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[RC] Two-stage Gibbs Sampler.

200 7 Gibbs Samplers

7.1 Introduction

Chapter 6 described some principles for simulation based on Markov chains,
as well as some implementation directions, including the generic random walk
Metropolis–Hastings algorithm. This chapter extends the scope of MCMC al-
gorithms by studying another class of now-common MCMC methods, called
Gibbs sampling. The appeal of those specific algorithms is that first they
gather most of their calibration from the target density and second they allow
us to break complex problems (such as high dimensional target distributions,
for which a random walk Metropolis–Hastings algorithm is almost impossible
to build) into a series of easier problems, like a sequence of small-dimension
targets. There may be caveats to this simplification in that the sequence of sim-
ple problems may take in fine a long time to converge, but Gibbs sampling is
nonetheless an interesting candidate when dealing with a new problem.

The name Gibbs sampling comes from the landmark paper by Geman and
Geman (1984), which first applied a Gibbs sampler on a Gibbs random field.
For good or bad, it then stuck despite this weak link. Indeed, it is in fact a
special case of the Metropolis–Hastings algorithm as detailed in Robert and
Casella (2004, Section 10.6.1). The work of Geman and Geman (1984), built
on that of Metropolis et al. (1953), Hastings (1970) and Peskun (1973), influ-
enced Gelfand and Smith (1990) to write a paper that sparked new interest
in Bayesian methods, statistical computing, algorithms, and stochastic pro-
cesses through the use of computing algorithms such as the Gibbs sampler
and the Metropolis–Hastings algorithm. It is interesting to see, in retrospect,
that earlier papers such as Tanner and Wong (1987) and Besag and Clifford
(1989) had proposed similar solutions (but did not receive the same response
from the statistical community).

7.2 The two-stage Gibbs sampler

The two-stage Gibbs sampler creates a Markov chain from a joint distribution
in the following way. If two random variables X and Y have joint density
f(x, y), with corresponding conditional densities fY |X and fX|Y , the two-stage
Gibbs sampler generates a Markov chain (Xt, Yt) according to the following
steps:

Algorithm 7 Two-stage Gibbs sampler
Take X0 = x0

For t = 1, 2, . . . , generate

1. Yt ∼ fY |X(·|xt−1);
2. Xt ∼ fX|Y (·|yt) .
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[RC] Example 7.1. To start with an obvious illustration, con-
sider the bivariate normal model

(X,Y ) ∼ N
(

(0,0),
(

1 ρ
ρ 1

))
,

for which the Gibbs sampler is: given xt, generate

Yt+1 | xt ∼ N(ρxt,1− ρ2),

Xt+1 | yt ∼ N(ρyt+1,1− ρ2).
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[RC] Example 7.1.

Indeed, (from wiki): If N-dimensional x is partitioned as follows

x =
[
x1
x2

]
with sizes

[
q × 1

(N − q)× 1

]

and accordingly µ and Σ are partitioned as follows

µ =
[
µ1
µ2

]
with sizes

[
q × 1

(N − q)× 1

]

and covariance matrix

Σ =
[
Σ11 Σ12
Σ21 Σ22

]
with sizes

[
q × q q × (N − q)

(N − q)× q (N − q)× (N − q)

]

then the distribution of x1 conditional on x2 = a is multivariate
normal (x1 | x2 = a) ∼ N(µ̄,Σ) where

µ̄ = µ1 + Σ12Σ−1
22 (a− µ2) ,Σ = Σ11 −Σ12Σ−1

22 Σ21.
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[RC] Example 7.1.

In the bivariate case

x =
[
X1
X2

]
∼ N

([
µ1
µ2

]
,

[
1 ρ
ρ 1

])
,

x is partitioned into X1 and X2, the conditional distribution of
X1 given X2 is

(X1 | X2 = x2) ∼ N
(
µ1 + ρ(x2 − µ2), (1− ρ2)

)
,

Coming back to our example µ1 = µ2 = 0 we obtain

Yt+1 | xt ∼ N(ρxt,1− ρ2),

Xt+1 | yt ∼ N(ρyt+1,1− ρ2).

Then

Xt+1 | Xt = xt ∼ N(ρ2xt,1− ρ4)
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[RC] Example 7.1.

Xt+1 | Xt = xt ∼ N(ρ2xt,1− ρ4)

Proof:

E(E(Xt+1 | Yt+1) | Xt = xt)

= E(ρYt+1 | Xt = xt) = ρE(Yt+1 | Xt = xt) = ρ2xt,

Var(Xt+1 | Xt = xt) = Var(Xt+1 | Yt+1, Xt = xt)

= E(Var(Xt+1 | Yt+1) | Xt = xt) + Var(E(Xt+1 | Yt+1) | Xt = xt)

= E((1− ρ2) | Xt = xt) + Var(ρYt+1 | Xt = xt)

= 1− ρ2 + ρ2(1− ρ2) = 1− ρ4

�
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[RC] Example 7.1.

