Spectral Analysis and Filtering

Cyclical Behavior and Periodicity
Az 1n (1.5), we consider the periodic process
r; = Acos(2mwt + @) (4.1)

for t =0,£1,42, ..., where w is a frequency index, defined in cycles per unit
time with A determining the height or amplitude of the function and @, called
the phase, determining the start point of the cosine function. We can introduce
random variation in this time series by allowing the amplitude and phase to
vary randomly.

x; = Uy cos(rwt) + Us sin(2rwt), (4.2)

where|U; = Acos ¢|and |U2 = —Asin qbl are often taken to be normally distributed
random variables. In this case, the amplitude is|A = V(U |2 + U22) and the phase is
|¢ = tan" ' (-0, /U, )| From these facts we can show that if. and only if, in (4.1), A
and ¢ are independent random variables, where |A” is chi-squared|with 2 degrees of
freedom, and ¢ is uniformly distributed on (=, 7), then |U; and U, are independent|
standard normal random variables (see Problem 4.3).




If we assume that U; and U, are uncorrelated random variables with mean 0
and variance o2, then x; in (4.2) is stationary with mean E(x;) = 0 and, writing

¢; = cos(2nwt) and 5, = sin(2nwt),|autocovariance function

¥Yx(h) = cov(xs4h, X¢) = cov(Uicren + UzSein, Urcy + Uasy)

= cov(Uict4n, Urct) + cov(Uicrin, Uzsy)

4.3
+ cov(UaSt4+n, Urcr) + cov(Uzstin, Uasy) £

= 020 +0+ 0+ a2spps; = 02 cos(2rwh),
using Footnote 4.1 and noting that cov(U;, U;) = 0. From (4.3), we see that
var(x,) = yx(0) = o> .

Thus, if we observe U; = a and U, = b, an estimate of o2 is the sample variance of
these two observations, which in this case is simply S = % =a’ + b2

The random process in (4.2) is function of its frequency, w. For w = 1, the series
makes one cycle per time unit; for w = .50, the series makes a cycle every two
time units; for w = .25, every four units, and so on. In general, for data that occur
at discrete time points, we will need at least two points to determine a cycle, so the

41 cos(a + B) = cos(a) cos(B) F sin(a) sin(B).

highest frequency of interest is .5 cycles per point. This frequency is called the folding
[frequency and defines the highest frequency that can be seen in discrete sampling.
Higher frequencies sampled this way will appear at lower frequencies, called aliases;
an example is the way a camera samples a rotating wheel on a moving automobile in
a movie, in which the wheel appears to be rotating at a different rate, and sometimes
backwards (the wagon wheel effect). For example, most movies are recorded at 24
frames per second (or 24 Hertz). If the camera is filming a wheel that is rotating at
24 Hertz, the wheel will appear to stand still.



Consider a generalization of (4.2) that allows mixtures of periodic series with
multiple frequencies and amplitudes,

q
X = Z [Uk1 cos(2mewgt) + Uy sin(2rrwyt)], (4.4)
k=1
where Uy, Uy, for k = 1,2,..., g, are uncorrelated zero-mean random variables
with variances cr}f, and the wy are distinct frequencies. Notice that (4.4) exhibits the

process as a sum of uncorrelated components, with variance o',f for frequency wy.
As in (4.3), it is easy to show (Problem 4.4) that the autocovariance function of the

process is

q
yo(h) = Z o2 cos(2rawyh), (4.5)
k=1
and we note the autocovariance function is the sum of periodic components with
weights proportional to the variances 0',%. Hence, x; is a mean-zero stationary pro-
cesses with variance

q
¥x(0) = var(x;) = )" o, (4.6)
k=1

exhibiting the overall variance as a sum of variances of each of the component parts.

As in the simple case, if we observe Uy = ag and Uy, = by fork = 1,...,q,
then an estimate of the kth variance component, o2, of var(x, ), would be the sample
variance Sf = ai o bi. In addition, an estimate of the total variance of x;, namely,
vx(0) would be the sum of the sample variances,

q
7:(0) = var(x;) = > (a; +b}). 4.7)
k=1
Hold on to this idea because we will use it in Example 4.2.

