coeficiente que depende da natureza do material de fabricação dos tubos e da rugosidade interna das paredes (vide Tabela IV.1).

Tubulações industriais Fórmula Universal

Equação empírica

Tubulações com diâmetros entre 5 cm e 350 cm Qualquer material de construção dos tubos

Perda de carga localizada (hfl.)

(1) EQUAÇÃO GERAL

ou Equação Baseada no Coeficiente K

$$h_{\text{fl: m}}$$
 $h_{\text{fl}} = K \frac{v^2}{2g}$ $y: \text{m/s}$ $g: \text{m/s}^2$

K: coeficiente adimensional que depende do tipo de acidente

$$h_f = f \frac{L}{D} \frac{v^2}{2g} + K_1 \frac{v^2}{2g} + K_2 \frac{v^2}{2g} + K_3 \frac{v^2}{2g} + \dots$$

$$h_f = \frac{v^2}{2g} \left(f \frac{L}{D} + K_1 + K_2 + K_3 + \dots \right)$$

Tabela IV.2. valores de K para diversos acidentes em tubulações

ACIDENTE	K
Cotovelo 90°	0,90
Cotovelo 45°	0,40
Curva 90°	0,40
Curva 45°	0,20
Tê - saída direta	0,60
Tê - saída lateral	1,30
Válvula gaveta aberta	0,20
Válvula globo aberta	10,00
Válvula de retenção	2,50
Saída de tanque - bordas vivas	0,50
- com projeção interna→	0,70
Entrada de tanque	1,0
- inferior (A ₁ < <a<sub>2)</a<sub>	1,0

Perda de carga localizada (hfl.)

(2) COMPRIMENTO EQUIVALENTE

Determinar o comprimento de tubulação reta que forneceria a mesma perda de carga do acessório considerado.

Comprimento Equivalente (L_{eq.})

$$h_{fin} = fL \frac{v^2}{2gD}$$
 Se considerarmos só o acidente: $h_{fin} = h_{fin} = h_{fin}$

$$h_{fl} = K \frac{v^2}{2g} \hspace{1cm} f.L \frac{v^2}{2gD} = K \frac{v^2}{2g} \implies K = f \frac{L}{D} \therefore L_{eq.} = \frac{K}{f} D$$

Perda de carga localizada (hfl.)

Comprimento Equivalente (L_{eq.})

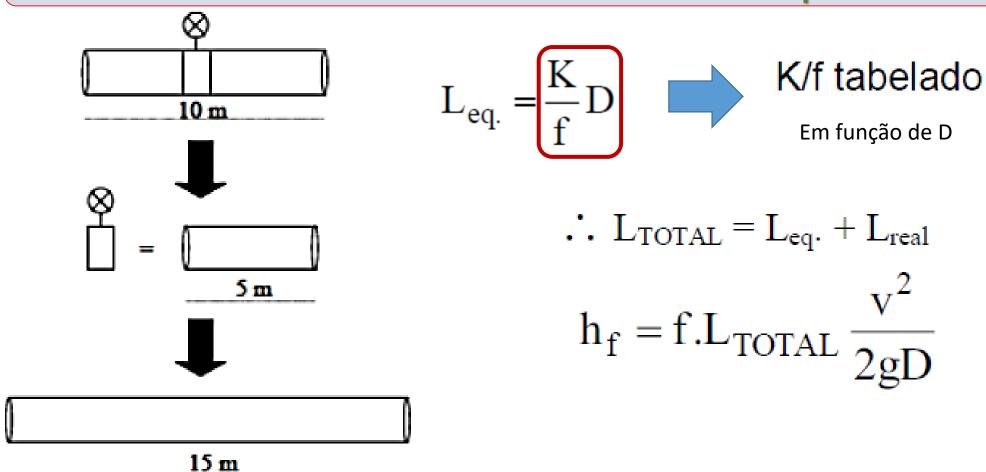


Figura 6.2: Representação da perda de carga localizada pelo método dos comprimentos virtuais.

