Aula 12: Algumas propriedades sobre produto

Universidade de São Paulo

São Carlos - SP, Brasil

 1^o Semestre de 2023 - Curso de Topologia

Algumas propriedades sobre produto

Vamos começar provando que os axiomas de enumerabilidade são preservados por produtos enumeráveis. Alguns destes resultados podem ser melhorados (ver exercícios a seguir).

Proposição 1

Seja $((X_n, \tau_n))_{n \in \mathbb{N}}$ familia de espaços que satisfazem o i-ésimo axioma de enumerabilidade. Então, $\prod_{n \in \mathbb{N}} X_n$ também satisfaz o i-ésimo axioma de enumerabilidade.

Demonstração. Primeiro axioma de enumerabilidade (base locais enumeráveis): Seja $x=(x_n)_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}X_n$. Seja, também, \mathcal{V}_n base local enumerável para cada x_n . Sem perda de generalidade, suponha que $X_n\in\mathcal{V}_n$. Note que

$$\left\{\prod_{n\in\mathbb{N}}V_n:V_n\in\mathcal{V}_n,\{m\in\mathbb{N}:V_m\neq X_m\}\ \text{\'e finito }\right\}$$

é enumerável (cartesiano finito de enumeráveis é enumerável, união enumerável de enumeráveis é enumerável) e é uma base local para x.

Algumas propriedades sobre produto

De fato, seja $A=\prod_{n\in\mathbb{N}}A_n$ aberto básico tal que $x\in A$. Para cada $n\in\mathbb{N}$ tal que $A_n\neq X_n$, seja $V_n\in\mathcal{V}_n$ de forma que $x_n\in V_n\subset A_n$ (existe pois \mathcal{V}_n é base local para x_n). Para n tal que $A_n=X_n$, defina $V_n=X_n$. Note que

$$x \in \prod_{n \in \mathbb{N}} V_n \subset \prod_{n \in \mathbb{N}} A_n$$
.

Segundo axioma de enumerabilidade (base enumerável): Análogo (exercício).

Terceiro axioma de enumerabilidade (separabilidade): Para cada $n \in \mathbb{N}$, seja D_n denso enumerável em X_n . Fixe $x = (x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n$. Defina $D = \{(y_n)_{n \in \mathbb{N}} : \exists F \subset \mathbb{N} \text{ finito tal que, para todo } n \in F, y_n \in D_n \text{ e, para todo } n \notin F, y_n = x_n\}.$

Note que D é enumerável (pois $\{x_n\} \cup D_n$ é enumerável, cartesiano finito de enumeráveis é enumerável, união enumerável de enumeráveis é enumerável). Seja $\prod_{n\in\mathbb{N}} V_n$ aberto básico não vazio. Seja $F \subset \mathbb{N}$ finito tal que, para $n \notin F$, $V_n = X_n$. Para cada $n \in F$, seja $y_n \in V_n \cap D_n$. Note que $(y_n)_{n\in\mathbb{N}} \in D \cap \prod_{n\in\mathbb{N}} V_n$, onde $y_n = x_n$, para $n \notin F$.

Topologia

Algumas propriedades sobre produto

Vejamos agora o comportamento dos últimos axiomas de separação com relação ao produto, começando com a propriedade $T_{3\frac{1}{2}}$, que é preservada.

Definição 2

Dizemos que (X,τ) é $T_{3\frac{1}{2}}$ se, para todo $x_0 \in X$ e $F \subset X$ fechado tal que $x_0 \notin F$ existir $f: X \to [0,1]$ contínua, tal que $f(x_0) = 0$ e f(y) = 1, para todo $y \in F$. No caso que (X,τ) também é T_1 , dizemos que (X,τ) é um espaço completamente regular.

Algumas propriedades sobre produtos

Proposição 3

Se cada $(X_{\alpha}, \tau_{\alpha})$ é $T_{3\frac{1}{2}}$, então $\prod_{\alpha \in A} X_{\alpha}$ é $T_{3\frac{1}{2}}$.

