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[RC] Two-stage Gibbs Sampler.

7.2 The two-stage Gibbs sampler

The two-stage Gibbs sampler creates a Markov chain from a joint distribution
in the following way. If two random variables X and Y have joint density
f(x,y), with corresponding conditional densities fy|x and fx|y, the two-stage
Gibbs sampler generates a Markov chain (X, Y;) according to the following
steps:

Algorithm 7 Two-stage Gibbs sampler
Take Xg = x9
For t=1,2,..., generate

1. Y~ fyix (loe—1),

2. Xi~ fxiv(lye) -
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[RC] Example 7.1. To start with an obvious illustration, con-
sider the bivariate normal model

@y ~N (0. (5 7))

for which the Gibbs sampler is: given z;, generate

Y;H'l | Ly N(pJ?t, 1— p2)7
Xit1 |l ~ N(pyit1,1 — p?).
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[RC] Example 7.1.

Indeed, (from wiki): If N-dimensional x is partitioned as follows

_ X1 . . gx1
X = [XQ} with sizes [(N ~g) x 1}

and accordingly p and X are partitioned as follows

ol , , gx1
n= [Nz] with sizes [(N—q)xl}

and covariance matrix

3 by : : N —
=[5 52| witnsizes |y U ]

then the distribution of x; conditional on x> = a is multivariate
normal (x1 | xo =a) ~ N(,¥) where

pn=pq + 2122521 (a—py), X =311 — 2122521221-
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[RC] Example 7.1.

In the bivariate case

=[] ~n ([1].[2 2])-

X is partitioned into X; and X», the conditional distribution of
X1 given X5 is

(X1 | X2 =) ~ N (1 + plaz — p2), (1 = p?))
Coming back to our example u; = pu2 = 0 we obtain

Y;H'l | e N(pil?t, 1- p2)7

Xey1 |y ~ N(pyg1, 1 — p2).
Then

Xig1 | Xe = @ ~ N(p?my, 1 — p*)
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[RC] Example 7.1.
Xeg1 | Xie =2 ~ N(p°xi, 1 — p*)
Proof:

E(E(Xit1 | Yit1) | Xe = m1)
= E(pYiy1 | Xo = x1) = pE(Yiq1 | Xi = 1) = p oy,

Var( X1 | Xe = x¢) = Var(Xega | Yig1, Xe = )

= EVar(Xit1 | Yig1) | Xe = ) + Var(E(Xi41 | Yig1) | Xe = x¢)
=E((1 - p*) | Xo = @) + Var(pYit1 | Xo = @)
=1-p°+p°(1-p")=1-p"



Aula 9. Gibbs Sampler. Exercises. 6

[RC] Example 7.1.
Xiu1 | Xo =z ~ N(p%zi, 1 — p%)
Recursion shows that
Xi41 | Xo = z0 ~ N(p*'zo,1 — p™),
which does indeed converge to N(0,1) as t goes to infinity.
As illustrated by the example, the sequence
(X, V), t=1,...,T,

produced by a Gibbs sampler converges to the joint distribution f
and, as a consequence, both sequences (X;); and (Y;): converge
to their respective marginal distributions.
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Example 7.2. Considering the pair of distributions
X|0 ~ Bin(n,0), 0~ Be(a,b),

leads to the joint distribution

f(l‘, 9) — (Z) ]I:((;l);(bb)) em—l—a—l(l o 6)n—:c+b—l'

The corresponding conditional distribution of X6 is given above, while |z ~
Be(x 4+ a,n — x 4+ b). The associated Gibbs sampler can be implemented as

Nsim=5000 #initial values
n=15
a=3
b=7
X=T=array(0,dim=c(Nsim, 1)) #init arrays
T[1]=rbeta(l,a,b) #init chains
X[1]=rbinom(1,n,T[1])
for (i in 2:Nsim){ #sampling loop
X[i]l=rbinom(1,n,T[i-1])
T[il=rbeta(l,a+X[i] ,n-X[i]+b)
+

+ + + vV V VV V V V.YV
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[RC] Example 7.3.