Valores de L_e em metros de canalização retilínea

Manual KSB

		COTOVELO 90* RAIOLONGO	COTOVELO 90° RAIO MÉDIO	COTOVELO 90° RAIO CURTO	COTOVELO 45°	CURVA 90° R / D - 11/2	CURVA 90° R/D-1	CURVA 45*	ENTRADA	ENTRADA DE BORDA	REGISTRO DE GAVETA ABERTO	REGISTRO DE GLOBO ABERTO	REGISTRO DE ÂNGULO ABERTO	TÊ PASSAGEM DIRETA	TÊ SAÍDA DE LADO	TÊ SAÍDA BILATERAL	VÁLVULA DE PÉ E CRIVO	SAÍDA DA CANALIZAÇÃO	VÁLVULA DE RETENÇÃO TIPO LEVE	VÁLVULA DE RETENÇÃO TIPO PESADO	
DIÂME	pol.	B	g			5	\Box	\Diamond		-				₽	₽	₩			Æ	İ	
mm 13	1/2	0.2	0.4	0.5	0.0	0.0	0.2	0.0	0.0	0.4		4.0	2.6	0.2	1.0	1.0	2.6	0.4		4.6	
19	3/4	0,3	0,4	0,5	0,2	0,2	0,3	0,2	0,2	0,4	0,1	4,9	2,6	0,3	1,0	1,0	3,6	0,4	1,1	1,6	ľ
	1	0,4	0,6	0,7	0,3	-	0,4	0,2	0,3	0,5	0,1	6,7	3,6		1,4	1,4	5,6	0,5	1,6	2,4	
25		0,5	0,7	0,8	0,4	0,3	0,5	0,2	0,3	0,7	0,2	8,2	4,6	0,5	1,7	1,7	7,3	0,7	2,1	3,2	
32	1 1/4	0,7	0,9	1,1	0,5	0,4	0,6	0,3	0,4	0,9	0,2	11,3	5,6	0,7	2,3	2,3	10,0	0,9	2,7	4,0	
38	1 1/2	0,9	1,1	1,3	0,6	0,5	0,7	0,3	0,5	1,0	0,3	13,4	6,7	0,9	2,8	2,8	11,6	1,0	3,2	4,8	
50	2	1,1	1,4	1,7	8,0	0,6	0,9	0,4	0,7	1,5	0,4	17,4	8,5	1,1	3,5	3,5	14,0	1,5	4,2	6,4	
63	2 1/2	1,3	1,7	2,0	0,9	0,8	1,0	0,5	0,9	1,9	0,4	21,0	10,0	1,3	4,3	4,3	17,0	1,9	5,2	8,1	
75	3	1,6	2,1	2,5	1,2	1,0	1,3	0,6	1,1	2,2	0,5	26,0	13,0	1,6	5,2	5,2	20,0	2,2	6,3	9,7	
100	4	2,1	2,8	3,4	1,3	1,3	1,6	0,7	1,6	3,2	0,7	34,0	17,0	2,1	6,7	6,7	23,0	3,2	6,4	12,9	
125	5	2,7	3,7	4,2	1,9	1,6	2,1	0,9	2,0	4,0	0,9	43,0	21,0	2,7	8,4	8,4	30,0	4,0	10,4	16,1	
150	6	3,4	4,3	4,9	2,3	1,9	2,5	1,1	2,5	5,0	1,1	51,0	26,0	3,4	10,0	10,0	39,0	5,0	12,5	19,3	
200	8	4,3	5,5	6,4	3,0	2,4	3,3	1,5	3,5	6,0	1,4	67,0	34,0	4,3	13,0	13,0	52,0	6,0	16,0	25,0	
250	10	5,5	6,7	7,9	3,8	3,0	4,1	1,8	4,5	7,5	1,7	85,0	43,0	5,5	16,0	16,0	65,0	7,5	20,0	32,0	
300	12	6,1	7,9	9,5	4,6	3,6	4,8	2,2	5,5	9,0	2,1	102,0	51,0	6,1	19,0	19,0	78,0	9,0	24,0	38,0	
350	14	7,3	9,5	10,5	5,3	4,4	5,4	2,5	6,2	11,0	2,4	120,0	60,0	7,3	22,0	22,0	90,0	11,0	28,0	45,0	

^{*} Os valores indicados para registros de globo, aplicam-se também às torneiras, válvulas para chuveiros e válvulas de descarga.

Perda de carga localizada (h_{fL})