Demonstração. Seja $x=(x_\alpha)_{\alpha\in A}\in\prod_{\alpha\in A}X_\alpha$ e $F\subset\prod_{\alpha\in A}X_\alpha$ fechado tal que $x\notin F$. Seja $V = \prod_{\alpha \in A} V_{\alpha}$ um aberto básico tal que $x \in V$ e $V \cap F = \emptyset$. Seja $G = \{\alpha \in A : V_{\alpha} \neq X_{\alpha}\}$. Para cada $\alpha \in G$, seja $f_{\alpha}: X_{\alpha} \to [0,1]$ contínua tal que $f_{\alpha}(x_{\alpha}) = 0$ e $f_{\alpha}(X_{\alpha} \setminus V_{\alpha}) = \{1\}$ (estamos usando $T_{3\frac{1}{2}}$ nas coordenadas).

Considere $f:\prod_{\alpha\in A}X_{\alpha}\to [0,1]$ dada por $f(y)=\max\{f_{\alpha}(y_{\alpha}):\alpha\in G\}$, onde $y=(y_{\beta})_{\beta\in A}$.

Note que f(x) = 0.

Além disso, $f(F) = \{1\}$, pois se $y \in F$, então existe α tal que $y_{\alpha} \notin V_{\alpha}$, com $\alpha \in G$ (caso contrário, teríamos $V \cap F \neq \emptyset$) e, portanto, $f_{\alpha}(y_{\alpha}) = 1$.

Resta provar que f é contínua.

Topologia

Algumas propriedades sobre produtos

De fato, para cada $\alpha \in G$, defina $g_{\alpha} = f_{\alpha} \circ \pi_{\alpha}$. Note que cada g_{α} é contínua (pois é composta de contínuas) e também que $f(x) = \max\{g_{\alpha}(x) : \alpha \in G\}$. Assim, f é contínua (ver exercícios).

Agora veremos que a propriedade T_4 não é preservada.

Proposição 4

 $\mathbb{R}_S \times \mathbb{R}_S$ não é um espaço normal, onde \mathbb{R}_S é a reta de Sorgenfrey. Em particular, produto de espaços normais não é necessariamente normal.

Demonstração. Considere \mathbb{R}_S . Como já vimos, \mathbb{R}_S é normal. Vamos mostrar que $\mathbb{R}_S \times \mathbb{R}_S$ não é normal. Considere $D = \{(x, -x) : x \in \mathbb{R}_S\}$. Note que D é discreto e fechado. De fato, os conjuntos da forma

$$[x, x + 1) \times [-x, -x + 1) \cap D = \{(-x, x)\}$$

são abertos em D e, portanto, D é discreto. Para verificar que D é fechado, basta notar que seu complementar é aberto (Exercício).

Algumas propriedades sobre produtos

Note que $\mathbb{R}_S \times \mathbb{R}_S$ é separável (Proposição 1). Logo, $\mathbb{R}_S \times \mathbb{R}_S$ tem um denso enumerável e um discreto fechado de tamanho contínuo. Logo, pelo Lema de Jones (ver Exercícios da Aula 8), $\mathbb{R}_S \times \mathbb{R}_S$ não é normal.

A aula 12 terminou aqui.

O próximo resultado é um bom teste para verificação de continuidade de uma função sobre a topologia (fraca) induzida por uma família de aplicações.

Teorema 5

Seja $f:(Z,\sigma)\to X$ uma função, onde consideremos em X a topologia τ induzida por uma família de aplicações $f_{\alpha}: X \to (X_{\alpha}, \tau_{\alpha})$. Então f é contínua se, e somente se, para todo $\alpha \in A, f_{\alpha} \circ f$ é contínua.

Demonstração. Se f é contínua, então $f_{\alpha} \circ f$ é contínua (composta de contínuas).

Por outro lado, seja V um aberto básico de X. Logo, $V = \bigcap_{\alpha \in F} f_{\alpha}^{-1}(V_{\alpha})$, onde F é finito e $V_{\alpha} \in \tau_{\alpha}$. Temos assim

$$f^{-1}(V) = f^{-1}\left(\bigcap_{\alpha \in F} f_{\alpha}^{-1}(V_{\alpha})\right) = \bigcap_{\alpha \in F} f^{-1}\left(f_{\alpha}^{-1}(V_{\alpha})\right)$$
$$= \bigcap_{\alpha \in F} (f_{\alpha} \circ f)^{-1}(V_{\alpha}).$$

Topologia

Note que o último termo é aberto pois é interseção finita de abertos.

