ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ENGENHARIA AMBIENTAL — 1º SEMESTRE 2023

PQI 3221: CINÉTICA QUÍMICA E PROCESSOS AMBIENTAIS

AULA 17

1

TEMPO DE MEIA-VIDA

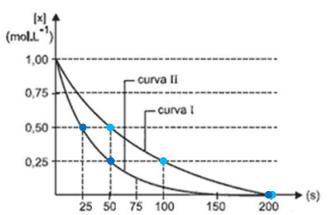
Tempo de Meia-vida

Problema

Considere duas reações químicas $(I\ e\ II)$ envolvendo um certo reagente X. A primeira delas, a reação (I), é de Ordem 2 em relação a X e tem tempo de meia-vida $t_{1/2}=50\ s$. A reação (II) é de Ordem 1 em relação a X e seu t_X corresponde à metade daquele estimado para a reação (I). Considerando que a concentração inicial de X nas duas reações é $X_0=1,00\ M$, pede-se:

- a) Em um gráfico de concentração de X=f(t), para 0 < t (s) < 200, trace as curvas de consumo de X para as duas reações. Indique com (I) a curva que representa a reação de Ordem 2 e, com (II), a que representa a reação de Ordem 1.
- b) Esses comportamentos seriam esperados? Porque? Justifique sua resposta com base em conceitos de cinética química.

3


Solução

Reação I: Ordem 2

$$X \rightarrow Produtos$$

$$r_X = kC_X^2$$
 e $t_{1/2} = 50 \, s$

$$\left(\frac{1}{C_X}\right) = \left(\frac{1}{C_{X,0}}\right) + kt$$

Reação II: Ordem 1

 $X \rightarrow Produtos$

$$r_X = kC_X^1$$
 e $t_{1/2} = 25 s$

$$\ln C_X = \ln C_{x,0} - kt$$

Solução

ORDEM	EQUAÇÃO CINÉTICA v = velocidade	Relação CONCENTRAÇÃO versus TEMPO	Tempo de MEIA VIDA
0	v = k	$[A] = [A]_0 - k \cdot t$	$t_{\left(\frac{1}{2}\right)} = \frac{([A]_0)}{(2 \cdot k)}$
1	$v = k \cdot [A]$	$\ell n[A] = \ell n[A]_0 - k \cdot t$	$t_{\left(\frac{1}{2}\right)} = \frac{(\ell n(2))}{k}$
2	$v = k \cdot [A]^2$	$\frac{1}{([A])} = \frac{1}{([A]_0)} + k \cdot t$	$t_{\left(\frac{1}{2}\right)} = \frac{1}{(k \cdot [A]_0)}$

Admitindo condições semelhantes para outros parâmetros (T, P, etc.) envolvidos no processo, as reações de ordem 1 são efetivamente mais rápidas do que as de Ordem 2. Esse efeito foi também percebido no caso presente para a situação em que [X_0] = 1.0~M

Por outro lado, o que causa alguma estranheza é que ambas as reações chegaram, simultaneamente, ao esgotamento da concentração do reagente ($[X_f]=0.0~M$) exatamente ao mesmo tempo, em t=200~s

-

Tempo de Meia-vida

Problema

A cinética de decomposição de uma substância em solução aquosa foi estudada usando uma serie de soluções desse material com concentrações iniciais diferentes. Para cada solução determinou-se o correspondente tempo de meiavida (t ½). Os resultados aparecem indicados na tabela a seguir.

