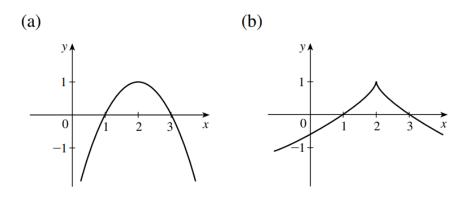
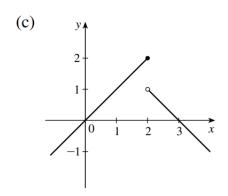
Exercício 1.





Exercício 2 (i) Para encontrar os valores máximos e mínimos globais de uma função contínua f num intervalo fechado [a, b]:

- 1. Encontre os valores de f nos pontos críticos de f em (a,b);
- 2. Encontre os valores de f nos extremos do intervalo;
- 3. O maior valor das etapas 1 e 2 é o valor máximo global e o menor desses valores é o mínimo global.
- (ii) (a) $f'(x) = \frac{-4x^2+8x+8}{(2+x^2)^2}$, os pontos críticos de f são $\{1-\sqrt{3},1+\sqrt{3}\}$. Além disso, $f(-1) = -\frac{2}{3}$ e $f(5) = \frac{70}{27}$. Portanto, o minímo global de f no intervalo [-1,5] é $x = 1-\sqrt{3}$ e máximo global é $x = 1+\sqrt{3}$.
 - (b) $f'(x) = 4x^3 6x^2 + 2$, os pontos críticos de f são $\{1, -\frac{1}{2}\}$. Além disso, f(-1) = 1 e f(1) = 1. Portanto, o minímo global de f no intervalo [-1, 1] é $x = -\frac{1}{2}$ e máximo global é $x = \{-1, 1\}$.
 - (c) $f'(x) = \frac{2x-3x^2}{3\sqrt[3]{(x^2-x^3)^2}}$, o ponto crítico de f é $\{\frac{2}{3}\}$. Além disso, f(0) = 0 e f(1) = 0. Portanto, o minímo global de f no intervalo [0,1] é $x = \{0,1\}$ e máximo global é $x = \frac{2}{3}$.

- (d) $f'(x) = 1 + \ln x$, o ponto crítico de $f \in \{\frac{1}{e}\}$. Além disso, $f(\frac{1}{3}) = -\frac{\ln 3}{3}$ e $f(2) = 2\ln 2$. Portanto, o minímo global de f no intervalo $[\frac{1}{3}, 2]$ é $x = \frac{1}{e}$ e máximo global é x = 2.
- (iii) (b1) Nem sempre é verdade. Pois como vimos no método descrito no item (i), para encontrar os valores máximos e mínimos globais de uma função contínua num intervalo fechado, os pontos de máximo e mínimos são tomados entre os pontos críticos (os quais a derivada se anula) e os pontos da extremidade do intervalo (os quais não necessariamente a derivada se anula). No caso do item (b), o ponto x = -1 é ponto de máximo global, entretando a derivada não se anula neste ponto.
 - (b2) $f'(x) = 4x^3 6x^2 + 2$, os pontos críticos de f são $\{1, -\frac{1}{2}\}$. Além disso, f(-1) = 1 e f(2) = 4. Portanto, o minímo global de f no intervalo [-1, 2] é $x = -\frac{1}{2}$ e máximo global é x = 2.
 - (b3) Considere o intervalo [0,2]. $f'(x) = 4x^3 6x^2 + 2$, os pontos críticos de f são $\{1,-\frac{1}{2}\}$. Além disso, f(0) = 0 e f(2) = 4. Portanto, o minímo global de f no intervalo [0,2] é x = 0 e máximo global é x = 2. Note que $f'(0) \neq 0$ e $f'(2) \neq 0$.

Exercício 3 (i) Um ponto $p \in Dom(f)$ é um ponto crítico de f se f'(p) = 0.

- (ii) Considere $f(x) = x^3$, p = 0 é um ponto crítico de f, porém não é ponto de máximo nem de mínimo.
- (iii) Seja f uma função contínua em (a,b) e $p \in (a,b)$ um ponto crítico de f. Suponha que f' exista em todos os pontos do intervalo (a,b) exceto possivelmente em p.
 - Se f'(x) > 0, para $x \in (p \delta, p)$ e f'(x) < 0, para $x \in (p + \delta, p)$, para algum $\delta > 0$, então f tem um máximo local em p.
 - Se f'(x) < 0, para $x \in (p \delta, p)$ e f'(x) > 0, para $x \in (p + \delta, p)$, para algum $\delta > 0$, então f tem um mínimo local em p.
- (iv) Sejam f uma função e $p \in Dom(f)$. Dizemos que p é um ponto de máximo global de f se para todo $x \in Dom(f)$, $f(x) \le f(p)$. Por outro lado, dizemos que p é um ponto de mínimo global de f se para todo $x \in Dom(f)$, $f(x) \ge f(p)$.
 - Dizemos que p é um ponto de máximo local de f se existir r>0 tal que para todo $x\in (p-r,p+r)\cap Dom(f)$, $f(x)\leq f(p)$. Por outro lado, dizemos que p é um ponto de mínimo local de f se existir r>0 tal que para todo $x\in (p-r,p+r)\cap Dom(f)$, $f(x)\geq f(p)$.
- (v) (a) Temos que $f'(x)=2(x-\frac{1}{x^2})$, assim f'(0)=0 se, e somente se, x=1. Note ainda que, existe f'(x), para todo $x\in Dom(f)=\mathbb{R}-\{0\}$, logo o único ponto crítico de $f\notin x=1$. Considerando os intervalos $A=(-\infty,0), B=(0,1)$ e $C=(1,\infty)$, e em seguida escolhendo, por exemplo, $\alpha=-1\in A$, $b=\frac{1}{2}\in B$ e $c=2\in C$, obtemos que f'(-1)=-4<0, $f'(\frac{1}{2})=-7<0$ e $f'(2)=\frac{7}{2}>0$.

Concluímos assim que f é decrescente nos intervalos A e B, e crescente em C. Consequentemente, x=1 é um ponto de mínimo e f não possui ponto de máximo.

(b) Temos que f'(x) = sen(x)(2cos(x) - 1), assim f'(x) = 0 se, e somente se, sin(x) = 0 ou $cos(x) = \frac{1}{2}$.

Logo, x é um ponto crítico de f se, e somente se,

$$x \in \{k\pi; k \in \mathbb{Z}\} \cup \left\{\frac{\pi}{3} + 2k\pi; k \in \mathbb{Z}\right\} \cup \left\{\frac{5\pi}{3} + 2k\pi; k \in \mathbb{Z}\right\}.$$

Como f tem período 2π , vamos analisar a função apenas no intervalo $[0,2\pi)$, pois f tem o mesmo comportamento em qualquer intervalo da forma $[2k\pi, 2(k+1)\pi)$, com $k \in \mathbb{Z}$.

Considere os subintervalos $A=(0,\frac{\pi}{3}), B=(\frac{\pi}{3},\pi), C=(\pi,\frac{5\pi}{3})$ e $D=(\frac{5\pi}{3},2\pi).$ Escolhendo, por exemplo, $a=\frac{\pi}{4}\in A, b=\frac{\pi}{2}\in B, C=\frac{3\pi}{2}$ e $d=\frac{11\pi}{6}\in D$, temos que $f'(a)=-\frac{2-\sqrt{2}}{2}>0$, f'(b)=-1<0, f'(c)=1>0 e $f'(d)=\frac{1-\sqrt{3}}{2}<0$.

Portanto, f é crescente nos intervalos A e C, e decrescente em B e D. Logo, os pontos $\frac{\pi}{3}$ e $\frac{5\pi}{3}$ são máximos locais, enquanto que 0 e π são mínimos locais. Generalizando, os pontos da forma $\frac{\pi}{3} + 2k\pi$ e $\frac{5\pi}{3} + 2k\pi$ são máximos locais, enquanto que $0 + 2k\pi$ e $\pi + 2k\pi$ são mínimos locais, para todo $k \in \mathbb{Z}$.

