
Sequencing Operator Counts with State-Space
Search

Wesley L. Kaizer, Advisor: André G. Pereira and Marcus Ritt
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

{wlkaizer,agpereira,marcus.ritt}@inf.ufrgs.br

Abstract—Heuristic search is the most common approach to
solve classical planning tasks optimally. OpSeq is an innovative
approach to solve planning tasks that decomposes the planning
task into a master problem and a subproblem. The master problem
generates an assignment of integer counts for each task operator,
and the subproblem verifies if a plan satisfying these counts exists.
If a plan does not exist, OpSeq learns a new constraint to inform
the master problem. OpSeq solves the subproblem using a SAT
solver. In this dissertation, we propose a new solver OpSearch:
an A∗-based approach to sequence operator counts that uses the
frontier of the search to learn a constraint on failure. We show
that OpSearch solves the subproblem better than OpSeq. It solves
more planning tasks, scales better, and learns constraints more
informative than OpSeq. We prove that OpSearch only learns
constraints that maintain all optimal solutions. OpSearch extends
the research on an entirely new method to solve planning tasks.
Also, our solver opens many new lines of research based on
decomposition, such as fast and stronger anytime lower bounds,
new methods for agile planning, and new approaches to solve
diverse planning.

Index Terms—State-Space Search, Operator Counting Frame-
work, Classical Planning, Artificial Intelligence.

I. ABOUT THIS THESIS

a) Student Level: MSc.
b) Date of Conclusion: 11/03/2020.
c) Examining Board Members:
• Prof. PhD. Felipe Meneguzzi, Catholic Pontifical Univer-

sity of Rio Grande do Sul, Brazil.
• Prof. PhD. Levi Lelis, Federal University of Viçosa,

Brazil.
• Prof. PhD. Rafael Coelho, Federal University of Rio

Grande do Sul, Brazil.
d) Full Thesis: https://bit.ly/2N2dfiM
e) Publication: Kaizer, W. L., Pereira, A. G., Ritt, M.

Sequencing Operator Counts with State-Space Search. Inter-
national Conference on Automated Planning and Scheduling,
pp. 166-174, 2020 (Qualis A2).
https://aaai.org/ojs/index.php/ICAPS/article/view/6658/6512

II. INTRODUCTION

Automated planning is a general problem solving technique
that aims to find a sequence of operators called plan, whose
the ordered application of its operators in the initial state
achieves a goal state that satisfies the goal condition. There
is only one initial state but possibly many goal states. States

describe currently valid conditions and consist of a complete
assignment of discrete values to every task variable, and
operators with non-negative costs describe actions that can be
applied in states to modify the value assigned to the variables,
generating a new state. A planning task consists of a set
of variables, a set of operators, an initial state, and a goal
condition. In optimal classical planning the operators have
discrete, deterministic and fully observable effects and the
objective is to find a plan with global minimal cost or show
that such a plan does not exist. The cost of a plan is computed
as the sum of the costs of its operators [24].

As an illustrative example, consider the planning task Πrobot

presented in Fig. 1 in which a robot must transport one ball
from the left to the right room. The robot starts in the left room
and must return to it after transporting the ball. We can model
this task using two variables: ball at for the ball position and
robot at for the robot position. Variable ball at can assume
the value left, when the ball is in the left room, right when
the ball is in the right room, and robot when the ball is in
the robot’s hand. Variable robot at can assume the value left
when the robot is in the left room and right when the robot
is in the right room. In the initial state we have ball at=left
and robot at=left and in goal states we want ball at=right
and robot at=left.

Initial state Goal state

Fig. 1. Example planning task Πrobot.

We define six operators to reach the goal by changing the
values of ball at and robot at: pick left and pick right cause
the robot to pick the ball at the left or right room, drop left
and drop right cause the robot to drop the ball at left or right
room, and move right and move left cause the robot to move
from the left room to the right and from the right room to the
left. To apply pick left or pick right, both the robot and the

ball must be in the left or right room, respectively. To apply
drop left or drop right, the ball must be in the robot’s hand
and the robot must be in the left or right room, respectively.
To apply move left or move right, the robot must be in the
right or left room, respectively.