Xt+1 | Xt = xt ∼ N(ρ2xt,1− ρ4)

Recursion shows that

Xt+1 | X0 = x0 ∼ N(ρ2tx0,1− ρ4t),

which does indeed converge to N(0,1) as t goes to infinity.

As illustrated by the example, the sequence

(Xt, Yt), t = 1, . . . , T,

produced by a Gibbs sampler converges to the joint distribution f
and, as a consequence, both sequences (Xt)t and (Yt)t converge
to their respective marginal distributions.
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Example 7.2. Considering the pair of distributions

X|θ ∼ Bin(n, θ) , θ ∼ Be(a, b),

leads to the joint distribution

f(x, θ) =

(
n

x

)
Γ (a + b)

Γ (a)Γ (b)
θx+a−1(1 − θ)n−x+b−1.

The corresponding conditional distribution of X|θ is given above, while θ|x ∼
Be(x + a, n − x + b). The associated Gibbs sampler can be implemented as

> Nsim=5000 #initial values

> n=15

> a=3

> b=7

> X=T=array(0,dim=c(Nsim,1)) #init arrays

> T[1]=rbeta(1,a,b) #init chains

> X[1]=rbinom(1,n,T[1])

> for (i in 2:Nsim){ #sampling loop

+ X[i]=rbinom(1,n,T[i-1])

+ T[i]=rbeta(1,a+X[i],n-X[i]+b)

+ }

and its output is illustrated in Figure 7.1 for each marginal. Since this is a toy
example, the closed-form marginals are available and thus produced on top of the
histograms, and they show a good fit for both Gibbs samples. !

Exercise 7.2 The marginal distribution of θ in Example 7.2 is the standard
Be(a, b) distribution, but the marginal distribution of X is less standard and is
known as the beta-binomial distribution.

a. Produce a closed-form expression for the beta-binomial density by integrating
f(x, θ) in Example 7.2 with respect to θ.

b. Use this expression to create the function betabi in R. Then use the R com-
mand curve(betabi(x,a,b,n)) to draw a curve on top of the histogram
as in Figure 7.1.

Example 7.3. Consider the posterior distribution on (θ, σ2) associated with the
joint model

Xi ∼ N (θ, σ2), i = 1, . . . , n,(7.2)

θ ∼ N (θ0, τ
2) , σ2 ∼ IG(a, b),

where IG(a, b) is the inverted gamma distribution (that is, the distribution of
the inverse of a gamma variable), with density ba(1/x)a+1e−b/x/Γ (a) and with
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[RC] Example 7.3.

Consider the posterior distribution on (θ, σ2) associated with the
joint model

Xi ∼ N(θ, σ2), i = 1, . . . , n,

θ ∼ N(θ0, τ
2), σ2 ∼ IG(a, b),

where IG(a, b) is the inverted gamma distribution (that is, the
distribution of the inverse of a gamma variable), with density
ba(1/x)a+1e−b/x/Γ(a) and with θ0, τ2, a, b specified. Writing x =
(x1, . . . , xn), the posterior distribution on (θ, σ2) is given by

f(θ, σ2 | x) ∝
[

1

(σ2)n/2
e
−
∑

i
(xi−θ)2/(2σ2)

]

×
[

1

τ
e−(θ−θ0)2/(2τ2)

]
×
[

1

(σ2)a+1
e1/bσ2

]
,

from which we can get the full conditionals of θ and σ2.
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[RC] Example 7.3.

We have

π(θ | x, σ2) ∝ e
−
∑

i
(xi−θ)2/(2σ2)

e−(θ−θ0)2/(2τ2σ2),

π(σ2 | x, θ) ∝
(

1

σ2

)(n+2a+3)/2

e
− 1

2σ2

(∑
i
(xi−θ)2+(θ−θ0)2/τ2+2/b

)
.

These densities correspond to

θ | x, σ2 ∼ N

(
σ2

σ2 + nτ2
θ0 +

nτ2

σ2 + nτ2
x̄,

σ2τ2

σ2 + nτ2

)

σ2 | x, θ ∼ IG

(
n

2
+ a,

1

2

∑

i

(xi − θ)2 + b

)
,

where x̄ is the empirical average of the observations, as the full
conditional distributions to be used in a Gibbs sampler.
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[RC] Example 7.3. A study on metabolism in 15-year-old fe-
males yielded the following data, denoted by x,

> x=c(91,504,557,609,693,727,764,803,857,929,970,1043,
+ 1089,1195,1384,1713)

corresponding to their energy intake, measured in megajoules,
over a 24 hour period (also available in the dataset Energy).
Using the normal model above, with θ corresponding to the true
mean energy intake, the Gibbs sampler can be implemented as
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where x̄ is the empirical average of the observations, as the full conditional dis-
tributions to be used in a Gibbs sampler.