(c) Temos que $f'(x) = \frac{x^2-12}{3(x^2-4)^{\frac{4}{3}}}$. Assim, f'(x) = 0 se, e somente se, $x = \sqrt{12}$ ou $x = -\sqrt{12}$.

Note que esses são os únicos pontos críticos, pois f'(x) existe para todo $x \in Dom(f) = \mathbb{R} - \{-2, 2\}.$

Testando o sinal de f'(x) (escolha um x em cada intervalo e calcule), obtemos que f'(x) > 0, para todo $x \in (-\infty, -\sqrt{12}) \cup (\sqrt{12}, \infty)$ e f'(x) < 0, para $x \in (-\sqrt{12}, \sqrt{12}) - \{-2, 2\}$.

Portanto, f é crescente em $(-\infty, -\sqrt{12}) \cup (\sqrt{12}, \infty)$, e decrescente em $(-\sqrt{12}, \sqrt{12}) - \{-2, 2\}$, consequentemente, $-\sqrt{12}$ é máximo, enquanto que $\sqrt{12}$ é mínimo.

- (d) Temos que $f'(x) = \frac{x+1}{2\sqrt{x^3}}$. Note que $Dom(f) = (0, \infty)$, logo f'(x) existe e é diferente de zero, para todo $x \in Dom(f)$. Assim, f não possui pontos críticos. Além disso, f'(x) > 0 e portanto f é crescente em todo o seu domínio.
- (e) Temos que $f'(x) = \frac{2x}{x^2+2}$. O único ponto crítico é x=0. Note que, f'(-1) < 0 e f'(1) > 0, assim, f é decrescente em $(-\infty,0)$ e crescente em $(0,\infty)$. Portanto, 0 é ponto mínimo.

Exercício 4 (i) Seja f contínua em $p \in Dom(f)$. Dizemos que $p \in ponto de inflexão de f se existem <math>a,b \in \mathbb{R}$ tais que $p \in (a,b)$ e p muda a concavidade da função, ou seja, $f|_{(a,p)}$ tem concavidade para cima e $f|_{(p,b)}$ tem concavidade para baixo ou $f|_{(a,p)}$ tem concavidade para baixo e $f|_{(p,b)}$ tem concavidade para cima.

Seja f uma função derivável até segunda ordem em (a,b). Então,

- Se f''(x) > 0, para todo $x \in (a,b)$, então f tem concavidade para cima (côncava) em (a,b);
- Se f''(x) < 0, para todo $x \in (a,b)$, então f tem concavidade para baixo (convexa) em (a,b).
- (ii) (a) Ponto de inflexão em $x = -\sqrt[3]{2}$.

 Concavidade para cima em $(-\infty, -\sqrt[3]{2})$.

 Concavidade para baixo em $(-\sqrt[3]{2}, 0)$.
 - $\begin{array}{ll} \textit{(b) Pontos de inflexão em $x = \arccos(\frac{1+\sqrt{33}}{8}) + 2\pi n, x = -\arccos(\frac{1+\sqrt{33}}{8}) + 2\pi n, x = \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, x = \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, x = \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, \arccos(\frac{1+\sqrt{33}}{8}) + 2\pi n, \arccos(\frac{1+\sqrt{33}}{8}) + 2\pi n, \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, -\arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, \cos(\frac{1-\sqrt{33}}{8}) + 2\pi n, \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, \arccos(\frac{1-\sqrt{33}}{8}) + 2\pi n, -\arccos(\frac{1+\sqrt{33}}{8}) + 2\pi n, -\cos(\frac{1+\sqrt{33}}{8}) + 2\pi n,$
 - (c) Pontos de inflexão em $x = \{-6,0,6\}$. Concavidade para cima em $(-\infty,-6)$, (-2,0) e (2,6). Concavidade para baixo em (-6,-2), (0,2) e $(6,+\infty)$.
 - (d) Não possui pontos de inflexão.
 - (e) Pontos de inflexão em $x = \{-\sqrt{2}, \sqrt{2}\}$. Concavidade para cima em $(-\sqrt{2}, \sqrt{2})$. Concavidade para baixo em $(-\infty, -\sqrt{2})$ $e(\sqrt{2}, +\infty)$.
- Exercício 5 (a) Lembremos que o domínio da função $\ln(x)$ é o intervalo $(0,+\infty)$. Fixe b>0 e considere x>0. Defina $f(x):=\ln(xb)$ e $g(x)=\ln(x)+\ln(b)$. Derivando cada uma destas funções obtemos

$$f'(x) = \frac{1}{bx}b = \frac{1}{x} e g'(x) = \frac{1}{x},$$

portanto (f - g)'(x) = 0, logo

$$(f-g)(x) = \ln(xb) - \ln(x) + \ln(b) = c,$$

em todo o intervalo $(0,+\infty)$, para algum $c\in\mathbb{R}$. Como vale para todo $x\in(0,+\infty)$, tome x=1 e temos

$$\ln(b) - \ln(1) + \ln(b) = c \Rightarrow \ln(b) - \ln(b) = c \Rightarrow 0 = c,$$

assim $\ln(xb) - \ln(x) + \ln(b) = 0$, ou seja, $\ln(xb) = \ln(x) + \ln(b)$ para todo $x \in (0, +\infty)$. Portanto,

$$\ln(ab) = \ln(a) + \ln(b).$$

- (b) É importante que o domínio de f seja um intervalo para que f seja constante nessas condições. No exemplo $f(x) = \frac{x}{|x|}$ temos f'(x) = 0 em todo ponto do domínio. A função f não é constante e, como podemos observar, o domínio de f não é um intervalo.
- (c) Seja $f(x) = x^3 + ax^2 + bx + c$, e note que $f'(x) = 3x^2 + 2ax + b$. Assim, f' não tem raiz real se, e somente se, $\Delta = 4a^2 12b < 0$, então f' não tem raiz real se, e somente se, $a^2 < 3b$. Logo, para $a^2 < 3b$ a função f não tem máximo ou mínimo. Agora, f''(x) = 6x + 2a. Assim, f''(x) = 0 se, e somente se, x = -a/3. Caso $a^2 = 3b$ segue que $\Delta = 0$ e com isso x = -a/3 é raiz de f'. Mas na verdade x = -a/3 é um ponto de inflexão, e portanto também nesse ponto a função f não tem máximo ou mínimo. Logo, f não tem máximo ou mínimo se, e somente se, $a^2 \le 3b$.
- (d) a = -3/2 e b = -18. O máximo é em x = -2.
- Exercício 6 (a) Temos que f'(x) = cos(x) e f''(x) = -sen(x). Assim, f''(x) = 0 se, e somente se, $x \in \{k\pi; k \in \mathbb{Z}\}$.

Tomando $a=k\pi-\frac{\pi}{2}$ e $b=k\pi+\frac{\pi}{2}$, temos que $f''(a)=(-1)^k$, enquanto que $f''(b)=(-1)^{k+1}$. Assim, f''(a)=-f''(b), para qualquer $k\in\mathbb{Z}$. Portanto, há uma mudança de concavidade na f, ou seja, $x=k\pi$ é ponto de inflexão.

Além disso, os zeros da função f(x) = sen(x) são os únicos pontos de inflexão.

- (b) Obtemos que $f'(x) = 4x^3 + 3\alpha x^2 + 2bx + c$ e $f''(x) = 12x^2 + 6\alpha x + 2b$. As raízes de f''(x) dependem do valor de $\Delta = 36\alpha^2 96b$.
 - ullet Se $\Delta <$ 0, não existem raízes reais e consequentemente não existem pontos de inflexão.
 - ullet Se $\Delta=0$, existe uma única raiz real e consequentemente existe um único ponto de inflexão.
 - ullet Se $\Delta>0$, então f" possui duas raízes reais (distintas), neste caso, f" possui dois pontos de inflexão.