We can define any non-negative costs for the operators. For
example, if we want to minimize the total number of applied
operators or steps, we can define all costs equal to one. If we
want to minimize the movements made by the robot, possibly
because they consume fuel or energy, we can define non-zero
costs for the move left and move right operators and zero cost
for the others. For instance, the optimal plan for task Πrobot

considering that operators pick left and pick right cost 4,
drop left and drop right cost 2, and move left and move right
cost 10 is 〈pick left,move right, drop right,move left〉
with total cost of 4+10+2+10 = 26. This plan is illustrated
in Fig. 2. Operator pick left causes the robot to pick the ball,
move right causes the robot to move to the right room while
holding the ball, drop right causes the robot to drop the ball
in the right room and move left causes the robot to move back
to its initial position.

Initial state After pick_left After move_right After drop_right After move_left

Fig. 2. Plan to task Πrobot.

Optimal classical planning can be solved by domain-
independent algorithms that use as input only a high-level
compact specification of the task, since in this setting the plan-
ner does not have any additional information about the specific
task. The expansion of this compact representation of the
planning task generates state-spaces exponentially larger than
the input, which requires intelligent and efficient algorithms to
find solutions in a feasible time. Planning aims to create one
planner that performs sufficiently well on many application
domains, including future ones. Many computational problems
can be represented as planning tasks, which motivates its
use in many application domains, such as robot navigation,
activities scheduling, tasks automation, puzzle solving, content
generation, goal recognition, and others [1], [2].

The main technologies used by planners to solve planning
tasks rely on heuristic search algorithms to efficiently expand
the state-space aiming to find an optimal solution. A∗ is one
of the most prominent heuristic search algorithm in classical
optimal planning and in the area of artificial intelligence in
general. It uses three functions f , g and h to map states
to numerical values during the search: function g(s) is the
cost of the best-known plan from the initial state to state s,
function h(s) is the heuristic function that estimates the cost
of an optimal plan from s to some goal state, and function
f(s) = g(s) + h(s) estimates the cost of an optimal plan from
the initial state to a goal state, going through state s. Finding
optimal solutions to planning tasks is a PSPACE-complete

problem and hence intractable in general. However, heuristic
search algorithms with automatically derived heuristic func-
tions, e.g., pattern databases hPDB, hLMCut and hSEQ, have
achieved notable progress by solving many hard planning tasks
in practice.

One such heuristic function is the operator-counting that
uses as heuristic value the objective value of the linear
relaxation of an integer program [19]. The integer program
contains one integer variable for each task operator and a
set of operator-counting constraints. The counts assigned by
the integer program solution to each operator, denominated
operator counts, can be understood as an estimate of the
number of times the operators are applied to solve the task.
[8] introduces a novel approach observing that the operator
counts of the operator-counting integer program contain useful
information that can be understood as a possibly incomplete
and unordered plan. The proposed method decomposes the
process of solving a planning task into two independent but
related problems using Logic-Based Benders Decomposition.
The master problem corresponds to the operator-counting
heuristic integer program. The subproblem is modeled as a
propositional satisfiability problem (SAT) encoding the plan-
ning task, and the operator counts obtained from the master. A
SAT solver is then used to try to sequence the operator counts,
i.e., to check if a plan with these counts exists. If the operator
counts is not sequenceable, the SAT solver returns a constraint
for the master problem.

In this dissertation, we propose an algorithm to solve the
operator counts sequencing subproblem using heuristic search
instead of a SAT-based formulation. This new approach is
based on an A∗ search that employs information unavailable
to SAT solvers, such as the f -value of search nodes and the
explicit structure of the search graph. We present a novel
strategy to construct a violated constraint during the expansion
of the search graph by considering the frontier of the search.
We show that this strategy generates an admissible generalized
landmark constraint. We experimentally show that the resulting
algorithm OpSearch has better coverage and less memory
requirements than a SAT-based approach and can generate
smaller and more informative explanations of infeasibility, as
shown by the total number of solved subproblems required to
solve the planning tasks. We believe this approach is relevant
because it opens new research directions towards specialized
operator counts sequencing methods based on well-known
classical planning technologies.