Example 4.1 A Periodic Series
Figure 4.1 shows an example of the mixture (4.4) with ¢ = 3 constructed in the
following way. First, forz = 1, ..., 100, we generated three series

x;1 = 2cos(2nt 6/100) + 3 sin(27t 6/100)
X2 = 4cos(2xt 10/100) + 5sin(27¢ 10/100)
x;3 = 6.cos(2nt40/100) + 7 sin(27¢ 40/100)
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.

These three series are displayed in Figure 4.1 along with the corresponding fre-
quencies and squared amplitudes. For example, the squared amplitude of x;; is
A% =22 + 32 = 13. Hence, the maximum and minimum values that x,; will attain
are +V13 = +3.61.

Finally, we constructed
Xy = X1 + X2 + X3

and this series is also displayed in Figure 4.1. We note that x; appears to behave
as some of the periodic series we saw in Chapters 1 and 2. The systematic sorting
out of the essential frequency components in a time series, including their relative
contributions, constitutes one of the main objectives of spectral analysis. The R
code to reproduce Figure 4.1 is

x1 2*cos(2%pi*1:100%6/100) + 3*sin(2*pi*1:100%6/100)

X2 4*cos(2%pi*1:100%10/100) + 5*sin(2*pi*1:100%10/100)

x3 = 6%cos(2*pi*1:100%40/100) + 7*sin(2*pi*1:100%40/100)

x =x1 + x2 + x3

par(mfrow=c(2,2))

plot.ts(xl, ylim=c(-10,10), main=expression(omega==6/100~~~A42==13))
plot.ts(x2, ylim=c(-10,10), main=expression(omega==10/100~~~A*2==41))
plot.ts(x3, ylim=c(-10,10), main=expression(omega==40/100~~~A*2==85))
plot.ts(x, ylim=c(-16,16), main="sum'")



Example 4.2 Estimation and the Periodogram
For any time series sample where n is odd, we may write, exactly

(n=1)/2
Xy =ap+ Z [aj cos(2nt j/n) + b; sin(27rtj/n)] , 4.8)
j=1
for t = 1,...,n and suitably chosen coefficients. If n is even, the representation

(4.8) can be modified by summing to (n/2 — 1) and adding an additional component
given by a,/> cos(2nt %) = an/2(=1)". The crucial point here is that (4.8) is exact
for any sample. Hence (4.4) may be thought of as an approximation to (4.8), the
idea being that many of the coefficients in (4.8) may be close to zero.

Using the regression results from Chapter 2, the coefficients a; and b; are of the
foemy 353 g /30 < ztzj, where z;; is either cos(2nt j/n) or sin(2xt j/n). Using
Problem 4.1, 3’7", Zrzj = n/2 when j/n # 0,1/2, so the regression coeflicients in
(4.8) can be written as (ag = X),

2 n 2 n
aj = ;x, cos(2mtj/n) and b; = = Zx, sin(2xtj /n).

n
t=1



We then define the scaled periodogram to be
P(j/n) = a; + b5, (4.9)

and it is of interest because it indicates which frequency components in (4.8) are
large in magnitude and which components are small. The scaled periodogram is
simply the sample variance at each frequency component and consequently is an
estimate of a'j2 corresponding to the sinusoid oscillating at a frequency of w; = j/n.
These particular frequencies are called the Fourier or fundamental frequencies.
Large values of P(j/n) indicate which frequencies w; = j/n are predominant
in the series, whereas small values of P(j/n) may be associated with noise. The
periodogram was introduced in Schuster (1898) and used in Schuster (1906) for
studying the periodicities in the sunspot series (shown in Figure 4.22).
Fortunately, it is not necessary to run a large regression to obtain the values of
a; and b; because they can be computed quickly if n is a highly composite integer.
Although we will discuss it in more detail in Section 4.3, the discrete Fourier
transform (DFT) is a complex-valued weighted average of the data given by*?2

n

d(j/n) =n'? Z x; exp(—2mitj/n)

t=1

= 112 (Z x; cos(2rmtj/n) — i Z X; sin(2mj/n)),

f:] f:]