Portanto,

- (i) Se $36a^2-96b<0\Rightarrow 36a^2<96b\Rightarrow \frac{6}{16}a^2< b, então$ f não tem ponto de inflexão.
- (ii) Se $36a^2 96b = 0 \Rightarrow 36a^2 = 96b \Rightarrow \frac{6}{16}a^2 = b$, então f tem um único ponto de inflexão.
- (iii) Se $36a^2-96b>0\Rightarrow 36a^2>96b\Rightarrow \frac{6}{16}a^2>b$, então f tem, exatamente, dois pontos de inflexão.

Exercício 7 (a) • $Dom(f) = \mathbb{R}$;

- $f(x) = 0 \implies x = 1$;
- $f'(x) = \frac{1}{5x^{\frac{4}{5}}} > 0$, $\forall x \in Dom(f') = \mathbb{R} \setminus \{0\}$. Portanto, f é crescente em todo seu domínio e não possui pontos críticos;

- $f''(x) = -\frac{4}{25x^{\frac{9}{5}}}$. Temos que f''(x) > 0 para x < 0 e f''(x) < 0 para x > 0. Portanto, f tem concavidade para baixo em $(0,\infty)$ e concavidade para cima em $(-\infty,0)$.
- Calculando os limites relevantes, teremos

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x^{\frac{1}{5}} - 1) = \infty$$
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^{\frac{1}{5}} - 1) = -\infty$$

portanto, f não possui assintotas.

• Teremos o seguinte esboço para o gráfico

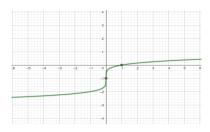


Figura 1: $f(x) = x^{1/5} - 1$

- (b) Dom(f) = \mathbb{R} ;
 - $f(x) = 0 \implies x = \{-8, 0\};$
 - $f'(x) = \frac{8+4x}{3x^{\frac{2}{3}}} = 0 \implies x = -2$. Portanto, f é crescente em x > -2 e decrescente em x < -2;
 - $f''(x) = \frac{4x-16}{9x^{\frac{5}{3}}} = 0 \implies x = 4$. Temos que f'' < 0 em 0 < x < 4 e f'' > 0 em x < 0 e x > 4. Portanto, f tem concavidade para baixo em (0,4) e concavidade para cima em $(-\infty,0)$ e $(4,\infty)$. Alem disso, x = 4 é um ponto de inflexão da curva.
 - Teremos os seguintes sinais para f' e f":

f′		f"			
x < -2	x > -2	$x < 0 \mid 0 < x < 4 \mid x > 0$			
-	+	+	-	+	

Analisando os sinais, temos que o ponto x=-2 é um ponto de mínimo da função.

• Calculando os limites relevantes, teremos

$$\lim_{x \to -\infty} 8x^{\frac{1}{3}} + x^{\frac{4}{3}} = -\infty$$

$$\lim_{x \to \infty} 8x^{\frac{1}{3}} + x^{\frac{4}{3}} = \infty$$

portanto, f não possui assintotas.

• Teremos o seguinte esboço para o gráfico

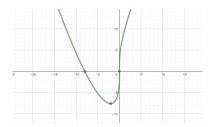


Figura 2: $f(x) = 8x^{\frac{1}{3}} + x^{\frac{4}{3}}$

- (c) Dom(f) = \mathbb{R} ;
 - $f(x) = 0 \implies x = \frac{1}{4}(4\pi n \pi), n \in \mathbb{Z};$
 - $f'(x) = cos(x) sen(x) = 0 \implies x = \frac{1}{4}(4\pi n + \pi), n \in \mathbb{Z}$. Portando, $x = \frac{1}{4}(4\pi n + \pi), n \in \mathbb{Z}$, são pontos críticos de f.
 - $f''(x) = -sen(x) cos(x) = 0 \implies x = \frac{1}{4}(4\pi n \pi), n \in \mathbb{Z}$. Portanto, $x = \frac{1}{4}(4\pi n \pi), n \in \mathbb{Z}$, são pontos de inflexão de f.
 - Como f é periódica, vamos analisar os sinais para f' e f" num período:

f'				
$-\frac{3\pi}{4} < \chi < \frac{\pi}{4}$	$\frac{\pi}{4} < \chi < \frac{5\pi}{4}$	$\frac{5\pi}{4} < \chi < \frac{9\pi}{4}$		
+	-	+		

f"				
$-\frac{5\pi}{4} < \chi < -\frac{\pi}{4}$	$-\frac{\pi}{4} < \chi < \frac{3\pi}{4}$	$\frac{3\pi}{4} < \chi < \frac{7\pi}{4}$		
+	-	+		

• Teremos o seguinte esboço para o gráfico

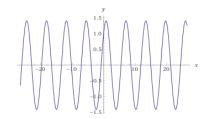


Figura 3: f(x) = sen(x) + cos(x)

- (d) $Dom(f) = \mathbb{R}^*$;
 - $f(x) \neq 0$, $\forall x \in \mathbb{R}^*$;
 - $f'(x) = -\frac{e^{\frac{1}{x}}}{x^2}$. Note que f' < 0 para todo $x \in \mathbb{R}^*$. Portanto, f decrescente em todo seu domínio;

7

- $f''(x) = \frac{2e^{\frac{1}{x}}}{x^3} + \frac{e^{\frac{1}{x}}}{x^4} = 0 \implies x = -\frac{1}{2}$. Temos que f'' > 0 em $(0, \infty)$ e $(-\frac{1}{2}, 0)$, e f'' < 0 em $(-\infty, -\frac{1}{2})$. Portanto, f tem concavidade para cima em $(0, \infty)$ e $(-\frac{1}{2}, 0)$, e concavidade para baixo em $(-\infty, -\frac{1}{2})$. Alem disso, $x = -\frac{1}{2}$ é um ponto de inflexão da curva.
- Teremos os seguintes sinais para f":

$x < -\frac{1}{2}$	$-\frac{1}{2} < \chi < 0$	x > 0
-	+	+

• Calculando os limites relevantes, teremos

$$\lim_{x \to -\infty} e^{\frac{1}{x}} = 1$$

$$\lim_{x \to \infty} e^{\frac{1}{x}} = 1$$

$$\lim_{x \to 0^{-}} e^{\frac{1}{x}} = 0$$

$$\lim_{x \to 0^{+}} e^{\frac{1}{x}} = \infty$$

portanto, f possui assintota vertical em x = 0 e assíntota horizontal em y = 1.

• Teremos o seguinte esboço para o gráfico

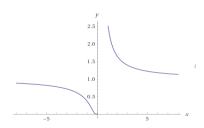


Figura 4: $f(x) = e^{\frac{1}{x}}$

- (e) $Dom(f) = \mathbb{R} \setminus \{-3, 3\};$
 - $f(x) = 0 \implies x = 0$;
 - $f'(x) = \frac{-4x^2-36}{(x^2-9)^2}$. Note que f' < 0 para todo $x \in \mathbb{R} \setminus \{-3,3\}$. Portanto, f decrescente em todo seu domínio;
 - $f''(x) = \frac{8x(x^2+27)}{(x^2-9)^3} = 0 \implies x = 0$. Temos que f'' > 0 em $(3,\infty)$ e (-3,0), e f'' < 0 em $(-\infty, -3)$ e (0,3). Portanto, f tem concavidade para cima em $(3,\infty)$ e (-3,0), e concavidade para baixo em $(-\infty, -3)$ e (0,3). Alem disso, x = 0 é um ponto de inflexão da curva.
 - Teremos os seguintes sinais para f":

x < -3	-3 < x < 0	0 < x < 3	x > 3
-	+	-	+

• Calculando os limites relevantes, teremos

$$\lim_{x \to -\infty} \frac{4x}{x^2 - 9} = 0$$

$$\lim_{x \to \infty} \frac{4x}{x^2 - 9} = 0$$

$$\lim_{x \to -3^-} \frac{4x}{x^2 - 9} = -\infty$$

$$\lim_{x \to -3^+} \frac{4x}{x^2 - 9} = \infty$$

$$\lim_{x \to 3^-} \frac{4x}{x^2 - 9} = -\infty$$

$$\lim_{x \to 3^+} \frac{4x}{x^2 - 9} = \infty$$

portanto, f possui assintota horizontal y = 0 e assintotas verticais em x = 3 e x = -3.