$C_o(Mol/L)$	4,675	1,698	0,724	0,288
t ½ (min)	87,17	240,1	563,0	1414

A partir desses dados, determine:

- A. A ordem da reação; e
- B. O valor da constante de velocidade (k)

Solução

ORDEM	EQUAÇÃO CINÉTICA v = velocidade	Relação CONCENTRAÇÃO versus TEMPO	Tempo de MEIA VIDA
0	v = k	$[A] = [A]_0 - k \cdot t$	$t_{\left(\frac{1}{2}\right)} = \frac{([A]_0)}{(2 \cdot k)}$
1	$v = k \cdot [A]$	$\ell n[A] = \ell n[A]_0 - k \cdot t$	$t_{\left(\frac{1}{2}\right)} = \frac{(\ell n(2))}{k}$
2	$v = k \cdot [A]^2$	$\frac{1}{([A])} = \frac{1}{([A]_0)} + k \cdot t$	$t_{\left(\frac{1}{2}\right)} = \frac{1}{(k \cdot [A]_0)}$

7

Solução

Ordem Zero:

$$t_{(\frac{1}{2})} = \left(\frac{C_0}{2k}\right) \rightarrow k = \left[\frac{C_0}{2.t_{(\frac{1}{2})}}\right]$$

Substituindo valores para essa situação teremos

C_o	$t_{(frac{1}{2})}$	k	
4,675	87,17	2.68E-02	
1,698	240,1	3.52E-03	<u> </u>
0,724	563	6.43E-04	
0,288	1414	1.02E-04	

Solução

1ª. Ordem:

$$t_{(\frac{1}{2})} = \left(\frac{\ln 2}{k}\right) \quad \rightarrow \quad k = \left[\frac{\ln 2}{t_{(\frac{1}{2})}}\right]$$

Substituindo valores para essa situação teremos

C_o	$t_{(\frac{1}{2})}$	k	
4,675	87,17	7.95E-03	
1,698	240,1	2.89E-03	<u>+</u>
0,724	563	1.23E-03	
0,288	1414	4.90E-04	

9

Solução

2ª. Ordem:

$$t_{(\frac{1}{2})} = \left(\frac{1}{k.\,C_0}\right) \ \rightarrow \ k = \left[\frac{1}{t_{(\frac{1}{2})}.\,C_0}\right]$$

Substituindo valores para essa situação teremos

C_o	$t_{(\frac{1}{2})}$	k	
4,675	87,17	2.45E-03	
1,698	240,1	2.47E-03	
0,724	563	2.45E-03	
0,288	1414	2.46E-03	

Logo, trata-se de uma reação de *Ordem* 2, com valor (aproximado) de $k=2.46\times 10^{-3}$ L/(mol.min)

ENERGIA DE ATIVAÇÃO (E_a)

11

Modelos de Colisão

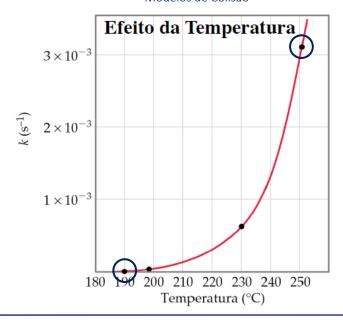
Sabe-se que, excetuando-se classes de reações muito bem definidas, como as Reações Criogênicas, e as Reações Biológicas, essas úlimas que nceessitam de temperaturas controladas para seu desenvolvimento, a velocidade de reação aumenta, a medida que a temperatura for elevada, ao menos até determinado ponto

A lei da velocidade não contém nenhum termo que leve em conta a temperatura, mas essa interdependência fica oculta (ou implícita) na Constante de Velocidade (k)

Nesse contexto, o efeito da temperatura pode ser entendido com um fator externo de intervenção sobre o processo

Exemplo

Considere a reação de 1ª Ordem em que metil-isocianida se transforma em acetonitrila (ou seja, cianeto de metila)

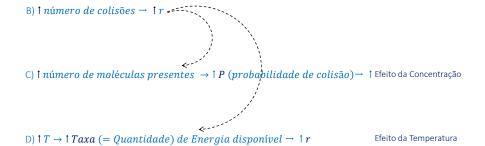

$$CH_3NC \rightarrow CH_3CN$$

Após serem realizados diversos ensaios experimentais, notou-se que conforme a temperatura no interior do reator for elevada de 190°C para 250°C a velocidade da transformação (r) se intensifica. Percebeu-se ainda, que isso se deve a um incremento no valor da constante de velocidade (= k), desde $2.52 \times 10^{-5} \ s^{-1}$ (190°C) para $3.16 \times 10^{-3} \ s^{-1}$ (250°C), ou seja, de algo próximo a 125 vezes!