Corolário 6

Seja $f:(Z,\sigma)\to\prod_{\alpha\in A}X_\alpha$ uma função. Então f é contínua se, e somente se, para todo $\alpha\in A,\pi_\alpha\circ f$ é contínua.

Demonstração. Considere $f_{\alpha}=\pi_{\alpha}:\prod_{\beta\in\mathcal{A}}X_{\beta}\to X_{\alpha}$ no Teorema anterior.

Vamos agora caminhar para um teorema que iremos usar diversas vezes no texto: o Teorema da Imersão.

Definição 7

Sejam $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ uma família de espaços topológicos, (Z, τ) um espaço topológico e $(f_{\alpha})_{\alpha \in A}$ uma família de funções da forma $f_{\alpha}: Z \to X_{\alpha}$. Chamamos de função diagonal a função

$$\Delta_{\alpha \in A} f_{\alpha} : \quad Z \to \prod_{\alpha \in A} X_{\alpha}$$

$$z \mapsto (f_{\alpha}(z))_{\alpha \in A}$$

Note que, pelo Corolário 6, obtemos:

Proposição 8

Se cada f_{α} é contínua, então $\Delta_{\alpha \in A} f_{\alpha}$ é contínua (e vale a recíproca).

Demonstração: Note que $\pi_{\beta} \circ (\Delta_{\alpha \in A} f_{\alpha}) = f_{\beta}$ para todo $\beta \in A$.

Veremos agora condições para que exista uma cópia de X dentro de um produto. Depois, veremos que tal produto tem boas propriedades, sendo algumas hereditárias - o que vai permitir concluir novas propriedades sobre o próprio X.

Definição 9

Dizemos que $f: X \to Y$ é uma imersão se $f: X \to f(X)$ é um homeomorfismo. Dizemos neste caso que Y contém uma cópia de X (como subespaço).

Definição 10

Seja $\mathcal{F} = \{f_{\alpha} : X \to X_{\alpha} \mid \alpha \in A\}$. Dizemos que \mathcal{F} separa pontos se para quaisquer $x, y \in X$ distintos, existe $f \in \mathcal{F}$ tal que $f(x) \neq f(y)$. Dizemos que \mathcal{F} separa pontos de fechados se, para todo $x \in X$ e $F \subset X$ fechado tal que $x \notin F$, existe $f \in \mathcal{F}$ tal que $f(x) \notin \overline{f(F)}$.

Teorema 11 (Teorema da imersão)

Seja $\mathcal{F} = \{f_{\alpha} : X \to X_{\alpha} \mid \alpha \in A\}$ familia de funções contínuas. Se \mathcal{F} separa pontos, então $\Delta_{\alpha \in A} f_{\alpha} : X \to \prod_{\alpha \in A} X_{\alpha}$ é injetora. Se, além disso, \mathcal{F} separa pontos de fechados, então $\Delta_{\alpha \in A} f_{\alpha}$ é uma imersão.

Demonstração. Sejam $x, y \in X$ distintos. Então existe $\beta \in A$ tal que $f_{\beta}(x) \neq f_{\beta}(y)$. Logo pois $\pi_{\beta}(\Delta_{\alpha \in A} f_{\alpha}(x)) = f_{\beta}(x)$ e $\pi_{\beta}(\Delta_{\alpha \in A} f_{\alpha}(y))_{\beta} = f_{\beta}(y)$.

Já temos que a aplicação é contínua pela Proposição 8.

Do parágrafo acima, $\Delta_{\alpha \in A} f_{\alpha}$ é injetora. Resta mostrar que $\Delta_{\alpha \in A} f_{\alpha}(F)$ é fechado (na imagem) para todo $F \subset X$ fechado (pois disso segue que sua inversa é contínua).

Seja $z \in \overline{\Delta_{\alpha \in A} f_{\alpha}(F)} \cap \Delta_{\alpha \in A} f_{\alpha}(X)$ onde $z = (z_{\alpha})_{\alpha \in A}$. Seja $x \in X$ tais que $\Delta_{\alpha \in A} f_{\alpha}(x) = z$.