• Teremos o seguinte esboço para o gráfico

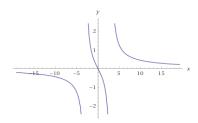


Figura 5: $f(x) = \frac{4x}{x^2-9}$

- (f) Dom(f) = $\mathbb{R} \setminus \{\frac{1}{2}\};$
 - $f(x) = 0 \implies x = \{-2, 1\};$
 - $f'(x) = \frac{2x^2-2x+3}{(2x-1)^2}$. Note que f'>0 para todo $x \in \mathbb{R} \setminus \{\frac{1}{2}\}$. Portanto, f crescente em todo seu domínio;
 - $f''(x) = -\frac{10}{(2x-1)^3} \neq 0 \ \forall x \in \mathbb{R} \setminus \{\frac{1}{2}\}$. Temos que f'' > 0 em $(-\infty, \frac{1}{2})$ e f'' < 0 em $(\frac{1}{2}, \infty)$. Portanto, f tem concavidade para cima em $(-\infty, \frac{1}{2})$ e concavidade para baixo em $(\frac{1}{2}, \infty)$.
 - Teremos os seguintes sinais para f":

$\chi < \frac{1}{2}$	$\chi > \frac{1}{2}$
+	ı

9

• Calculando os limites relevantes, teremos

$$\lim_{x \to -\infty} \frac{x^2 + x - 2}{2x - 1} = -\infty$$

$$\lim_{x \to \infty} \frac{x^2 + x - 2}{2x - 1} = \infty$$

$$\lim_{x \to \frac{1}{2}^{-}} \frac{x^2 + x - 2}{2x - 1} = +\infty$$

$$\lim_{x \to \frac{1}{2}^{+}} \frac{x^2 + x - 2}{2x - 1} = -\infty$$

portanto, f possui assintota vertical em $x = \frac{1}{2}$.

• Teremos o seguinte esboço para o gráfico

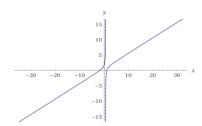


Figura 6: $f(x) = \frac{x^2 + x - 2}{2x - 1}$

Exercício 8 (a)

$$\lim_{x \to -\frac{5}{2}^{+}} \frac{8}{(2x+5)^{5}} = \infty, \quad \lim_{x \to -\frac{5}{2}^{-}} \frac{8}{(2x+5)^{5}} = -\infty$$

$$\lim_{x \to \infty} \frac{8}{(2x+5)^{5}} = 0, \quad \lim_{x \to -\infty} \frac{8}{(2x+5)^{5}} = 0$$

Assíntota vertical: reta x = -5/2.

Assíntota horizontal: reta y = 0.

(b)

$$\lim_{x \to \frac{9}{2}^+} \frac{3x^2}{(2x - 9)^2} = \infty, \quad \lim_{x \to \frac{9}{2}^-} \frac{3x^2}{(2x - 9)^2} = \infty$$

$$\lim_{x \to \infty} \frac{3x^2}{(2x - 9)^2} = \frac{3}{4}, \quad \lim_{x \to -\infty} \frac{3x^2}{(2x - 9)^2} = \frac{3}{4}$$

Assíntota vertical: reta x = 9/2.

Assíntota horizontal: reta y = 3/4.

c)

$$\lim_{x \to -1^{+}} \frac{2x^{2}}{x^{2} - x - 2} = -\infty, \quad \lim_{x \to -1^{-}} \frac{2x^{2}}{x^{2} - x - 2} = \infty$$

$$\lim_{x \to 2^+} \frac{2x^2}{x^2 - x - 2} = \infty, \quad \lim_{x \to 2^-} \frac{2x^2}{x^2 - x - 2} = -\infty$$

$$\lim_{x \to \infty} \frac{2x^2}{x^2 - x - 2} = 2, \quad \lim_{x \to -\infty} \frac{2x^2}{x^2 - x - 2} = 2$$

Assíntota vertical: retas x = -1 e x = 2.

Assíntota horizontal: reta y = 2.

Exercício 9 (a) f contínua, f(0) = 4, f(2) = 2, f(5) = 6;

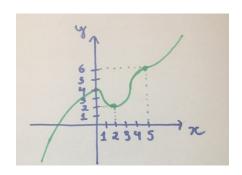
f'(0) = f'(2) = 0, ou seja, 0 e 2 são pontos críticos;

f'(x) > 0 se |x-1| > 1, ou seja, f crescente;

f'(x) < 0 se |x - 1| < 1, ou seja, f decrescente;

f''(x) < 0 se x < 1 ou se |x-4| < 1, ou seja, f tem concavidade para baixo;

f''(x) > 0 se x > 5 ou se |x-2| < 1, ou seja, f tem concavidade para cima.

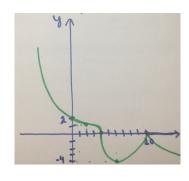


- (b) f continua, f(0) = 2, f(2) = 1, f(4) = f(10) = 0, f(6) = -4;
 - f'(2) = f'(6) = 0, ou seja, 2 e 6 são pontos críticos;
 - f'(x) < 0 em $(-\infty,4),(4,6)$ e $(10,\infty)$, ou seja, f decrescente;
 - f'(x) > 0 em (6, 10), ou seja, f crescente;

 $n\tilde{a}o$ existem f'(4) e f'(10), ou seja, retas tangentes $n\tilde{a}o$ definidas em 4 e 10;

 $f''(x)>0\ em\ (-\infty,2), (4,10)\ e\ (10,\infty),\ ou\ seja,\ f\ tem\ concavidade\ para\ cima;$

f''(x) < 0 em (2,4), ou seja, f tem concavidade para baixo.



(c) f(2) = 4;

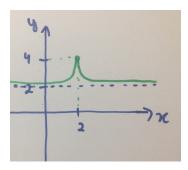
f'(x) > 0 se x < 2, ou seja, f crescente;

f'(x) < 0 se x > 2, ou seja, f decrescente;

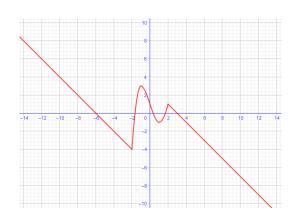
f''(x) > 0 se $x \neq 2$, ou seja, f tem concavidade para cima;

 $\lim_{x\to 2}|f'(x)|=+\infty \text{, ou seja, }x=2\text{ \'e uma ass\'intota vertical;}$

 $\lim_{x\to +\infty} f(x)=2, \ \lim_{x\to -\infty} f(x)=2, \ ou \ seja, \ y=2 \ \'e \ uma \ ass\'intota \ horizontal.$



$$(d) \ f(x) = \begin{cases} -x - 6, x < -2 \\ -7x^2 - 14x - 4, -2 < x < -1 \\ x^3 - 3x + 1, -1 \le x \le 1 \\ 2x^2 - 4x + 1, 1 < x < 2 \\ -x + 3, x > 2. \end{cases}$$



Exercício 10 (a) $f(x) = x + \frac{2}{x^2}$, $logo\ f'(x) = 1 - \frac{4}{x^3}$. Assim, f'(x) < 0 em $(-\infty, 0)$ e $(2^{\frac{2}{3}}, \infty)$ e f'(x) > 0 em $(0, 2^{\frac{2}{3}})$. Além disso, $f'(x) \neq 0$, $\forall x$. Portanto, f é crescente em $(0, 2^{\frac{2}{3}})$, decrescente em $(-\infty, 0)$ e $(2^{\frac{2}{3}}, \infty)$, além disso f não possui ponto crítico.