Equação Geral

ou Equação Baseada no Coeficiente K

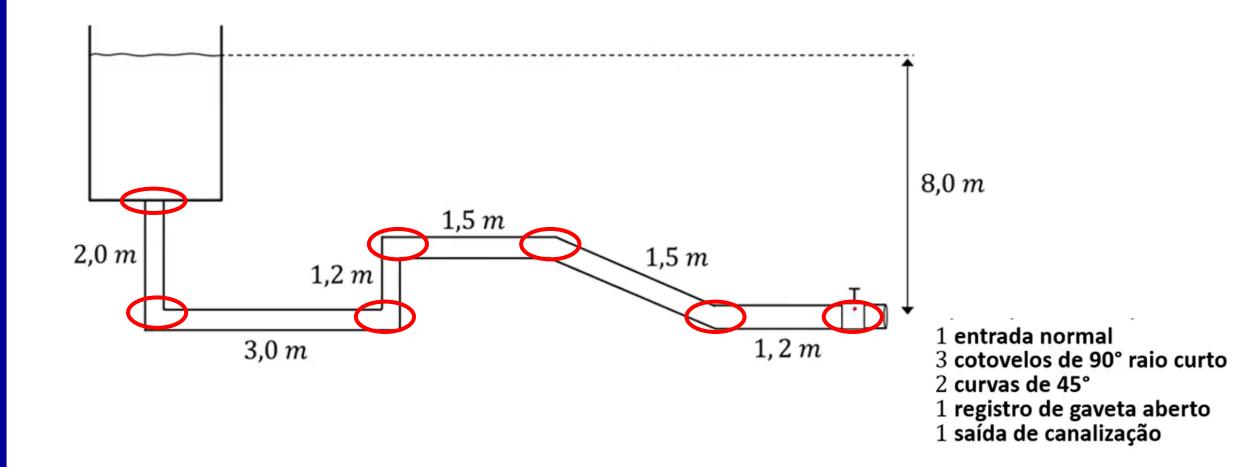
$$h_{fl} = K \frac{v^2}{2g}$$

h_{fl}: m

v: m/s

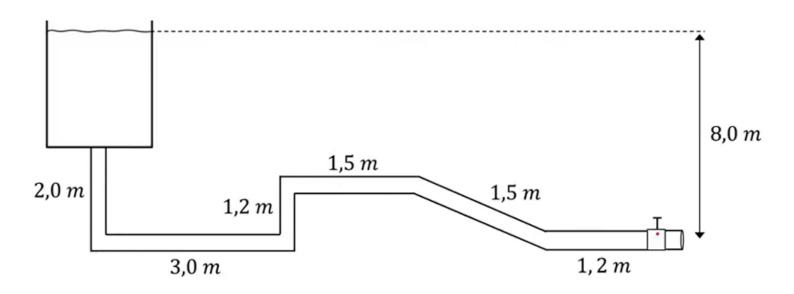
g: m/s²

K: coeficiente adimensional que depende do tipo de acidente


COMPRIMENTO EQUIVALENTE (Leg.)

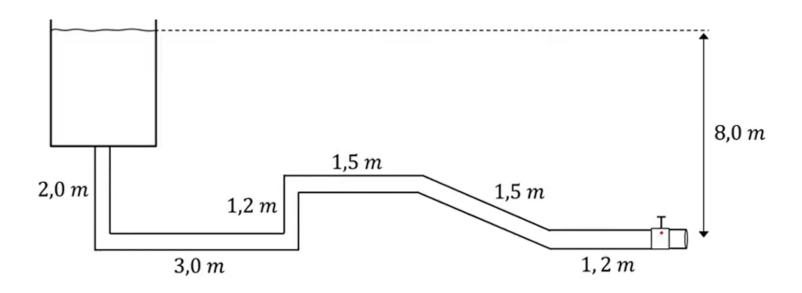
$$h_{fin} = h_{fl}$$

 $f.L \frac{v^2}{2gD} = K \frac{v^2}{2g} \implies K = f \frac{L}{D} \therefore L_{eq.} = \frac{K}{f}D$


..
$$L_{TOTAL} = L_{eq}$$
. $+ L_{real}$ K/f tabelado Acessórios Trecho reto

$$h_f = f.L_{TOTAL} \frac{v^2}{2gD}$$

Calcular os comprimentos equivalentes e o total da instalação hidráulica esquematizada abaixo. O diâmetro interno da tubulação é de $50\ mm$. A instalação possui 1 entrada normal, 3 cotovelos de 90° raio curto, 2 curvas de 45°, 1 registro de gaveta aberto e 1 saída de tubulação. Utilize a tabela de comprimentos equivalentes.


Calcular os comprimentos equivalentes e o total da instalação hidráulica esquematizada abaixo. O diâmetro interno da tubulação é de $50\ mm$. A instalação possui 1 entrada normal, 3 cotovelos de 90° raio curto, 2 curvas de 45°, 1 registro de gaveta aberto e 1 saída de tubulação. Utilize a tabela de comprimentos equivalentes.