III. BACKGROUND

A. SAS+ Planning Task

An SAS+ planning task Π = 〈V, O, s0, s∗, c〉 is defined by
a set of variables V , a set of operators O, an initial state s0, a
goal condition s∗, and a cost function c. Each variable v ∈ V
has a finite domain D(v) that describes the possible values
v can assume. A partial state s is a partial assignment over
some subset of V and a state s is a complete assignment over
all variables in V . We write vars(s) for the set of variables
defined in state s, s(v) for the value of variable v in state s,

and S for the set of all states of Π, also known as the state-
space. State s0 is a state and s∗ is a partial state. We call a state
s consistent with state s′ if s(v) = s′(v) for all v ∈ vars(s′).
A goal is a state consistent with s∗. Each operator o ∈ O is
a pair of partial states 〈pre(o), post(o)〉. Partial state pre(o)
represents preconditions: operator o is applicable in all states s
that are consistent with pre(o). Partial state post(o) represents
effects of applying operator o to a state s, which produces
a new state s′ with updated values for v ∈ vars(post(o)),
i.e., for all v /∈ vars(post(o)): s′[v] = s[v] and for all v ∈
vars(post(o)): s′[v] = post(o)[v]. Function c : O → Z+

0

assigns a non-negative cost c(o) to each operator o ∈ O. We
say that task Π is unit-cost if for all o ∈ O we have c(o) = 1.
An s-plan π is a sequence of operators 〈o1, . . . , on〉 such that
there exists a sequence of states 〈s1 = s, . . . , sn+1〉 where oi is
applicable to si and produces state si+1, and sn+1 is consistent
with s∗. The cost of an s-plan π is defined as cost(π) =∑
o∈π c(o). Finally, an s0-plan is simply called a plan, and

solving a planning task optimally means to find a plan π for
Π of minimal cost or prove that no plan exists.

B. Heuristic Search

A∗ is the most prominent heuristic search algorithm in
classical planning [11]. It systematically expands nodes from
a set of open nodes in order of non-decreasing f -values. The
f -value of a state s estimates the cost of a plan going through
s and is defined as f(s) = g(s) + h(s), where g(s) is the
current cost from s0 to s and h(s) is a heuristic estimate of the
remaining cost to some goal state. Expanded nodes are stored
in a closed set. A heuristic function h : S → R ∪ {∞} maps
a state s to its h-value, an estimate of the cost of an s-plan.
The perfect heuristic h∗ maps a state s to its optimal plan cost
or to ∞ if no plan exists. A heuristic is admissible if it is a
lower bound on the optimal plan cost, i.e., h(s) ≤ h∗(s) for
all s ∈ S. A∗ is itself admissible, i.e., always returns a cost-
optimal plan, when using an admissible h, if a plan exists.

It is possible to automatically derive heuristic functions
by relaxing some aspects of the planning task through a
process denominated task relaxation. The resulting heuristics
are usually grouped in heuristic function classes, depending
on the relaxation procedure applied. Currently, well-known
heuristic function classes are critical path, delete relaxation,
abstraction and landmark [17], [25]–[29].

C. Integer Programming

Integer programming [22] is an optimization technique
aiming to find feasible values for a set of decision variables
that optimizes some linear objective function, subject to a set
of linear constraints, where some variables can assume only
integer values. The problem of finding an optimal solution to
an integer program (IP) is NP-complete, but its linear program
(LP) relaxation, which ignores the integrality constraints, can
be solved in polynomial time. Early uses of linear program-
ming in cost-optimal planning relate to cost-partitioning, a
method to admissibly combine several heuristics by partition-
ing operator costs among them [18].