Vamos mostrar que $x \in F$ (e, portanto, que $z \in \Delta_{\alpha \in A} f_{\alpha}(F)$).

Suponha que não. Logo existe $\beta \in A$ tal que $f_{\beta}(x) \notin \overline{f_{\beta}(F)}$ (pois tal família separa pontos de fechados). Seja $V_{\beta} \subset X_{\beta}$ aberto tal que $f_{\beta}(x) \in V_{\beta}$ e $V_{\beta} \cap f_{\beta}(F) = \emptyset$.

Para todo $\alpha \in A$, com $\alpha \neq \beta$, denote $V_{\alpha} = X_{\alpha}$. Seja $V = \prod_{\alpha \in A} V_{\alpha}$.

Note que $z \in V$, pois $z_{\beta} = f_{\beta}(x) \in V_{\beta}$.

Note que $V \cap \Delta_{\alpha \in A} f_{\alpha}(F) = \emptyset$, pois $V_{\beta} \cap f_{\beta}(F) = \emptyset$.

Logo $z \notin \overline{\Delta_{\alpha \in A} f_{\alpha}(F)}$, contradição.

Proposição 12

Seja (X, τ) um espaço completamente regular. Então $\mathcal{F} = \{f : X \to [0, 1] \mid f \text{ \'e contínua }\}$ separa pontos de fechados (em particular separa pontos).

Demonstração. Considere $F \subset X$ um fechado não vazio e $x \notin F$ (em particular se $Y = \{y\}$ com $x \neq y$). Por X ser $T_{3\frac{1}{2}}$, existe $f \in \mathcal{F}$ tal que f(x) = 0 e $f(Y) = \{1\}$. Logo, $0 \notin \{1\} = \overline{f(Y)}$.

Vamos mostrar uma aplicação importante do Teorema de Imersão.

Corolário 13

Seja (X,τ) espaço topológico. Então (X,τ) é completamente regular se, e somente se, existe A tal que (X,τ) é homeomorfo a um subespaço de $\prod_{\alpha\in A}[0,1]$.

Demonstração. Como [0,1] é completamente regular, $\prod_{\alpha\in A}[0,1]$ é completamente regular e, portanto, qualquer um de seus subespaços também é (T_1 e $T_{3\frac{1}{2}}$ são invariantes topológicos – Lembrar que todos os Axiomas de Separação são invariantes topológicos).

Reciprocamente, se (X, τ) for completamente regular, basta notar que $\mathcal{F} = \{f: X \to [0,1] \mid f \text{ \'e contínua } \}$ separa pontos de fechados (e também pontos). Tome $A = \mathcal{F}$ e aplique o Teorema 11 (da Imersão).

Observação: Neste corolário, se denotarmos por $D: X \to \prod_{f \in \mathcal{F}} [0,1]$ a função diagonal do Teorema 11, note que $D(x) = (f(x))_{f \in \mathcal{F}}$.

Topologia

Exercícios - Propriedades do produto

- 1. Mostre que, se $f_1,\ldots,f_n:X\to\mathbb{R}$ são funções contínuas, então $g(x)=\max\{f_1(x),\ldots,f_n(x)\}$ é contínua.
- 2. Mostre que o conjunto D construído na demonstração da Proposição 4 é fechado.
- 3. Mostre que, se cada $(X_n, \tau_n)_{n \in \mathbb{N}}$ tem base enumerável, então $\prod_{n \in \mathbb{N}} X_n$ também tem base enumerável.
- 4. Mostre diretamente que se (X, τ) e (Y, σ) são separáveis, então $X \times Y$ é separável.
- 5. Considere $((X_n, d_n))_{n \in \mathbb{N}}$ espaços métricos. Sem perda de generalidade, podemos supor que cada d_n é limitada por 1 (ver o Exercício 1.4.15 das notas do Leandro).
 - (a) Mostre que $d: \prod_{n\in\mathbb{N}} X_n \times \prod_{n\in\mathbb{N}} X_n \to \mathbb{R}$ dada por $d(x,y) = \sup \{d_n(x(n),y(n)) : n\in\mathbb{N}\}$ é uma métrica sobre $\prod_{n\in\mathbb{N}} X_n$.
 - (b) Mostre que não necessariamente a topologia induzida por esta métrica é a mesma que a topologia produto (induzida pela topologia de cada uma das coordenadas). Uma delas tem mais abertos que a outra. Qual?
 - (c) Mostre que se o produto tiver apenas finitas coordenadas, ambas topologias coincidem.

