1) Use a tabela na página seguinte para fazer um resumo dos efeitos do glucagon, epinefrina e insulina no metabolismo de carboidratos, lipídios e proteínas no fígado, músculo e tecido adiposo, considerando as regulações alostéricas e/ou hormonais das vias e descrevendo o que acontece nos eventos em cada uma das condições indicadas. Esquematize também os pontos de regulação das vias discutidas, usando como guia a tabela abaixo.

Como referência, utilize os capítulos 20 e 21 do livro Marzocco e Torres.

Tabela 1. Enzimas reguladas por fosforilação que são importantes pontos de controle no metabolismo.

Enzima	Via ou função	Hormônio e atividade da enzima	
Acetil Coa carboxilase	Síntese de ácidos graxos	Glucagon	Inativa
Glicogênio sintase	Síntese glicogênio	Glucagon	Inativa
Glicogênio fosforilase quinase	Degradação de glicogênio	Glucagon	Ativa
Glicogênio fosforilase	Degradação de glicogênio	Glucagon	Ativa
Fosfofrutoquinase 2 (fígado)	Síntese de frutose 2,6 bisfosfato	Glucagon no fígado	Inativa no fígado
Frutose 2,6 bisfosfatase (fígado)	Desfosforilação de frutose 2,6 bisfosfato	Glucagon no fígado	Ativa no fígado
Fosfofrutoquinase 2 (músculo)	Síntese de frutose 2,6 bisfosfato	Epinefrina no músculo	Ativa no músculo
Frutose 2,6 bisfosfatase (músculo)	Desfosforilação de frutose 2,6 bisfosfato	Epinefrina no músculo	Inativa no músculo
Proteína inibidora da fosfoproteína fosfatase	Liga-se à fosfoproteína fosfatase	Glucagon	Ativa
Fosfoproteína fosfatase (PP-1)	Desfosforilação de proteínas	Insulina	Ativa
Fosfodiesterase	Degrada cAMP	Insulina	Ativa
Acetil CoA carboxilase	Síntese de malonil-CoA	Glucagon e Epinefrina	Inativa
Piruvato carboxilase	piruvato para oxalacetato	Glucagon	Inativa

Tabela 2. Enzimas reguladas alostericamente ou por inibição/ativação que são importantes pontos de controle no metabolismo.

Enzima	Via ou função	Atividade afetada por:
		Citrato EA (–)
Fosfofrutoquinase	Glicólise	ATP EA (-)
		Fru 2,6 bis fosfato EA (+)
Frutose 1,6,bisfosfatase	Gliconeogênese	Fru 2,6 bisfosfato EA (-)
Isocitrato desidrogenase	Krebs	NADH EA (-)
		ADP EA (+)
Piruvato carboxilase	piruvato para oxalacetato	Acetil Coa EA (+)
Acetil Coa carboxilase	Cíntasa da ásidas gravas	Citrato EA (+)
Acetii Coa carboxiiase	Síntese de ácidos graxos	Palmitoil Co A (-)
Carnitina acil	Transporte de acil-CoA para	Malonil CoA (inibidor)
transferase I	mitocôndria	
Glicose 6P	Via das pontosos	NADPH (inibidor
desidrogenase	Via das pentoses	competitivo)

	GLUCAGON	INSULINA	EPINEFRINA
Fígado	entrada de glicose na célula síntese de glicogênio degradação de glicogênio glicólise gliconeogêse ciclo de Krebs via das pentoses síntese de ácidos graxos degradação de lipídeos produção de corpos cetônico entrada de aminoácidos na célula/síntese de proteína	entrada de glicose na célu síntese de glicogênio degradação de glicogênio glicólise gliconeogêse ciclo de Krebs via das pentoses síntese de ácidos graxos degradação de lipídeos produção de cor cetônicos entrada de aa célula/síntese de proteína	
Músculo	entrada de glicose na célula síntese de glicogênio degradação de glicogênio glicólise ciclo de Krebs degradação de ácidos graxos utilização de corpos cetônico entrada de aa na célula/sínt de proteína	entrada de glicose na célu síntese de glicogênio degradação de glicogênio glicólise ciclo de Krebs degradação de ácidos gra utilização de cor	glicólise ciclo de Krebs degradação de ácidos graxos utilização de corpos cetônico entrada de aa na célula/sínt de proteína
Adiposo	entrada de glicose na célula glicólise ciclo de Krebs via das pentoses síntese de ácidos graxos degradação de lipídeos entrada de aa na célula/sínt de proteína	entrada de glicose na célu glicólise ciclo de Krebs via das pentoses síntese de ácidos graxos degradação de lipídeos	

- 2. Descrever as alterações metabólicas decorrentes da falta de insulina (diabetes).
- 3. Descreva ação dos hormônios peptídicos no período pós-absortivo.
- 4.O dibutiril AMPc é uma forma de AMPc permeável à membrana plasmática. Descreva quais seriam os efeitos metabólicos da adição de dibutiril AMPc a uma cultura de células de músculo esquelético, detalhando os mecanismos de sinalização envolvidos.