(4.10)

for j = 0,1,...,n— 1, where the frequencies j/n are the Fourier or fundamental
frequencies. Because of a large number of redundancies in the calculation, (4.10)
may be computed quickly using the fast Fourier transform (FFT). Note that

2

n

G/ = - (Z x; cos(2ntj [n)

t=1

2
1 n
- ( E x; sin(2ntj /n) (4.11)

t=1

and it is this quantity that is called the periodogram. We may calculate the scaled
periodogram, (4.9), using the periodogram as

. 4 . 2
P(j/n) =3 1d(j/n)l". (4.12)
4.2 N . i .. el ol . ela_o-ia
Euler’s formula: e'* = cos(a) + i sin(a). Consequently, cos(a) = 3 , and sin(@) = o
Also, 'l = —i because —ixi = 1.Ifz = a+ib is complex, then |z|? = z2* = (a+ib)(a—ib) = a2+b?;

the * denotes conjugation.
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Fig. 4.2. Periodogram of the data generated in Example 4.1.

The scaled periodogram of the data, x;, simulated in Example 4.1 is shown in
Figure 4.2, and it clearly identifies the three components x;, x;2, and x,3 of x,. Note
that

Plifny=PB =jm) jJ=01...;.n=1

so there is a mirroring effect at the folding frequency of 1/2; consequently, the peri-
odogram is typically not plotted for frequencies higher than the folding frequency.
In addition, note that the heights of the scaled periodogram shown in the figure are
P(ti5) = P(t50) = 13, P(qp) = P(g5) =41, Pg5) = Pligp) = 85,

and P(j/n) = 0 otherwise. These are exactly the values of the squared amplitudes
of the components generated in Example 4.1.

Assuming the simulated data, x, were retained from the previous example, the
R code to reproduce Figure 4.2 is

P = Mod(2*fft(x)/100)42; Fr = 0:99/100
plot(Fr, P, type="o0", xlab="frequency", ylab="scaled periodogram")



The Spectral Density

Example 4.4 A Periodic Stationary Process
Consider a periodic stationary random process given by (4.2), with a fixed frequency
wyp, say,
x; = Uy cos(2rewgt) + Us sin(2rawqt), (4.13)

where U; and U, are uncorrelated zero-mean random variables with equal variance
2. The number of time periods needed for the above series to complete one cycle is
exactly 1/wy, and the process makes exactly wg cycles perpointforz = 0, +1, £2, . . ..
Recalling (4.3) and using Footnote 4.2, we have

a2 2
- o .
y(h) = 0% cos(2nwoh) = 76‘27"0)0?1 + = p2miwoh

2 .
— f emehdF(w)

I—-

using Riemann-Stieltjes integration (see Section C.4.1), where F(w) is the function
defined by

0 w < —Wwy,
Flw) = 0'2/2 —wo £ w < Wy,
o2 w Z wy.

The function F(w) behaves like a cumulative distribution function for a discrete
random variable, except that F(co) = o> = var(x,) instead of one. In fact, F(w) is a
cumulative distribution function, not of probabilities, but rather of variances, with
F(c0) being the total variance of the process x;. Hence, we term F(w) the spectral
distribution function. This example is continued in Example 4.9.

Property 4.1 Spectral Representation of an Autocovariance Function

If {x;} is stationary with autocovariance y(h) = cov(x,.p, X;), then there exists
a unique monotonically increasing function F(w), called the spectral distribution
function, with F(—o0) = F(—=1/2) =0, and F(c0) = F(1/2) = y(0) such that

[SIE

y(h) = / e?iok JF(w). (4.14)

Bl—=

An important situation we use repeatedly is the case when the autocovariance
function is absolutely summable, in which case the spectral distribution function is
absolutely continuous with dF (w) = f(w) dw, and the representation (4.14) becomes
the motivation for the property given below.