[19] presents several admissible heuristics that can be
expressed using linear programming such as disjunctive action
landmarks, state equation and post-hoc optimization. Others
heuristics are the IP formulation for the optimal delete relax-
ation heuristic h+ introduced by [15] and the dynamic merging
method from [4] based on flow constraints. [19] also show
that it can be advantageous to optimize a linear program at
each search state and that some combinations of constraints
originated from different heuristics can be more informative
than each of its components alone.

D. The Operator-Counting Framework

Operator-counting [19] is a recently proposed framework
that unifies information from several conceptually different
heuristics into a single integer program. The program contains
a variable Yo, for each operator o ∈ O, that counts the number
of occurrences of the operator o in some plan. Its objective
function is to minimize the total operator costs while satis-
fying all its operator-counting constraints. Operator-counting
constraints and heuristics are defined below as in [19].

Definition 1 (Operator-counting constraints). Let Π be a
planning task with operator set O, and s be a state of Π. Let
Y be a set of non-negative real-valued and integer variables,
including an integer variable Yo for each operator o ∈ O
along with any number of additional variables. Variables Yo
are called operator-counting variables. We say that π is an s-
plan in Π if it is a valid plan that leads from a state s to a goal
s∗. If π is an s-plan, we denote the number of occurrences
of operator o ∈ O in π with Yπo . A set of linear inequalities
over Y is called an operator-counting constraint for s if for
every s-plan there exists a feasible solution with Yo = Yπo for
all o ∈ O. A constraint set for s is a set of operator-counting
constraints for s where the only common variables between
constraints are the operator-counting variables.

Definition 2 (Operator-Counting IP/LP Heuristic). The
operator-counting integer program IPC for a set of operator-
counting constraints C for state s is

minimize
∑
o∈O

c(o)Yo

subject to C,

Yo ∈ Z+
0 .

The IP heuristic hIP
C is the objective value of IPC , and the LP

heuristic hLP
C is the objective value of its linear relaxation. If

the IP or LP is infeasible, the heuristic estimate is ∞.

If π is a plan for Π then Yo = Yπo is a solution for IPC .
Thus, the cost of an optimal plan π∗ is an upper bound for
the objective value of IPC , and the IP heuristic is admissible.
Since an integer solution for IPC is also a solution for its
linear relaxation, the LP heuristic is also admissible. Note
also that adding more constraints can only improve the heuris-
tic estimates at a possibly higher computational cost. There
are many available sources of operator-counting constraints
proposed in the literature, such as action landmarks, post-hoc

optimization, state equation, network flow, and optimal delete-
relaxation h+ [4], [5], [15], [21].

E. Operator Counts

An operator counts Cs : O → Z+
0 is a function that assigns

to each operator o ∈ O the integer count Yo obtained from
the primal solution of the operator-counting IPC for state s.
These counts can be seen as an estimate on how often each
operator is used in a feasible solution for IPC .

For instance, suppose that we have a planning task with
four operators o1, o2, o3 and o4. Then we solve the operator-
counting heuristic with some set of operator-counting con-
straints, obtaining the primal solution Yo1 = 2, Yo2 = 1,
Yo3 = 4 and Yo4 = 0. Then the operator counts corresponding
to this primal solution is C = {o1 7→ 2, o2 7→ 1, o3 7→ 4}. We
only show counts for non-zero operators.

F. Generalized Landmarks

The generalized landmark constraint (GLC) introduced by
[8] contains binary variables called bounds literals in the form
[Yo ≥ ko], being true if there are at least ko occurrences of
operator o in the solution of the IPC . This generalization
is compatible with operator-counting constraints and can be
used to express constraints of the form [Yo1

≥ ko1
] + · · · +

[Yon ≥ kon] ≥ 1. To satisfy this constraint at least one of the
bounds literals must be true.