Portanto, e como é possível observar, o efeito da temperatura neste caso é 'dramático'!

Mas, ... por que isso ocorre?

Modelos de Colisão



13

Modelos de Colisão

Premissas capazes de explicar esse fenômeno:

A) Em sistemas envolvendo dois (ou mais) reagentes (que são os mais comuns), as moléculas devem interagir, ou seja, colidir para que se formem produtos

Modelos de Colisão

Há, no entanto, um problema....

Nem todas as colisões levam a produtos! Na realidade, somente uma fração bastante pequena desses choques resulta em transformação de matéria!!

Fatos:

- O modelo de colisão se baseia na teoria cinética molecular e explica os efeitos da concentração e da temperatura sobre a velocidade de reação no nível molecular
- Em um sistema composto apenas por gases podem ocorrer cerca de 1010 colisões por segundo
- Se cada colisão produzisse uma reação, $r o 10^6 \, (mol/L)/s$ para esse caso
- Em sistemas gasosos, estima-se que apenas $1:10^{13}\,colisões$ origine, de fato, uma transformação
- Para que uma reação ocorra, deve haver redistribuição de energia em níveis suficientes para que (i) certas ligações nas moléculas de reagentes se quebrem, (ii) as partes se aproximem; e, (iii) estas se liguem gerando outra molécula (= produto)

15

Fatores de Orientação

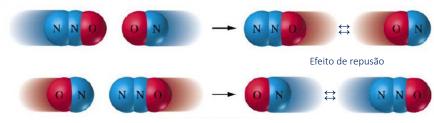
Portanto, a verdade é não basta haver colisão!

Para que uma reação ocorra, as moléculas dos reagentes devem colidir...

com Energia suficiente para formar produtos (= intensidade)

A essa energia dá o nome de Energia de Ativação (E_a)

Além disso, a colisão deve se dar em um sentido correto de orientação (= fator de orientação)


Suponha-se o caso que descreve a Etapa 1 do funcionamento do leito catalítico instalado no sistema de escapamento de automóveis leves. Aqui, que óxido nitroso reage com óxido de nitrogênio para formar dióxido de nitrogênio, e nitrogênio gasoso:

$$N_2O$$
 + NO \rightarrow NO_2 + N_2

Há três maneiras possíveis para que as moléculas de N₂O e de NO possam colidir.

No entanto, dentre essas possibilidades, apenas uma será *efetiva*, enquanto as demais **não** proporcionarão os resultados esperados em termos de transformação de matéria

Fatores de Orientação

a) Colisões não favoráveis: reação não ocorre

b) Colisão favorável: reação ocorre

17

Energia de Ativação (E_a)

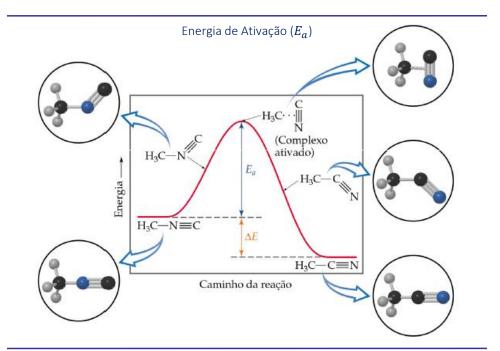
Postulados de Arrhenius:

- i. Em muitos sistemas reacionais, as transformações ocorrem por interação intra- (apenas um reagente), ou inter- (dois um mais reagentes) moléculas
- ii. As moléculas devem possuir uma quantidade mínima de energia para reagir sozinhas ou com outras moléculas
- iii. Essa quantidade mínima de energia deve ser suficiente para que as ligações existentes entre os átomos que compõe a estrutura molecular dos reagentes se quebrem
- iv. Chama-se de Energia de Ativação (E_a) a quantidade de energia mínima necessária para iniciar uma reação química