Consider the posterior distribution on (6, 0?) associated with the
joint model

X; ~ N(0,0%), i=1,...,n,
0 ~ N(6p,7°), o°~1IG(a,b),
where IG(a,b) is the inverted gamma distribution (that is, the

distribution of the inverse of a gamma variable), with density
b*(1/x)etle=b* /I (a) and with g, 72, a,b specified. Writing x =

(x1,...,xn), the posterior distribution on (0,02) is given by
L =) @—02/(20%)
2 (i
f(0,0° | x) [(JQ)n/Qe ]
1 2 2 1 2
+ —(6-60)2/(272) 1/bo
X [Te } X [(02)a+1e } ,

from which we can get the full conditionals of 8 and o2.
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[RC] Example 7.3.
We have

m(0 | x, 02) x e zi(xi_6)2/(202)e—(9—90)2/(27202)’

1 (mF2et3)/2 1 z;—0)? —00)2 /72
7T(O'2 ’ X, 9) < (—2) e 252 (ZZ( 0) +(9 90) / —|-2/b) -
o

These densities correspond to

2 2 2.2
9|X,02 ~ N(J—90+ nTt _ o°T )

x
02 4+ nt2 o2 4+nr2" g2 4+ nr2

2 n 1 /)2
o2 | x,0 G 2—|—a,22($1 0H2+b |,

2

where z is the empirical average of the observations, as the full
conditional distributions to be used in a Gibbs sampler.
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[RC] Example 7.3. A study on metabolism in 15-year-old fe-
males vielded the following data, denoted by x,

> x=c(91,504,557,609,693,727,764,803,857,929,970,1043,
+ 1089,1195,1384,1713)

corresponding to their energy intake, measured in megajoules,
over a 24 hour period (also available in the dataset Energy).
Using the normal model above, with 0 corresponding to the true
mean energy intake, the Gibbs sampler can be implemented as
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xbar=mean (x)
shi=(n/2)+a
sigma=theta=rep(0,Nsim) #init arrays
sigma{1}=1/rgamma(1,shape=a,rate=b) #init chains

B=sigma2{1}/(sigma2{1}+n*tau2)
theta{l}=rnorm(1,m=Bxthetal+(1-B)*xbar,sd=sqrt(tau2+B))
for (i in 2:Nsim){
B=sigma2[i-1]/(sigma2[i-1]+n*tau2)
thetali]l=rnorm(1,m=B*thetal+(1-B)*xbar,sd=sqrt(tau2+B))
ral=(1/2)*(sum((x-thetal[i]) "2))+b
sigma2[i]=1/rgamma (1, shape=shl,rate=ral)

by

+ + + + + VvV V V V V V V

where theta0, tau2, a, and b are specified values. The posterior
means of 6 and o2 are 872.402 and 136,229.2, giving as an
estimate of o 369.092. Histograms of the posterior distributions
of log(#) and log(o) are given in Figure.
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Fig. 7.2. Histograms of marginal posterior distributions of the log-mean and log-
standard deviation from the Gibbs sampler of Example 7.3 based on 5000 iterations,
with a = b =3, 72 = 10 and 6y = 5. The 90% interval for log(6) is (6.299,6.960)

and for log(o) it is (0.614, 1.029).



Aula 9. Gibbs Sampler. Exercises. 13

[RC] Example 7.3.