Definition 3 (Generalized Landmark Constraint). A gener-
alized landmark constraint L for A ⊆ O × Z+ for a state s
in planning task Π is defined as:∑

〈o,k〉∈A

[Yo ≥ k] ≥ 1.

Domain constraints are used to link bounds literals with
operator-counting variables Yo: we have for all k ≥ 1

[Yo ≥ k] ≤ [Yo ≥ k − 1] , (1)

Yo ≥
k∑
i=1

[Yo ≥ i] , (2)

Yo ≤M [Yo ≥ k] + k − 1. (3)

Constraint (1) ensures that bound [Yo ≥ k] is only valid
when the next smallest bound [Yo ≥ k − 1] is; (2) ensures
that the total number of valid bounds literals for operator o is
a lower bound on the number of operators Yo; and (3) ensures
that bound [Yo ≥ k] is set when Yo ≥ k. Combined, (2) and
(3) guarantee that Yo is the number of occurrences of o.

G. Planning using Logic-Based Benders Decomposition

Usually in classical planning, only the objective function
value of the operator-counting heuristic guides the search.
Even though linear programs are polynomial-time solvable,
one must use them as heuristic function carefully, since the
state-space expanded by A∗ grows exponentially in the number
of states, according to the planning task specification. Besides
the objective function value, the operator counts obtained

Fig. 3. Logic-Based Benders Decomposition to cost-optimal planning
(adapted from [8]).

from the primal solution of IPC can also contain useful
information to solve the problem. Specifically, these counts
can be interpreted as a possibly incomplete and unordered plan
to the planning task, with some missing necessary operators.
This observation suggests a novel approach to solve planning
tasks optimally, by incrementally search for missing operators
until a complete and ordered plan is found.

The Logic-Based Benders Decomposition proposed by [8]
decomposes the process of solving planning tasks into two
related problems: a master problem that solves IPC , that
is a relaxation of the original planning task and generates
operator counts Cs, and a subproblem that tries to sequence
Cs, constructing a violated constraint on failure.

The main idea consists of incrementally strengthening the
master problem relaxation with some learned knowledge about
the infeasibility of its current solution. These constraints
should be as informative as possible to decrease the number
of total iterations between the master and the subproblem. The
process stops when the Branch and Cut algorithm (BC) [30]
used to solve the IPC from master proves the optimality of the
current incumbent plan. Fig. 3 illustrates the overall process.

This decomposition establishes an interface between
operator-counting heuristics and operator counts sequencing
procedures. In the next section we discuss how [8] solve the
sequencing subproblem.

H. Sequencing Operators Counts with SAT

The solver OpSeq introduced by [8] applies a SAT model
that encodes the planning task limited to an operator counts
Cs as a formula in conjunctive normal form. They use this
model to solve the sequencing operator counts subproblem. If
the formula is satisfiable, OpSeq can directly extract a plan. If
the operator counts does not correspond to a plan i.e., if the
formula is not satisfiable, OpSeq uses assumptions to generate
an explanation of its infeasibility. The assumptions are special
variables that relates to the current operator counts. The gen-
erated explanation is a disjunction of negated assumptions that
can be directly translated to a generalized landmark constraint
and added to the master problem.

OpSeq does not solve the entire operator-counting IPC
at each step of their Logic-Based Benders Decomposition.
Instead, it solves the linear relaxation and obtains a valid
operator counts by rounding up the primal solution values to
the nearest integers, only if its cardinality and objective value
are within 20% of the fractional operator counts and ignoring
it otherwise. Consequently, it is able to generate violated
constraints that also remove relaxed solutions. Most IP solvers

support the definition of control callbacks to dynamically
interact with the optimization procedure. OpSeq uses this
mechanism to heuristically construct plans using the round-up
method and to add constraints to strengthen linear relaxations
or invalidate integer solutions that cannot derive feasible plans.