A study on metabolism in 15-year-old females yielded the following data,
denoted by x,

> x=c(91,504,557,609,693,727,764,803,857,929,970,1043,

+ 1089,1195,1384,1713)

corresponding to their energy intake, measured in megajoules, over a 24 hour
period (also available in the dataset Energy). Using the normal model above,
with θ corresponding to the true mean energy intake, the Gibbs sampler can be
implemented as

> xbar=mean(x)

> sh1=(n/2)+a

> sigma=theta=rep(0,Nsim) #init arrays

> sigma{1}=1/rgamma(1,shape=a,rate=b) #init chains

> B=sigma2{1}/(sigma2{1}+n*tau2)

> theta{1}=rnorm(1,m=B*theta0+(1-B)*xbar,sd=sqrt(tau2*B))

> for (i in 2:Nsim){

+ B=sigma2[i-1]/(sigma2[i-1]+n*tau2)

+ theta[i]=rnorm(1,m=B*theta0+(1-B)*xbar,sd=sqrt(tau2*B))

+ ra1=(1/2)*(sum((x-theta[i])^2))+b

+ sigma2[i]=1/rgamma(1,shape=sh1,rate=ra1)

+ }

where theta0, tau2, a, and b are specified values. The posterior means of θ and
σ2 are 872.402 and 136, 229.2, giving as an estimate of σ 369.092. Histograms
of the posterior distributions of log(θ) and log(σ) are given in Figure 7.2. !

Exercise 7.3 In connection with Example 7.3

a. Reproduce Figure 7.2 and superimpose the true marginal posteriors of log(θ)
and log(σ) by integrating f(θ, σ2|x) in σ2 and θ, respectively.

b. Investigate the sensitivity of the answer for a range of specifications of the
hyperparameter values theta0, tau2, a, and b. Specifically, compute point
estimates and confidence limits for θ and σ over a range of values for those
parameters.

We want to point out that recognizing the full conditionals from a joint
distribution is not that difficult. For example, the posterior distribution pro-
portional to (7.3) is obtained by multiplying the densities in the specification
(7.2).

To find a full conditional (that is, the conditional distribution of one pa-
rameter conditional on all others), we merely need to pick out all of the terms

where theta0, tau2, a, and b are specified values. The posterior
means of θ and σ2 are 872.402 and 136,229.2, giving as an
estimate of σ 369.092. Histograms of the posterior distributions
of log(θ) and log(σ) are given in Figure.
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Fig. 7.2. Histograms of marginal posterior distributions of the log-mean and log-
standard deviation from the Gibbs sampler of Example 7.3 based on 5000 iterations,
with a = b = 3, τ2 = 10 and θ0 = 5. The 90% interval for log(θ) is (6.299, 6.960)
and for log(σ) it is (0.614, 1.029).

in the joint distribution that involve that parameter. For example, from (7.3),
we see that

f(θ|σ2,x) ∝
[

1

(σ2)n/2
e− P

i(xi−θ)2/(2σ2)

]
×

[
1

τ
e−(θ−θ0)

2/(2τ2)

]
,

f(σ2|θ,x) ∝
[

1

(σ2)n/2
e− P

i(xi−θ)2/(2σ2)

]
×

[
1

(σ2)a+1
e1/bσ2

]
.

It should then be easy to see that the full conditional of σ2 will be an inverted
gamma distribution, as defined on page 202 (see also Exercise 7.19). For θ,
although there is a little more algebra involved in the derivation, we can
recognize that the full conditional will be normal. See Exercise 7.20 for an
illustration with a larger hierarchy.

Exercise 7.4 Make explicit the derivations that connect the expressions above
and the full conditional distributions in (7.4).
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[RC] Example 7.3.

Writing x = (x1, . . . , xn), the posterior distribution on (θ, σ2) is
given by

f(θ, σ2 | x) ∝
[

1

(σ2)n/2
e
−
∑

i
(xi−θ)2/(2σ2)

]

×
[

1

τ
e−(θ−θ0)2/(2τ2)

]
×
[

1

(σ2)a+1
e1/bσ2

]
,

To find a full conditional (that is, the conditional distribution
of one parameter conditional on all others), we merely need to
pick out all of the terms in the joint distribution that involve
that parameter. For example

f(θ | σ2,x) ∝
[

1

(σ2)n/2
e
−
∑

i
(xi−θ)2/(2σ2)

]
×
[

1

τ
e−(θ−θ0)2/(2τ2)

]

f(σ2 | θ,x) ∝
[

1

(σ2)n/2
e
−
∑

i
(xi−θ)2/(2σ2)

]
×
[

1

(σ2)a+1
e1/bσ2

]
,
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7.3 The multistage Gibbs sampler

There is a natural extension from the two-stage Gibbs sampler to the general
multistage Gibbs sampler. Suppose that, for some p > 1, the random variable
X ∈ X can be written as X = (X1, . . . , Xp), where the Xi’s are either unidi-
mensional or multidimensional components. Moreover, suppose that we can
simulate from the corresponding conditional densities f1, . . . , fp, that is, we
can simulate

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp ∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p. The associated Gibbs sampling algorithm (or Gibbs sam-
pler) is given by the following transition from X(t) to X(t+1):

Algorithm 8 The Multistage Gibbs Sampler

At iteration t = 1, 2, . . . ,, given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x
(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p );

...
p. X

(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 ).