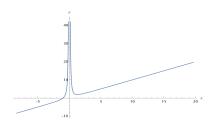


Figura 7: $f(x) = x + \frac{1}{x^2}$

(b) $f(x) = \frac{2x^2 + 4x}{2 + x^2}$, $logo\ f'(x) = \frac{-4x^2 + 8x + 8}{(2 + x^2)^2}$. Assim, $f'(x) < 0\ em\ (-\infty, 1 - \sqrt{3})\ e\ (1 + \sqrt{3}, \infty)\ e$ $f'(x) > 0\ em\ (1 - \sqrt{3}, 1 + \sqrt{3})$. Além disso, $f'(x) = 0\ se\ x = \{1 - \sqrt{3}, 1 + \sqrt{3}\}$. Portanto, $f\ e\ crescente\ em\ (1 - \sqrt{3}, 1 + \sqrt{3})$, decrescente $em\ (-\infty, 1 - \sqrt{3})\ e\ (1 + \sqrt{3}, \infty)\ e$ $x = \{1 - \sqrt{3}, 1 + \sqrt{3}\}$ são pontos críticos.

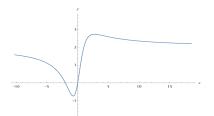


Figura 8: $\frac{2(x^2+2x)}{x^2+2}$

(c) $f(x) = x^x$, x > 0, $logo\ f'(x) = x^x(\ln x + 1)$. Assim, f'(x) < 0 em $(0, \frac{1}{e})$ e f'(x) > 0 em $(\frac{1}{e}, \infty)$. Além disso, $f'(\frac{1}{e}) = 0$. Portanto, f é crescente em $(\frac{1}{e}, \infty)$, decrescente em $(0, \frac{1}{e})$ e $x = \frac{1}{e}$ é ponto crítico.

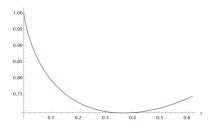


Figura 9: χ^{x}

Exercício 11 (a) • $Dom(f) = \{x \in \mathbb{R} \mid x > 0\}\};$

- $f(x) = 0 \implies x = 1$;
- $f'(x) = \ln(x) + 1 = 0 \implies x = \frac{1}{e}$. Portanto, $f \notin decrescente em(0, \frac{1}{e}) e crescente em(\frac{1}{e}, \infty)$;
- $f''(x) = \frac{1}{x}$, portanto f'(x) > 0 para todo $x \in Dom(f)$, portanto a função tem concavidade para cima em todo seu domínio, portanto a função não possui nenhum ponto de inflexão.
- Teremos os seguintes sinais para f' e f":

f′			f"
$0 < x < \frac{1}{e}$	$x > \frac{1}{e}$		x > 0
-	+		+

Analisando os sinais, temos que o ponto $x=\frac{1}{e}$ é um ponto de mínimo da função.

• Calculando os limites relevantes, teremos

$$\lim_{x\to 0+} x \ln(x) = 0$$

$$\lim_{x \to \infty} x \ln(x) = \infty$$

portanto, f(x) $n\tilde{a}o$ possui assintotas.

• Teremos o seguinte esboço para o gráfico

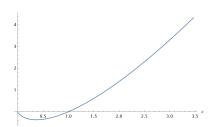


Figura 10: $f(x) = x \ln(x)$

(b) • Dom(f) = \mathbb{R} ;

• $f(x) = 0 \implies x = 0$;

• $f'(x) = \frac{3x^2 + x^4}{(1+x^2)^2} = 0 \implies x = 0$. Portanto, f é crescente em $x \in R$;

• $f''(x) = -\frac{6x+4x^3-2x^5}{(1+x^2)^4} = 0 \implies x = \{-\sqrt{3},0,\sqrt{3}\}$. Temos que f'' < 0 em $(-\sqrt{3},0)$ e $(\sqrt{3},\infty)$ e f'' > 0 em $(-\infty,-\sqrt{3})$ e $(0,\sqrt{3})$. Portanto, f tem concavidade para baixo em $(-\sqrt{3},0)$ e $(\sqrt{3},\infty)$, e concavidade para cima em $(-\infty,-\sqrt{3})$ e $(0,\sqrt{3})$. Alem disso, $x = \{-\sqrt{3},0,\sqrt{3}\}$ são pontos de inflexão da curva.

• Teremos os seguintes sinais para f' e f":

f	.,	f"			
x < 0	x > 0	$x < -\sqrt{3}$	$-\sqrt{3} < x < 0$	$0 < x < \sqrt{3}$	$x > \sqrt{3}$
+	+	+	-	+	-

Analisando os sinais, notamos que o ponto x=0 não é um ponto nem de minimo nem de máximo.

• Calculando os limites relevantes, teremos

$$\lim_{x \to -\infty} \frac{x^3}{1 + x^2} = -\infty$$

$$\lim_{x \to \infty} \frac{x^3}{1 + x^2} = \infty$$

14

portanto, f(x) $n\tilde{a}o$ possui assintotas.

• Teremos o seguinte esboço para o gráfico

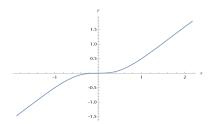


Figura 11: $f(x) = \frac{x^3}{(1+x^2)}$

- (c) Dom(f) = \mathbb{R} ;
 - $f(x) = 0 \implies x = 0$;
 - $f'(x) = e^{-2x} (1-2x) = 0 \implies x = \frac{1}{2}$. Portanto, f é crescente em $x < \frac{1}{2}$ e decrescente em $x > \frac{1}{2}$;
 - $f''(x) = 4e^{-2x}(x-1) = 0 \implies x = 1$. Temos que f'' < 0 em x < 1 e f'' > 0 em x > 1. Portanto, f tem concavidade para baixo em x < 1 e concavidade para cima em x > 1. Alem disso, x = 1 é um ponto de inflexão da curva.
 - Teremos os seguintes sinais para f' e f":

f	f"			
$\chi < \frac{1}{2}$	$\chi > \frac{1}{2}$	1 <	χ	x > 1
+	-	_		+

Analisando os sinais, temos que o ponto $x = \frac{1}{2}$ é um ponto de máximo da função.

• Calculando os limites relevantes, teremos

$$\lim_{x \to -\infty} x e^{-2x} = -\infty$$
$$\lim_{x \to \infty} x e^{-2x} = 0$$

portanto, f(x) possui uma assintota horizontal x = 0.

• Teremos o seguinte esboço para o gráfico

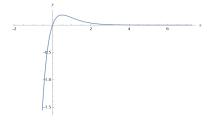


Figura 12: $f(x) = xe^{-2x}$

15

Exercício 12 Note que

$$\lim_{x \to \infty} [f(x) - (-2x + 1)] = \lim_{x \to \infty} \frac{3}{x - 2} = 0.$$

Dessa forma, y = -2x + 1 é a assíntota oblíqua.

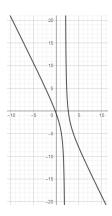


Figura 13: Gráfico de y.

Exercício 13 Para sabermos a distância entre dois pontos $p_1 = (a, b)$ e $p_2 = (c, d)$ se usa a equação $\Delta S = ||p_1 - p_2|| = \sqrt{(a-c)^2 + (b-d)^2}$. Com isso apenas temos que definir quem são os pontos p_1 e p_2 .

De acordo com a equação da curva y = 2/x podemos escrever p_1 como $p_1 = (x, 2/x)$, enquanto o ponto p_2 pode ser a origem $p_2 = (0, 0)$.

Com esses valores definidos podemos joga-los na equação da distância, o que resulta em $\Delta S = \sqrt{(x-0)^2 + (2/x-0)^2} = \sqrt{(x)^2 + (2/x)^2} = \sqrt{\frac{x^4+4}{x^2}} = \frac{\sqrt{x^4+4}}{x}$.

Para determinarmos o valor de x em que a distância ΔS é mínima temos que encontrar os seus pontos de máximo e mínimo, e para isso podemos nos utilizar da derivada. Sendo $\Delta S(x) = \frac{\sqrt{x^4+4}}{x}$, temos que os pontos em que $\Delta S'(x) = 0$ são os pontos onde a

função pode ser um mínimo. Assim fazemos que $\Delta S'(x) = \frac{d\frac{\sqrt{x^4+4}}{x}}{dx} = \frac{\frac{1}{2}\frac{4x^3}{\sqrt{x^4+4}}x-\sqrt{x^4+4}}{x^2} = \frac{\frac{2x^4-x^4-4}{\sqrt{x^4+4}}}{x^2} = \frac{x^4-4}{x^2\sqrt{x^4+4}}$

Para $\Delta S'(x) = 0$, $x^4 - 4 = 0$ sem que $x^2 \sqrt{x^4 + 4} = 0$, o que é cumprido para $x = \sqrt{2}$.