Exercícios - Propriedades do Produto

- 6. O objetivo deste exercício é mostrar que $\mathbb{R}_{\mathcal{S}}$ (reta de Sorgenfrey) não tem base enumerável de uma maneira alternativa.
 - (a) Suponha que \mathbb{R}_S tem base enumerável. Note que $\mathbb{R}_S \times \mathbb{R}_S$ também tem.
 - (b) Considere $D = \{(x, -x); x \in \mathbb{R}_S\}$. Note que tal conjunto não tem base enumerável.
 - (c) Lembre que subsespaço de conjunto com base enumerável também tem base enumerável. Chegue numa contradição.
- 7. Mostre que se $(X_i)_{i\in I}$ é uma família não enumerável tal que cada X_i tem pelo menos dois pontos, então todo G_δ (intersecção enumerável de abertos) não vazio em $\prod_{i\in I} X_i$ tem pelo menos dois pontos.

Exercícios - Propriedades do Produto

- 8. O objetivo deste exercício é mostrar que $\prod_{\alpha \in A} \mathbb{N}$ é separável se $|A| \leq \mathfrak{c}$ (\mathbb{N} com a topologia usual).
 - (a) Note que podemos supor sem perda de generalidade que $A \subset \mathbb{R}$. Seja $\mathcal{B}_0 = \{ p, q \cap A : p < q \in \mathbb{Q} \}$. Note que \mathcal{B}_0 é enumerável.
 - (b) Para cada n > 0, defina \mathcal{B}_n o conjunto de todos os subconjuntos de \mathcal{B}_0 com exatamente n elementos e que sejam 2-2 disjuntos. Note que cada \mathcal{B}_n é enumerável (use o fato que a quantidade de subconjuntos finitos de um conjunto enumerável é enumerável).
 - (c) Fixe $n \geq 1$. Para cada $(a_1, \ldots, a_n) \in \mathbb{N}^n$ e cada $\{J_1, \ldots, J_n\} \in \mathcal{B}_n$ (vamos supor que $J_i < J_j$ se i < j Isto é, todo elemento de J_i é menor que todo elemento de J_j). Defina $f_{(a_1, \ldots, a_n), \{J_1, \ldots, J_n\}} : A \to \mathbb{N}$ por

$$f_{(a_1,...,a_n),\{J_1,...,J_n\}}(\alpha) = \begin{cases} a_i \text{ se } \alpha \in J_i \\ 0 \text{ caso contrário} \end{cases}$$

Note que o conjunto de todas estas funções é enumerável (com n fixado). Seja D o conjunto de todas essas funções (com n variando). Note que D também é enumerável.

- (d) Note que $D \subset \prod_{\alpha \in A} \mathbb{N}$.
- (e) Mostre que D é denso em $\prod_{\alpha \in A} \mathbb{N}$.

Exercícios - Propriedades do Produto

- 9. O objetivo deste exercício é mostrar que se cada $(X_{\alpha}, \tau_{\alpha})$ é separável, então $\prod_{\alpha \in A} X_{\alpha}$ também é separável se $|A| \leq \mathfrak{c}$.
 - (a) Fixe $D_{\alpha}\subset X_{\alpha}$ denso enumerável em cada X_{α} . Mostre que $\prod_{\alpha\in A}D_{\alpha}$ é denso em $\prod_{\alpha\in A}X_{\alpha}$
 - (b) Para cada $\alpha \in A$, seja $\varphi_\alpha : \mathbb{N} \to D_\alpha$ bijetora. Note que cada φ_α é contínua.
 - (c) Defina $f: \prod_{\alpha \in A} \mathbb{N} \to \prod_{\alpha \in A} D_{\alpha}$. Mostre que f é contínua.
 - (d) Conclua que $\prod_{\alpha \in A} X_{\alpha}$ é separável.