1) Comprimento real de tubulação (L)

$$L = 2.0 + 3.0 + 1.2 + 1.5 + 1.5 + 1.2 = 10.4 \text{ m}$$

Calcular os comprimentos equivalentes e o total da instalação hidráulica esquematizada abaixo. O diâmetro interno da tubulação é de $50\ mm$. A instalação possui 1 entrada normal, 3 cotovelos de 90° raio curto, 2 curvas de 45°, 1 registro de gaveta aberto e 1 saída de tubulação. Utilize a tabela de comprimentos equivalentes.

2) Comprimento equivalente de tubulação (Leq) ACESSÓRIOS

- 1 entrada normal
- 3 cotovelos de 90° raio curto
- 2 curvas de 45°
- 1 registro de gaveta aberto
- 1 saída de canalização

Comprimentos equivalentes a perdas localizadas. (Expressos em metros de canalização retilínea)*

		COTOVELO 90° RAIO LONGO	COTOVELO 90° RAIO MÉDIO	COTOVELO 90° RAIO CURTO	COTOVELO 45°	CURVA 90° R / D - 11/2	CURVA 90° R/D-1	CURVA 45°	ENTRADA	ENTRADA DE BORDA	REGISTRO DE GAVETA ABERTO	REGISTRO DE GLOBO ABERTO	REGISTRO DE ANGULO ABERTO	PASSAGEM DIRETA	SAÍDA DE LADO	SAIDA BILATERAL	VÁLVULA DE PÉ E CRIVO	SAÍDA DA CANALIZAÇÃO	VÁLVULA DE RETENÇÃO TIPO LEVE	VÁLVULA DE RETENÇÃO TIPO PESADO
DIÂME D mm		B	G	D		5	D	\bigcirc	=	1				₽	₽	₩		7	dE]b	查
13	1/2	0,3	0,4	0,5	0,2	0,2	0,3	0,2	0,2	0,4	0,1	4,9	2,6	0,3	1,0	1,0	3,6	0,4	1,1	1,6
19	3/4	0,4	0,6	0,7	0,3	0,3	0,4	0,2	0,3	0,5	0,1	6,7	3,6	0,4	1,4	1,4	5,6	0,5	1,6	2,4
25	1	0,5	0,7	0,8	0,4	0,3	0,5	0,2	0,3	0,7	0,2	8,2	4,6	0,5	1,7	1,7	7,3	0,7	2,1	3,2
32	1 1/4	0,7	0,9	1,1	0,5	0,4	0,6	0,3	0,4	0,9	0,2	11,3	5,6	0,7	2,3	2,3	10,0	0,9	2,7	4,0
38	1 1/2	0,9	1,1	1,3	0,6	0,5	0,7	0,3	0,5	1,0	0,3	13,4	6,7	0,9	2,8	2,8	11,6	1,0	3,2	4,8
50	2	1,1	1,4	1,7	8,0	0,6	0,9	0,4	0,7	1,5	0,4	17,4	8,5	1,1	3,5	3,5	14,0	1,5	4,2	6,4
63	2 1/2	1,3	1,7	2,0	0,9	8,0	1,0	0,5	0,9	1,9	0,4	21,0	10,0	1,3	4,3	4,3	17,0	1,9	5,2	8,1
75	3	1,6	2,1	2,5	1,2	1,0	1,3	0,6	1,1	2,2	0,5	26,0	13,0	1,6	5,2	5,2	20,0	2,2	6,3	9,7
100	4	2,1	2,8	3,4	1,3	1,3	1,6	0,7	1,6	3,2	0,7	34,0	17,0	2,1	6,7	6,7	23,0	3,2	6,4	12,9
125	5	2,7	3,7	4,2	1,9	1,6	2,1	0,9	2,0	4,0	0,9	43,0	21,0	2,7	8,4	8,4	30,0	4,0	10,4	16,1

2) Comprimento equivalente de tubulação (L_{eq}) ACESSÓRIOS

Acessórios:

1 entrada normal \rightarrow 0,7 $m \times 1 = 0,7 m$

3 cotovelos de 90° raio curto \rightarrow 1,7 $m \times 3 = 5$, 1 m

2 curvas de 45° \to 0,4 $m \times 2 = 0,8 m$

1 registro de gaveta aberto $\rightarrow 0.4 m \times 1 = 0.4 m$

1 saída de canalização \rightarrow 1,5 $m \times 1 = 1$, 5 m

$$L_{eq} = 0.7 + 5.1 + 0.8 + 0.4 + 1.5 = 8.5 m$$

1) Comprimento real de tubulação (L)

$$L = 2.0 + 3.0 + 1.2 + 1.5 + 1.5 + 1.2 = 10.4 \text{ m}$$

Comprimento total (L_T)

$$L_T = L + L_{eq}$$
 $L_T = 10,4 + 8,5 = 18,9 m$

Qual a perda de carga total?

$$h_T = f \frac{Lv^2}{D2g}$$

onde: D = diâmetro interno da tubulação

L = comprimento do trecho reto do tubo

v = velocidade de escoamento

f = fator de atrito ou coeficiente de atrito

Qual a perda de carga total?