Portanto, o valor de x que faz com que y=2/x fique o mais próximo possível da origem é $x=\sqrt{2}$, que é o ponto $(\sqrt{2},\sqrt{2})$.

Exercício 14 Nessa questão usa-se a mesma ideia que foi usada anteriormente. Pelo posição de P ser dada pela função $x = \sqrt{t}$, sua posição $p_P = (\sqrt{t}, 0)$.

Já pela de Q ser representada por $y = t^2 - 3/4$, temos que $p_Q = (0, t^2 - 3/4)$.

Com isso podemos escrever a função $\Delta S(t)$ que descreve a distância entre eles no tempo como $\Delta S(t) = \sqrt{(\sqrt{t}-0)^2 + (0-(t^2-3/4))^2} = \sqrt{t+(3/4-t^2))^2} = \sqrt{t^4-3/2t^2+t+9/16}.$ Com essa função podemos encontrar os pontos mínimos ao calcular o t em que $\Delta S'(t) = 0$: $\Delta S'(t) = \frac{1}{2} \frac{4t^3-3t+1}{\sqrt{t^4-3/2t^2+t+9/16}}$, assim temos que achar t>=0 que faz com que $4t^3-3t+1=0$ e $\sqrt{t^4-3/2t^2+t+9/16}\neq 0$.

Temos que t=-1 é raiz de $4t^3-3t+1$, portanto podemos escrever a equação como $4t^3-3t+1=(t+1)(4t^2-4t+1)$, assim apenas temos encontrar as raízes de $4t^2-4t+1$. Usando Bhaskara temos $\Delta=16-4\cdot 4=0 \to t=\frac{4}{8}=1/2$.

Assim descobrimos que para t = 1/2 a distância entre P e Q é a mínima.

Exercício 15 Considere $f(x) = x^2 - 2x + 1$. Assim, f'(x) = 2x - 2 e consequentemente, x = 1 é ponto crítico.

Note que f é decrescente em $(-\infty,1)$ e crescente em $(1,\infty)$, logo x=1 é o ponto mínimo global de f. Assim, $f(x) \geq f(1) = 0$, para todo $x \in \mathbb{R}$.

Isso implica que $x^2 + 1 \ge 2x$, para todo x.

Em particular, vale a equação acima para x=a, x=b, x=c e x=d. Multiplicando essas quatro equações, obtemos

$$(a^2+1)(b^2+1)(c^2+1)(d^2+1) \ge 2a2b2c2d.$$

Logo,

$$\frac{(a^2+1)(b^2+1)(c^2+1)(d^2+1)}{abcd} \ge 16.$$

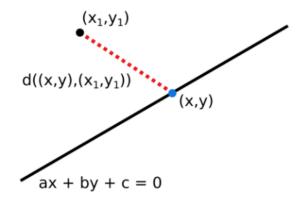
Exercício 16 Assuma que x e y são respectivamente a base e a altura do retângulo, isso significa que o perímetro para a parte retangular é x + 2y e do semicírculo $\pi_{\frac{\chi}{2}}^{x}$. Com isso temos que x + 2y + $\pi_{\frac{\chi}{2}}^{x}$ = 6u.a, ou seja y = $3 - \frac{2+\pi}{4}x$.

De acordo com a questão, a parte do semicírculo deixa menos luz passar, portanto podemos criar a função sobre a passagem de luz $L(x,y)=x\cdot y+\frac{2}{3}\left(\frac{x}{2}\right)^2\frac{\pi}{2}=x\cdot y+\frac{\pi}{12}x^2=x(y+\frac{\pi}{12}x)=x(3-\frac{2+\pi}{4}x+\frac{\pi}{12}x)=x(\frac{36-(6+2\pi)x}{12})=\frac{36x-(6+2\pi)x^2}{12}.$

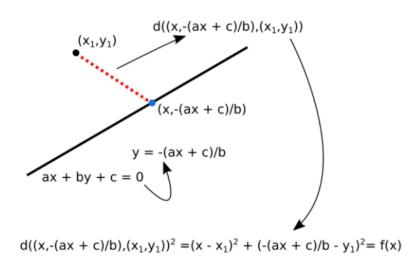
Assim temos que a luz que passa é definida por $L(x)=\frac{36x-(6+2\pi)x^2}{12}$, e para encontrar o seu máximo temos que achar os valores de x para quais $L'(x)=0=\frac{36-(6+2\pi)2x}{12}=\frac{9-(3+\pi)x}{3}$, que é $x=\frac{9}{3+\pi}$.

Portanto, o vitral tem máxima passagem de luz para $x=\frac{9}{3+\pi}\approx 1.46$ u.c e $y=3-\frac{2+\pi}{4}\cdot\frac{9}{3+\pi}\approx 1.12$ u.c.

Exercício 17 Primeiro denotemos (x_1,y_1) como um ponto arbitrariamente escolhido, (x,y) como um ponto pertencente a reta ax + by + c = 0 e $d((x,y),(x_1,y_1))$, como a distância entre os dois pontos,



por (x,y) pertencer a uma reta, podemos fazer com que y dependa de x, e consequentemente que a função da distância dependa também apenas de x. Para fazer isso isolamos y da equação da reta e obtemos $y=-\frac{ax+c}{b}$, assim temos que $(x,y)=(x,-\frac{ax+c}{b})$. Vamos chamar o quadrado da distância entre os dois pontos de f, por termos agora que a função da distância apenas depende de x, podemos fazer $f(x)=d((x,-\frac{ax+c}{b},(x_1,y_1))^2=(x-x_1)^2+(-\frac{ax+c}{b}-y_1)^2$,



Queremos achar o valor de x em que a distância (f(x)) é mínima (f'(x)=0), o qual iremos chamar de x_0 , assim temos

$$f'(x) = 2(x - x_1) - \frac{a}{b} \cdot 2 * (-\frac{ax + c}{b} - y_1),$$

$$f'(x_0) = 2(x_0 - x_1) - \frac{a}{b} \cdot 2 * (-\frac{ax_0 + c}{b} - y_1) = 0,$$

isolando x_0 ,

$$x_0 = \frac{b^2x_1 - aby_1 - ac}{(a^2 + b^2)}.$$

Portanto, sabendo o valor em que a distância é mínima, podemos descobrir qual é o valor que essa distância ao quadrado toma,

$$f(x_0) = \frac{(ax_1 + by_1 + c)^2}{a^2 + b^2},$$

que se tomarmos a raiz obtemos,

$$\frac{|(ax_1+by_1+c)|}{\sqrt{a^2+b^2}},$$

que é a equação para se calcular a distância mínima entre um ponto e uma reta, que é o equivalente a encontrar a distância entre um ponto (x_1, y_1) e o ponto (x_0, y_0) mais próximo que pertença a reta.

Para confirmar que o valor de x_0 encontrado é realmente o valor que gera o mínimo podemos reescrever f'(x) com x_0 , a qual fica

$$f'(x) = \frac{2(a^2 + b^2)}{b^2}(x - x_0).$$

Assim, para $x > x_0$ temos que f'(x) > 0, e para $x < x_0$ temos f'(x) < 0. Portanto, pelo teste da primeira derivada concluímos que x_0 é o único valor que faz com que f(x) chegue ao seu mínimo.