The densities f1, . . . , fp are called the full conditionals, and a particular
feature of the Gibbs sampler is that these are the only densities used for
simulation. Thus, even in a high-dimensional problem, all of the simulations
may be univariate, which is usually an advantage.

Example 7.4. As an extension of Example 7.1, consider the multivariate normal
density

(7.5) (X1, X2, . . . , Xp) ∼ Np (0, (1 − ρ)I + ρJ) ,

where I is the p × p identity matrix and J is a p × p matrix of ones. This is a
model for equicorrelation, as corr(Xi, Xj) = ρ for every i and j. Using standard
formulas for the conditional distributions of a multivariate normal random variable
(see, for example, Johnson and Wichern, 1988), it is straightforward but tedious
to verify that

Xi|x(−i) ∼ N
(

(p − 1)ρ

1 + (p − 2)ρ
x̄(−i),

1 + (p − 2)ρ − (p − 1)ρ2

1 + (p − 2)ρ

)
,

where x(−i) = (x1, x2, . . . , xi−1, xi+1, . . . , xp) and x̄(−i) is the mean of this
vector. The Gibbs sampler that generates from these univariate normals can then
be easily derived, although it is useless for this problem (Exercise 7.5). It is,
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[RC] Example 7.5. A hierarchical specification for the normal
model is the one-way random effects model. There are different
ways to parameterize this model, but a possibility is as follows

Xij ∼ N(θi, σ
2), i = 1, . . . , k, j = 1, . . . , ni,

θi ∼ N(µ, τ2), i = 1, . . . , k,

µ ∼ N(µ0, τ
2
µ),

σ2 ∼ IC(a1, b1), τ2 ∼ IC(a2, b2), σ2
µ ∼ IC(a3, b3).
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[RC] Example 7.5.

Now, if we proceed as before and write down the joint distribu-
tion from this hierarchy, we can derive the set of full conditionals

θi ∼ N

(
σ2

σ2 + niτ2
µ+

niτ2

σ2 + niτ2
X̄i,

σ2τ2

σ2 + niτ2

)
, i = 1, . . . , k,

µ ∼ N

(
τ2

τ2 + kσ2
µ

µ0 +
kσ2

µ

τ2 + kσ2
µ

θ̄,
σ2
µτ

2

τ2 + kσ2
µ

)
,

σ2
µ ∼ IG

(
n

2
+ a1,

1

2

∑

ij

(Xij − θi)2 + b1

)
,

τ2
µ ∼ IG

(
k

2
+ a2,

1

2

∑

i

(θi − µ)2 + b2

)
,

σ2
µ ∼ IG

(
1

2
+ a3,

1

2
(µ− µ0)2 + b3

)
,

where n =
∑

i
ni and θ̄ =

∑
i
niθi/n.
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[CG] Estimate the density.

“Gibbs sampling can be used to estimate the density itself by av-
eraging the final conditional densities from each Gibbs sequence.
The values Xk = x4 yield a realization of X1, . . . , Xm ∼ f(x), the
values Yk = yk yield a realization of Y1, . . . , Ym ∼ f(y). Moreover,
the average of the conditional densities f(xIYk = yk) will be a
close approximation to f(x), and we can estimate f(x) with

f̂(x) =
1

m

m∑

i=1

f(x | yi), (1)

where y1, . . . , ym is the sequence of realized values of final Y
observations from each Gibbs sequence. The theory behind the
calculation in (1) is that the expected value of the conditional
density is

E[f(x | Y )] =

∫
f(x | y)f(y)dy = f(x),

a calculation mimicked by (1), since y1, . . . , ym approximate a
sample from f(y).”
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Exercises.

1. [RC] Example 7.10, Exercises 7.11.

2. Construct Gibbs sampler for Ising model em Λ = [0, N ]d ⊂
Zd. Calculate explicitly conditional probabilities for Gibbs
sampler.

3. Simulate the trajectory of the Gibbs sequence

(X0, Y0), (X1, Y1), . . . , (Xm, Ym), . . .

with f(x | y) = ye−yx, x ∈ (0,∞), f(y | x) = xe−xy, y ∈
(0,∞). What can you say about recurrence of this se-
quence?
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