Property 4.2 The Spectral Density
If the autocovariance function, y(h), of a stationary process satisfies

Z [y(h)] < oo, (4.15)
h=—c0
then it has the representation
%
y(h) = f el f(wydw h=0,+1,%2,... (4.16)
_1
2

as the inverse transform of the spectral density,

o]

fw)= > y(e @ —1/2<w<1/2. 4.17)

h=-c0

This spectral density i1s the analogue of the probahility density function;
the fact that v(h) is non-negative definite ensures

flw)=0

for all w (see Appendix C, Theorem C.3 for details). It follows immediately
from (4.12) that

flw)=f(—w) and f(w)=f(1-w),

verifying the spectral density is an even function of period one. Because of
the evenness, we will typically only plot f(w) for w = 0. In addition, putting
h =01in (4.11) yields

1/2

"f[D}:var{Ii}:f flw) dw,

—-1/2

which expresses the total variance as the integrated spectral density over all of
the frequencies. We show later on, that a linear filter can isolate the variance
in certain frequency intervals or bands.



We note that the autocovariance function, y(h), in (4.16) and the spectral density,
f(w), in (4.17) are Fourier transform pairs. In particular, this means that if f(w) and
g(w) are two spectral densities for which

1

= [ femh do = [yt do =y @1s)

(ST
o=

forall h =0,+1,+2,..., then
flw) = g(w). (4.19)

Finally, the absolute summability condition, (4.15), is not satisfied by (4.5), the
example that we have used to introduce the idea of a spectral representation. The
condition, however, is satisfied for ARMA models.

Example 4.5 White Noise Series

As a simple example, consider the theoretical power spectrum of a sequence of
uncorrelated random variables, w,, with variance crvzv. A simulated set of data
is displayed in the top of Figure 1.8. Because the autocovariance function was
computed in Example 1.16 as y,,(h) = o‘fv for h = 0, and zero, otherwise, it follows
from (4.17), that

fuw(w) =0y,

for—1/2 < w < 1/2.Hence the process contains equal power at all frequencies. This
property is seen in the realization, which seems to contain all different frequencies
in a roughly equal mix. In fact, the name white noise comes from the analogy to
white light, which contains all frequencies in the color spectrum at the same level
of intensity. The top of Figure 4.4 shows a plot of the white noise spectrum for
o2 = 1. The R code to reproduce the figure is given at the end of Example 4.7.

White Noise
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Since the linear process is an essential tool, it is worthwhile investigating the
spectrum of such a process. In general, a linear filter uses a set of specified coefficients,
say a;, for j = 0,%+1,£2,..., to transform an input series, x,, producing an output
series, y;, of the form

(o]

y; = Z ajXs_js Z la;| < co. (4.20)

j==0 j==0
The form (4.20) is also called a convolution in some statistical contexts. The coeffi-
cients are collectively called the impulse response function, and the Fourier transform

[oe]

Alw) = Z ay e 20r (4.21)

j:—OO

is called the frequency response function. If, in (4.20), x; has spectral density fi(w),
we have the following result.

Property 4.3 Output Spectrum of a Filtered Stationary Series
For the process in (4.20), if x; has spectrum f(w), then the spectrum of the
filtered output, y,, say fy(w), is related to the spectrum of the input x; by

H() = [A)]* fi(w), 4.22)

where [the frequency response function A(w)|is defined in (4.21).

Proof: The autocovariance function of the filtered output y, in (4.20) is

'}’y(h) = COV(Xt+h» Xt)

= Ccov (Z Ay Xt+h—r» Z asxr—s)

r

_ Z Z aryx(h —r + s)a
@ Z Z ay I/’
_ /% (Z are—27riwr) (Z asezm“”) gt fr(w) dw

1
2\ r s

-

e27riw(h—r+s)fx(w)dw] as

=

2 [ et P i) do
) R e
H(w)
where we have, (1) replaced y,(-) by its representation (4.16), and (2) substituted A(w)
from (4.21). The result holds by exploiting the uniqueness of the Fourier transform.



Property 4.4 The Spectral Density of ARMA
If x; is ARMA(p, q), ¢(B)x; = O(B)wy, its spectral density is given by
o [P

fr(w) = oy, (e (4.23)

where ¢(z) = 1 — f:l oxzX and 0(z) = 1 + ZZ:I Or Z*.