Outro método:

 h_{fN} (trecho reto) + h_{fL} (acessórios) = h_{T}

$$h_T = f.\frac{L_{reto}.v^2}{D.2.g} + f.\frac{L_{acess\'orios}.v^2}{D.2.g}$$

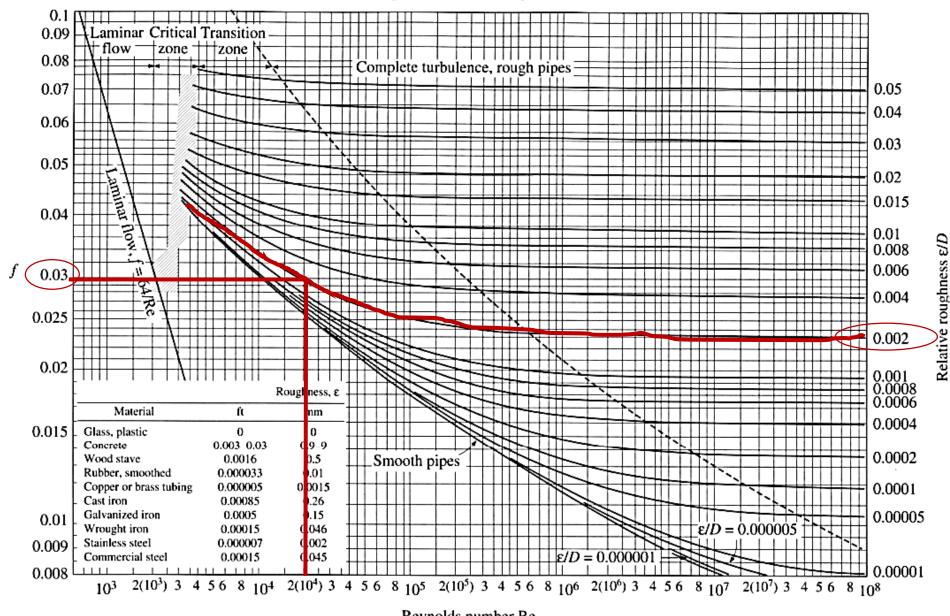
TRECHO RETO ACESSÓRIOS

Exercício IV.4) Determinar a perda de carga de um fluido escoando em uma tubulação de 2 m de comprimento e 1" de diâmetro interno. A vazão do fluido é 30 L/min. O tubo é de aço comercial. Considere que o fluido escoando seja água.

 $h_f = f \frac{L \cdot v^2}{D \cdot 2 \cdot a}$

$$\checkmark$$
 L = 2 m

✓
$$D = 1$$
"


$$\checkmark$$
 Q_v = 30 L/min

✓
$$g = 9.8 \text{ m/s}^2$$
 e $\mu = 1 \text{ cP}$

(Absolute Roughness ϵ is in millimetres)

Diagrama de Moody

 $\mathbf{F} x \mathbf{Re} x \mathbf{\epsilon} / \mathbf{D}$

Reynolds number Re

FIGURE A-27

The Moody chart for the friction factor for fully developed flow in circular tubes.

Exercício IV.5) Considere agora que na tubulação do exercício anterior há 2 acessórios: um cotovelo de 90º e uma válvula gaveta aberta.

 $h_f = f \frac{L}{D} \frac{v^2}{2g} + K_1 \frac{v^2}{2g} + K_2 \frac{v^2}{2g} + K_3 \frac{v^2}{2g} + \dots$

Tabela IV.2. valores de K para diversos acidentes em tubulações

ACIDENTE	K
Cotovelo 90°	0,90
Cotovelo 45°	0,40
Curva 90°	0,40
Curva 45°	0,20
Tê - saída direta	0,60
Tê - saída lateral	1,30
Válvula gaveta aberta	0,20
Válvula globo aberta	10,00
Válvula de retenção	2,50
Saída de tanque - bordas vivas	0,50
- com projeção interna→	0,70
Entrada de tanque	1,0
- inferior (A ₁ < <a<sub>2)</a<sub>	1,0