Writing x = (x1,...,2,), the posterior distribution on (0,02) is
given by
1 - @022
2 ALq
f(0,0° | x) |:(0-2)n/26 i
1 2 2 1 2
= —(0—60)?/(272) 1/bo
X |:T€ :| X |:(0-2)a+16 :|7

To find a full conditional (that is, the conditional distribution
of one parameter conditional on all others), we merely need to
pick out all of the terms in the joint distribution that involve
that parameter. For example

f(e | 0_2’ X) x |: 1 — Zi(xi—Q)Q/(202)j| v [le—(e—eo)z/(272)i|

(O-Q)n/Qe T
1 _ _0)2 2 1
2 (zi—0)?/(20°) 1/bo?
f(cc]0,x) [(02)71,/26 Zz } X [—(JQ)a—I—le } ,
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7.3 The multistage Gibbs sampler

There is a natural extension from the two-stage Gibbs sampler to the general
multistage Gibbs sampler. Suppose that, for some p > 1, the random variable
X € X can be written as X = (Xy,...,X,), where the X;’s are either unidi-
mensional or multidimensional components. Moreover, suppose that we can
simulate from the corresponding conditional densities fi,..., f,, that is, we
can simulate

X¢|.I‘1,.T2, ey L1, L1y .- -5 Tp fi(fL‘Z‘|.I'1,.I'2, ey Li—15Lj41y - - ,Z'p)

for i = 1,2,...,p. The associated Gibbs sampling algorithm (or Gibbs sam-
pler) is given by the following transition from X® to X (*+1).

Algorithm 8 The Multistage Gibbs Sampler

At iteration t=1,2,...,, given x(*) = (asgt), . ,:cg)) , generate
1. Xft—i_l) ~ f1($1|l‘g), e ,.I‘I(yt));
2. X;Hl) ~ fg(x2|x§t+1),x§t), o ,J:](f));

t+1 : t+1 t+1
P X]g )pr(:vp\xg ),...,33](3_1)).
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[RC] Example 7.5. A hierarchical specification for the normal
model is the one-way random effects model. There are different
ways to parameterize this model, but a possibility is as follows
Xij ~ N(@i,az), izl,...,k, j=1,...,n7;,
0; ~ N(u,72), i=1,...,k,
pwo o~ N(po,72),

o? ~ IC(a1,b1), 72 ~ IC(a2,bo), 05 ~ IC(asz,b3).
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[RC] Example 7.5.

Now, if we proceed as before and write down the joint distribu-
tion from this hierarchy, we can derive the set of full conditionals

2 2 2 2
o n;T — o°T )
0; ~ N n+ i Xi i=1,...,k
2 2 2 2 o 2 | ’ »

o<+ n;t o<+ n;t o+ nT

N 72 N kaﬁ 5 057‘2
H 7_2_|_k03MO 7'2—|-]€0'£ ’7'2—|—k03 ’
2 n 1 2
o, ~ IG §+a1,§Z(Xij—9i) + b1 |,

j
k 1

2 K 1 N2
72 G 2—|—a2,22(01 W2 +bo |,

1 1
o ~ IG (5+a3,§(u—uo)2 +b3) ,

where n = ZZ n; and 0 = ZZ ni0; /n.
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[CG] Estimate the density.

“Gibbs sampling can be used to estimate the density itself by av-
eraging the final conditional densities from each Gibbs sequence.
The values X, = x4 vield a realization of X1,..., X, ~ f(z), the
values Y}, = y;, vield a realization of Y1,...,Y,, ~ f(y). Moreover,
the average of the conditional densities f(zIY, = y,) will be a
close approximation to f(x), and we can estimate f(x) with

_ 1 —
== — i y 1
J@y==3% [y (1)
=1
where y1,...,ym is the sequence of realized values of final Y

observations from each Gibbs sequence. The theory behind the
calculation in (1) is that the expected value of the conditional
density is

Elf(z|Y)] = /f(fc | y)f(y)dy = f (=),

a calculation mimicked by (1), since yi,...,vy, approximate a
sample from f(y)."”
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EXxercises.
1. [RC] Example 7.10, Exercises 7.11.

2. Construct Gibbs sampler for Ising model em A = [0, N]¢ C
Z% Calculate explicitly conditional probabilities for Gibbs

sampler.
3. Simulate the trajectory of the Gibbs sequence
(XO7 YO), (Xla Y1)7 MR (Xma Ym)7 st

with f(z | y) = ye ¥,z € (0,00), f(y | z) = ze"™,y €
(0,00). What can you say about recurrence of this se-
quence?
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