Exercício 18 Primeiramente perceba que $\lim_{x\to\infty}=\infty$ e $\lim_{x\to-\infty}=-\infty$, pois é uma função polinomial. Agora, f(-2)=-14 e f(-1)=2, ou seja, há uma mudança de sinal e como f é contínua pelo teorema do valor intermediário existe $c\in [-2,-1]$, tal que f(c)=0. Vamos verificar que f, não tem mais raízes reais. De fato, vamos usar sua derivada, $f'(x)=3x^2-6x$. Com isso, f é estritamente decrescente no intervalo [0,2] e f(x)>0 para todo $x\in [0,2]$. Além disso, f é estritamente crescente $(-\infty,0)$ e $(2,\infty)$, com apenas uma mudança de sinal no intervalo [-2,-1]. Portanto, f admite apenas uma raiz real. E como pode-se notar, o intervalo em que descobrimos que f(x)=0 é o intervalo $x\in [-2,-1]$, que têm amplitude 1.

Exercício 19 Considere a função $f(x) = sen(x) - x + \frac{x^3}{3!}$. Note que f(0) = 0. Vamos verificar que, esta função é estritamente crescente. Para isso perceba que f é derivável para x > 0, logo

$$f'(x) = \cos(x) + \frac{x^2}{2} - 1.$$

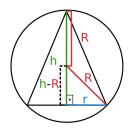
Note que f'(x) > 0 para x > 0 e assim f é estritamente crescente no intervalo $(0, +\infty)$, como f(0) = 0, temos que f(x) > 0 para todo $x \in (0, +\infty)$ e dessa forma, $sen(x) > x - \frac{x^3}{3!}$.

Exercício 20 (a) Queremos x > 0 tal que $x + \frac{1}{x^2}$ seja o minimo possível. Seja $f(x) = x + \frac{1}{x^2}$. Derivando $f'(x) = 1 - \frac{2}{x^3} = \frac{x^3 - 2}{x^3}$, logo f'(x) = 0 se, e somente se, $2 - x^3 = 0$

e com isso $x = \sqrt[3]{2}$. Agora, para $x \in (0, \sqrt[3]{2})$ a função é estritamente decrescente, pois f'(x) < 0. Contudo, para $x > \sqrt[3]{2}$, f'(x) > 0 o que torna f estritamente crescente, logo $\sqrt[3]{2}$ é ponto de mínimo.

(b) Os números positivos procurados são x e y tais que y+x=16, ou seja, y=16-x. Seja f(x)=xy=x(16-x). Então f'(x)=16-2x. Temos f'(x)=0 para x=8. Mas, para $x\in(0,8)$ f'(x)>0 o que torna estritamente crescente e para $x\in(8,16)$ temos f'(x)<0 o que torna f estritamente decrescente, logo x=8 é máximo local. Portanto, os números procurados são x=8 e y=8.

Exercício 21 Primeiro temos que ver como as medidas do raio da esfera, R, o raio do cone r e a altura do cone h se relacionam quando o cone é inscrito na esfera. Fazendo um desenho lateral da situação notamos que essas medidas formam um triângulo retângulo.



E relacionando os lados com o teorema de Pitágoras chegamos na fórmula $R^2=r^2+(h-R)^2$. Desenvolvendo, obtemos $r^2=2hR-h^2$. Da fórmula do volume do cone $V=\frac{1}{3}\pi r^2h$, substituindo o valor de r^2 , obtemos que o volume é escrito em função de h,

$$V(h) = \frac{\pi}{3} 2h^2 R - h^3$$
.

Derivando em relação a h, $V'(h)=\frac{\pi}{3}h(4R-h)$ e isso é zero se, e somente se, $h=\frac{4}{3}R$, já que h não pode ser zero. Logo, para $h\in(0,\frac{4}{3}R)$, V'(h)>0 o que torna V estritamente crescente e se $h\in(\frac{4}{3}R,2R)$, V'(h)<0 o que torna V estritamente decrescente. Portanto, $\frac{4}{3}R$ é ponto de máximo local, ou seja, a altura de um cone circular reto, de volume máximo, inscrito em uma esfera de raio R é dado por $h=\frac{4}{3}R$.

Exercício 22 Como um lado já está protegido, temos que um retângulo de lados x e y tem comprimento C = x + 2y. Além disso, por hipótese, $x \cdot y = 50$, logo $y = \frac{50}{x}$. Substituindo no comprimento, e considerando a função $f(x) = x + \frac{100}{x}$. Derivando, $f'(x) = 1 - \frac{100}{x^2} = \frac{x^2 - 100}{x^2}$. Então, f'(x) = 0 se, e somente se, $x = \pm 10$. Mas como estamos lidando com medidas, descartamos o número negativo. Agora se, x > 10 f'(x) > 10

0 então f é estritamente crescente, caso contrário f'(x) < 0 então f é estritamente decrescente, o que torna x=10 um ponto de mínimo da função. Como $y=\frac{50}{x}$ segue que para x=10 temos y=5 e assim, os comprimentos da cerca de menor comprimento é 5m e 10m.

Exercício 23 Temos que $V_{cil} = 1 = A_b h = \pi r^2 h$, logo $r^2 h = \frac{1}{\pi}$. Além disso, $A_{lateral} + A_b = 2\pi r h + \pi r^2$ e assim $Custo_{lat+fundo} = 5(2\pi r h + \pi r^2)$. Como $A_{tampa} = \pi r^2$, logo $Custo_{tampa} = 10\pi r^2$. Assim, a função custo total é

$$\begin{split} C &= \text{Custo}_{\text{lat+fundo}} + \text{Custo}_{\text{tampa}} = 10\pi r^2 + 10\pi r h + 5\pi r^2 \\ &= 15\pi r^2 + 10\pi r h \\ &= 5\pi \left(3r^2 + 2r h\right) \\ &= 5\pi \left(3r^2 + 2r \left(\frac{1}{\pi r^2}\right)\right) \\ &= 5\pi \left(3r^2 + \frac{2}{\pi r}\right). \end{split}$$

Logo, $C' = 5\pi(6r - \frac{2}{\pi r^2})$. Então, para minimizar o custo, temos que C' = 0, isto é

$$6r - \frac{2}{\pi r^2} = 0$$

$$6r^3 - \frac{2}{\pi} = 0$$

$$r^3 = \frac{1}{3\pi}$$

$$r = \frac{1}{\sqrt[3]{3\pi}}.$$

Portanto, as dimensões da caixa que minimizem o custo do material empregado vão ter que ser $r = \frac{1}{\sqrt[3]{3\pi}}$ e $h = \frac{1}{\pi r^2} = \sqrt[3]{\frac{9}{\pi}}$.

Exercício 24 (a) Seja h a altura da pirâmide e r o raio do círculo circunscrito base. Logo, $h^2=l^2-r^2$. Por outro lado, como a pirâmide tem n faces, tem-se n-1 faces laterales e assim, a circunferência circunscrita determina no polígono da base os ângulos centrais de medida $\alpha=\frac{2\pi}{n-1}$ radianes. Com isto, $A_{base}=(n-1)\frac{r.rsen\alpha}{2}$. Logo, tem-se a função

$$\begin{split} f &= V_{pir} h = \frac{A_{base} h.h}{3} \\ &= (n-1) \frac{h^2 r^2}{6} sen \left(\frac{2\pi}{n-1} \right) \\ &= \frac{r^2 (n-1) (l^2 - r^2) sen \left(\frac{2\pi}{n-1} \right)}{6} \\ &= -\frac{(n-1) sen \left(\frac{2\pi}{n-1} \right) r^4}{6} + \frac{(n-1) sen \left(\frac{2\pi}{n-1} \right) l^2 r^2}{6}. \end{split}$$

Como queremos que dita função atinja o máximo e dita função é uma parábola, tem-se que

$$r^2 = -rac{rac{(n-1)\sin\left(rac{2\pi}{n-1}
ight)l^2}{6}}{-2rac{(n-1)\sin\left(rac{2\pi}{n-1}
ight)}{6}} = rac{l^2}{2},$$

 $logo \ r = \frac{1\sqrt{2}}{2}$.