A restart occurs when a generated GLC contains more than
one weak bounds literal. It results from a missing bounds
literal [v ≥ k] that has not been allocated yet, for some
v ∈ {Yo, ∀o ∈ O} ∪ {Yf} and some value of k. During
BC, OpSeq solves this by adding the weak bounds literal
v/k corresponding to the missing [v ≥ k]. Initially, OpSeq
allocates bounds literals up to k = 2. If a restart occurs, the
IP solving process is reinitialized and the weak bounds literals
are replaced with new conventional bounds literals allocated.

The SAT model constructed by OpSeq is composed of layers
and only one operator can be applied in each layer. OpSeq uses
the variable YT to limit the total number of layers, computed
as the total number of operators available in the operator
counts. It constructs a set of assumptions about a feasible
plan using the current operator counts and YT and informs the
solver to use these assumptions while searching for a solution.
On failure, the SAT model is able to construct a GLC based
on these assumptions, explaining why the operator counts is
not sequencable. This constraint is derived by the Conflict-
Directed Clause Learning algorithm [31] implemented in SAT
solvers, that backtracks until it reaches to the assumptions that
cause the formula’s unsatisfiability.

Below we present the SAT formulation proposed by [8] for
each layer l, where v =l x denotes that variable v holds
the value x in layer l; ol that operator o occurs in layer
l; L = YT =

∑
o∈O C(o) is the total number of layers;

≤k (S) denotes the at-most-k constraint that enforces that k
or fewer literals from a set S are simultaneously true [23]; and
prod(〈v = x〉) denotes the set of operators that are producers
of atom 〈v = x〉:

≤1 ({ol|o ∈ O});

(1)
∀v ∈ V : ≤1 ({v =l xi|xi ∈ D(v)});

(2)
∀〈v = x〉 ∈ s0 : v =0 x;

(3)

∀o ∈ O :
∧

v=x∈pre(o)

(¬ol ∨ v =l−1 x);

(4)

∀o ∈ O :
∧

v=x∈post(o)

(¬ol ∨ v =l x);

(5)

∀〈v = x〉 ∈ V : v =l+1 x =⇒ v =l x ∨
∨

o∈prod(〈v=x〉)

ol+1;

(6)
∀〈v = x〉 ∈ s∗ : v =L x ∨ [ΣC(o) ≥ L + 1] ;

(7)
∀o ∈ O : ≤C(o) ({ol|l ∈ [1, L]}) ∨ [Yo ≥ C(o) + 1] .

(8)

Part (1) ensures that at most one operator occurs by layer;
(2) ensures that a variable can only assume one value from
its domain at a time; (3) that the atoms in the initial state are
valid at first layer l = 0; (4) that an operator can occur at
layer l only if its preconditions are satisfied at the previous
layer l−1; (5) that the effects of an operator applied are valid
at layer l; (6) that an atom can only be valid at layer l if it
is valid at the previous layer l − 1 or an operator which is a
producer of this atom is applied at l; (7) ensures that all atoms
from the goal state are valid at the last layer L; and (8) that
the total number of times each operator is applied is bounded
by the number of operators available in the operator counts
C. Variables [ΣC(o) ≥ L+ 1] and [Yo ≥ C(o) + 1] are the
assumptions informed to the SAT solver and used to express
the formula’s infeasibility explanation as a GLC.

IV. CONTRIBUTIONS OF THIS DISSERTATION

We propose a solver denominated OpSearch, which uses the
A∗ search algorithm to solve the operator counts sequencing
subproblem. Given an initial operator counts Cs0 , it returns
a plan π if Cs0 is sequencable, or a violated condition as
a generalized landmark constraint L, otherwise. The master
problem IPC is unchanged. The presence of potentially useful
information in the search graph, such as f -values, motivates
its use as base for an alternative algorithm. This approach
could generate smaller and more informed constraints and, as
observed by [7], eliminating irrelevant parts of constraints can
significantly decrease solving time of an integer program.