Example 4.6 Moving Average

As an example of a series that does not have an equal mix of frequencies, we
consider a moving average model. Specifically, consider the MA(1) model given by

Xy = Wy + .5Wt,1.

A sample realization is shown in the top of Figure 3.2 and we note that the series
has less of the higher or faster frequencies. The spectral density will verify this
observation.

The autocovariance function is displayed in Example 3.5, and for this particular
example, we have

y(0) = (1 + 502 =1.2502; y(x1)=.502: y(xh)=0forh > 1.

Substituting this directly into the definition given in (4.17), we have

flw) = Z y(h) e 2xiwh = 52 [1 25+ .5 (e'z”f‘“ + ez"“’)]

h=—c0

= crvzv [1.25 + cos(2rw)] .

(4.24)

We can also compute the spectral density using Property 4.4, which states that
for an MA, f(w) = o2 |#(e"™«)|>. Because 6(z) = 1 + .5z, we have

|H(e—2ni¢u)|2 — |1 i 'Se—Zniw|2 - (1 i .56_2”iw)(1 4 .5627tiw)

= 1.954 5 (e—2’”'w + e2”w)

which leads to agreement with (4.24).
Plotting the spectrum for o2 = 1, as in the middle of Figure 4.4, shows the
lower or slower frequencies have greater power than the higher or faster frequencies.
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Example 4.7 A Second-Order Autoregressive Series
We now consider the spectrum of an AR(2) series of the form

Xt — P1Xxe—1 — P2X1-2 = wy,

for the special case ¢ = 1 and ¢ = —.9. Figure 1.9 shows a sample realization of

such a process for o, = 1. We note the data exhibit a strong periodic component

that makes a cycle about every six points.

autoregression

xX O —
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Fig. 1.9. Autoregressive series generated from model (1.2).

To use Property 4.4, note that 6(z) = 1, ¢(z) = 1 — z + .9z% and
|¢(e—27riw)|2 — (l _ e—27riw + 96—4m'w)(1 _ eZm'w + ge4zrriw)
=281 - 1.9(627”'&; + e—27n'm) + _9(e4m‘cu + e—47n‘m)

=2.81 — 3.8cos(2nw) + 1.8 cos(4mw).

Using this result in (4.23), we have that the spectral density of x; is

2
Ty

Filw) = 2.81 - 3.8 cos(2nw) + 1.8 cos(4nw)”

Autoregression

frequency



The spectral density can also be obtained from first principles, without
having to use Property 4.3. Because wy = r¢y—r; 1+ 970 in this example,
we have
Ywl(h) = cov{wypn, we)

= cov|Tiph — Te4h-1 + T pn—2, T — Ty + Bxp_a)
= 2.8172(h) — 1.9[v2(h + 1) +y2(h — 1)] + .9[yz(h + 2) + y2(h — 2)

Now, substituting the spectral representation (4.11) for (k) in the above
equation yields

172
’:r'w[-h]'=/ [2.81 o l_g[e‘lﬂu_’_ c—ix[:.u} o _g(chrzw_'_ c—flrrh.;}] Eimwhjrr{w.}dw
J-142

12 o
=[ [2.81 — 3.8 cos(27w) + 1.8 cos(4m :I_ch!“hlezw]ldw.

—1/2

If the spectrum of the white noise process, wy, is gy(w), the uniqueness of
the Fourier transform allows us to identify

gw(w) = [2.81 — 3.8 cos(2mw) + 1.8 cos(4mw)] friw).
But, as we have already seen, guw(w) = oy, from which we deduce that

as

(@) = 5 ST 38 cosZmw) T 15 cos(dma)

iz the spectrum of the autoregressive series.

Property 4.5 Spectral Representation of a Stationary Process

If x, is a mean-zero stationary process, with spectral distribution F(w) as given in
Property 4.1, then there exists a complex-valued stochastic process Z(w), on the in-
terval w € [—1/2,1/2], having stationary uncorrelated non-overlapping increments,
such that x; can be written as the stochastic integral (see Section C.4.2)

2 .
X = f BZﬂlwtdZ(w),

=

where, for —1/2 < w; < wy < 1/2,

var {Z(w;) — Z(w1)} = F(w2) = F(wy).