(b) A expressão desse produto máximo é

$$\begin{split} f &= -\frac{(n-1)\operatorname{sen}\left(\frac{2\pi}{n-1}\right)l^4}{24} + \frac{(n-1)\operatorname{sen}\left(\frac{2\pi}{n-1}\right)l^4}{12} \\ &= \frac{(n-1)l^4}{24}\operatorname{sen}\left(\frac{2\pi}{n-1}\right). \end{split}$$

Exercício 25 Temos que $x'(t) = \nu(t) = 2t-3$, logo fazendo a integração infefinida teremos que $x(t) = t^2 - 3t + C$. Mas como temos que no instante t = 0, a posição da partícula é x = 5, logo $x(t) = t^2 - 3t + 5$. Assim, para achar o mínimo precisamos que x'(t) = 0, isto é 2t-3=0, e portanto o mínimo vai ser atingido no instante $t = \frac{3}{2}$.

Exercício 26 A área do sólido é $A_{sol}=2\pi rh+2\pi r^2+\pi r^2=5\pi$, assim $rh=\frac{5-3r^2}{2}$. O volume do sólido é $V=\pi r^2h+\frac{2\pi r^3}{3}$, logo,

$$V = \pi r \left(\frac{5 - 3r^2}{2}\right) + \frac{2\pi r^3}{3}$$
$$= \frac{5\pi r}{2} - \frac{5\pi r^3}{6}.$$

Para que o volume seja máximo, devemos ter que

$$0 = V' = \frac{5\pi}{2} - \frac{5\pi r^2}{2}$$
$$\frac{5\pi}{2} = \frac{5\pi r^2}{2}$$
$$r = 1,$$

logo $h = \frac{5-3}{2} = 1$.

Exercício 27 Seja L o lucro pela venda e x o número de centavos. Notemos que o preço de venda e a quantidade a ser vendida de acordo com as condições do problema são 1.50-0.01x e 500+25x, respectivamente. Da mesma maneira o preço de compra é de 0.70. Logo, a função L é

$$L(x) = (1.50 - 0.01x)(500 + 25x) - 0.70(500 + 25x)$$
$$= (0.80 - 0.01x)(500 + 25x)$$
$$= 400 + 15x - 0.25x^{2}.$$

Para maximizar o lucro devemos ter que

$$0 = L'(x) = 15 - 0.5x$$

 $x = 30.$

Logo, o preço de venda para maximizar o lucro deve ser de 1.5-0.01(30)=1.20 unidades monetárias.

Exercício 28 Note que $\cos\theta=x/3$. Seja d(A,B) a distância de A até B, temos que $d(A,B)=2x=6\cos\theta$. Além disso, se d(B,C) é o comprimento do arco que liga B e C, $d(B,C)=6\theta$.

Seja t a função que denota o tempo utilizado no percurso, temos que, para $\theta \in [0,\pi/2]$,

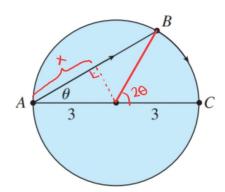
$$t(\theta) = \frac{d(A,B)}{3} + \frac{d(B,C)}{6} = 2\cos\theta + \theta.$$

Vamos procurar extremos da função em $(0, \pi/2)$:

$$t'(\theta) = -2\sin\theta + 1$$

$$\Rightarrow t'(\theta) = 0 \Leftrightarrow \sin\theta = 1/2 \Leftrightarrow \theta = \pi/6$$

Observe que $t(\pi/6) = \sqrt{3} + \pi/6$. Resta observar o que acontece nos extremos do intervalo. Como t(0) = 2 e $t(\pi/2) = \pi/2$, a mulher deve caminhar todo o percurso.



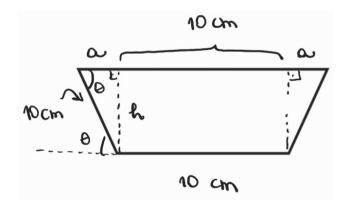
Exercício 29 Note que $a = 10\cos\theta$ e $h = 10\sin\theta$. Então, seja $A(\theta)$ a área do trapézio,

$$A(\theta) = \frac{(10 + (10 + 2\alpha)) \cdot h}{2} = 100(1 + \cos \theta) \sin \theta$$
$$\Rightarrow A'(\theta) = 100[-\sin^2 \theta + (1 + \cos \theta) \cos \theta].$$

Portanto,

$$A'(\theta) = 0 \Leftrightarrow -\sin^2\theta + \cos^2\theta + \cos\theta = 0 \Leftrightarrow \cos\theta = 1/2 \Leftrightarrow \theta = \pi/3.$$

Observe que $A(\pi/3) = 75\sqrt{3}$. Resta observar o que acontece em $\theta = \pi/2$. Como $A(\pi/2) = 100$, temos que $\theta = \pi/3$ é o ângulo que maximiza o volume da calha.



Exercício 30 Fórmulas:

$$V_1 = \frac{\pi \cdot R^2 \cdot H}{3}$$

$$V_2 = \pi \cdot r^2 \cdot h = 2\pi \cdot r^3$$

Observando a figura abaixo,

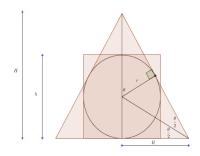


Figura 14: Projeção em 2D do exercício

temos

$$\tan \theta = \frac{H}{R}$$

$$\tan \frac{\theta}{2} = \frac{r}{R}$$

$$h = 2r$$

Do enunciado,

$$k = \frac{V_1}{V_2} = \frac{R^2 \cdot H}{6r^3} = \frac{\tan \theta}{6 \tan^3 \frac{\theta}{2}}$$

O valor mínimo será encontrado derivando a função, mas para facilitar vamos transformar,

$$k = \frac{\frac{\frac{\sin \theta}{\cos \theta}}{6\frac{\sin^3 \frac{\theta}{2}}{\cos^3 \frac{\theta}{2}}}}{6\sin^3 \frac{\theta}{2}(1 - 2\sin^2 \frac{\theta}{2})}$$
$$k = \frac{2\sin \frac{\theta}{2}\cos^4 \frac{\theta}{2}}{6\sin^3 \frac{\theta}{2}(1 - 2\sin^2 \frac{\theta}{2})}$$

Arrumando,

$$k = \frac{(1 - \sin^2 \frac{\theta}{2})^2}{3\sin^2 \frac{\theta}{2}(1 - 2\sin^2 \frac{\theta}{2})}$$

Fazendo

$$\sin^2 \frac{\theta}{2} = a$$

$$k = \frac{(1 - a)^2}{3a(1 - 2a)}$$

Pra encontrar o mínimo de k, devemos fazer

$$k' = 0$$

Sabemos que,

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$$

Assim temos,

$$k' = \frac{2(1-\alpha)(-1)(3\alpha(1-2\alpha)) - (1-\alpha)^2[3(1-2\alpha+3\alpha(-2))]}{[3\alpha(1-2\alpha)]^2}$$

Desenvolvendo encontramos,

$$k' = \frac{(\alpha - 1)(1 - 3\alpha)}{3\alpha^2(1 - 2\alpha)}$$

Desta forma encontramos,

$$a = 1$$
 $a = \frac{1}{3}$

Portanto o valor mínimo será:

$$k = \frac{(1 - \frac{1}{3})^2}{3 \cdot \frac{1}{3}(1 - 2 \cdot \frac{1}{3})}$$
$$\therefore k = \frac{4}{3}$$

Exercício 31 Seja t_f o tempo em que a corrida termina, temos, por hipótese, que f(0) = g(0) - h(0) = 0 e $f(t_f) = g(t_f) - h(t_f) = 0$.

Pelo Teorema do Valor Médio, existe $c \in (0, t_f)$ tal que

$$f'(c) = \frac{f(t_f) - f(0)}{t_f} = 0.$$

 $\label{eq:como} \textit{Como} \ f'(c) = g'(c) - h'(c), \ \textit{temos} \ \textit{que} \ g'(c) = h'(c), \ \textit{isto} \ \acute{e}, \ \textit{em} \ t = c \ \textit{os} \ \textit{dois} \ \textit{corredores} \\ \textit{tinham} \ \textit{a} \ \textit{mesma} \ \textit{velocidade}.$