Energia de Ativação (E_a)

Considere novamente o rearranjo da metil-isocianida: $CH_3NC \rightarrow CH_3CN$

$$H_3C-N\equiv C:$$
 $\longrightarrow \begin{bmatrix} H_3C--\stackrel{\mathbf{N}}{=} \\ C \end{bmatrix} \longrightarrow H_3C-C\equiv N:$


Na estrutura H_3C – $N\equiv C$, a ligação C-N irá 'se retorcer' até quebrar, ficando a parte $N\equiv C$ inscrita no plano ortogonal à parte H_3C

A essa estrutura dá-se o nome de Complexo ativado ou Estado de Transição

A energia necessária para que ocorram a 'dobra' e a 'quebra' da ligação na forma como estas estão descritas acima é, portanto, a Energia de ativação (E_a)

Uma vez que a ligação C-N se rompe, a parte $N\equiv C$ pode continuar a girar formando uma ligação $C-C\equiv N$

19

Energia de Ativação (E_a)

Postulados de Arrhenius:

- i. Em muitos sistemas reacionais, as transformações ocorrem por interação *intra* ou *entre*
- ii. As moléculas devem possuir uma quantidade mínima de energia para reagir sozinhas ou com outras moléculas que (...)
- iii. Essa quantidade mínima de energia deve ser suficiente iniciar a reação, ou seja, para romper as ligações existentes entre os átomos que compõe a estrutura molecular dos reagentes (...)
- iv. (...) esta quantidade (mínima) de energia Chama-se de Energia de Ativação (E_a) a quantidade de energia mínima necessária para iniciar uma reacão química

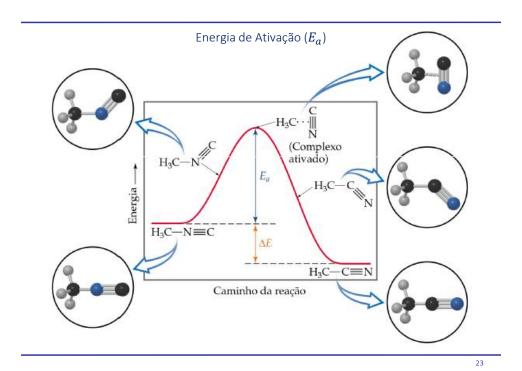
21

Energia de Ativação (E_a)

A variação de energia (= ΔE) é a diferença entre as energias de reagentes (CH_3NC) e produtos (CH_3CN)

A energia de ativação (E_a) é a diferença entre as energias dos reagentes (neste caso, o CH_3NC), e a do estado de transição

Observe também que o rearranjo da metil-isocianida é Exotérmico, caso de


$$CH_3NC \rightarrow CH_3CN + \Delta H (= energia \, liberada)$$

Então, a reação inversa será Endotérmica

$$CH_3CN + \Delta H$$
 (= energia requerida) $\rightarrow CH_3NC$

A barreira energética a ser vencida para que a reação inversa (E_{total}^{inv}) ocorra corresponde a:

$$E_{total}^{inv} = \Delta E + E_a$$

Energia de Ativação (E_a)

Observando em mais detalhes a parcela correspondente a ΔE :

$$\Delta E = \Delta E_{reação} = \sum E_R - \sum E_P$$

Para o caso presente essa expressão corresponde a

$$\Delta E = E_{CH_3NC} - E_{CH_3CN} = \int_{CH_3NC}^{Ti} - \int_{CH_3CN}^{Tf}$$

Já o valor de $\emph{E}_{\emph{a}}$ poderá ser estimado da seguinte forma:

Por outro lado, ΔE e E_a são influenciadas pela temperatura (T) do sistema em suas condições inicial e final

$$E_a = E_R - E_{ET} = h_R^{Ti} - h_{ET}^{Tf}$$
 Nesse âmbito: $r = f(T)$

Portanto, a velocidade da reação (r) varia em função de E_a , de forma que: $r=f\left(\frac{1}{E_a}\right)$