Our approach follows the main idea of planning using
Logic-Based Benders Decomposition. We initiate the process
using a BC to solve the IPC . If BC finds an integer solution
it calls OpSearch and we try to sequence the corresponding
operator counts. If BC finds a relaxed solution we obtain
a valid operator counts by rounding up the primal solution
values to the nearest integers, and sequencing only if its
cardinality and objective value are within 20% of the linear
count. This process is also applied in OpSeq. If the operator
counts provided is sequencable, OpSearch informs the BC that
a new solution has been found. This process continues until
BC proves that one of the found plans is optimal.

A. Extended State and Generation of Successors

In this section, we use a planning task Π1 as an exam-
ple, containing V = 〈v1〉 with D(v1) = {0, 1, 2}, O =
{o1, o2, o3, o4}, o1 = 〈v1 = 1, v1 := 2〉, o2 = 〈v1 = 0, v1 :=
2〉, o3 = 〈v1 = 1, v1 := 2〉, o4 = 〈v1 = 1, v1 := 3〉
c(o1) = 2, c(o3) = 0, and c(o2) = c(o4) = 1, with initial
state s0 = {v1 = 1} and goal s∗ = {v1 = 2}. Note that,
even though o1 and o3 have identical preconditions and effects,
they have distinct costs and, therefore, are different operators.
Suppose the initial operator counts is Cs0 = {o1 7→ 1}.

States generated through different sequences of operators
are considered different states by OpSearch, i.e. it is able to
distinguish between two states with identical values assign-
ment for the original task variables but with different operator
budgets. Given the current operator counts for the initial state

Cs0 we extend the A∗ state representation with a variable vo
for each o ∈ O if Cs0(o) > 0 and c(o) > 0. The domain
of vo is D(vo) = {0, . . . , Cs0(o)}. The number of distinct
operators with counts greater than zero in the operator counts
Cs0 gives the bound on the number of extra variables necessary
to represent subsets of Cs0 and each variable corresponding to
operator o is bounded by the initial operator counts Cs0(o),
since the operator counts can only decrease during search.

The example task Π1 would be changed by including a
variable vo1

with domain D(vo1
) = {0, 1}, but no variable for

o2 or o4 since their counts are zero, or for o3 since c(o3) = 0.
The value of vo in s0 is Cs0(o). Therefore, our final extended
representation for state s0 would be {v1 = 1, vo1

= 1}.
Extended states are used to test for equality and for successor
generation. However, for computing the heuristic function only
the original variables of the planning task are considered.

This new state representation requires another modification
in the behavior of A∗, which needs to consider the extended
variables and limit the number of times an operator o is
applied. Effectively, if A∗ could generate s′ from s using
operator o, it will in fact generate s′ in two situations. First, if
c(o) = 0, i.e., we generate states freely for zero-cost operators.
Second, if vo ∈ vars(s) and s(vo) > 0 then s′ is generated and
the value of variable vo in s′ is set to s′(vo) = s(vo)− 1. Our
approach applies zero-cost operators independently of Cs0 and
only generates bounds literals for operators o with c(o) > 0.
Zero-cost operators can be applied freely during the search,
even if they are absent from the current operator counts. This is
motivated by the observation that bounds literals for zero-cost
operators do not directly force the operator-counting objective
function to increase. In the example task Π1, OpSearch would
generate two states from s0: state s′ = {v1 = 2, vo1 = 0} with
operator o1 and state s′′ = {v1 = 1, vo1

= 2} with operator
o3. No state is generated from the application of operator o4,
since it is not contained in vars(s).

B. Constraint Generation Strategy

We now explore the situation when vo /∈ vars(s)∧c(o) > 0
and s(vo) = 0 to derive some violated condition on the current
operator counts. This condition is modeled as a generalized
landmark constraint with bounds literals for operator o and
can be interpreted as follows: if we had one more instance
of o, we could further expand a state, that could possibly
reach a goal state with optimal cost. Additionally, we can
use other information available during A∗ to strengthen the
generated constraints, such as the f -value of state s, since it
is an estimate of the plan cost through s.

Next we present the strategy to generate violated constraints
from non-sequencable operator counts. It incrementally gen-
erates bounds literals during A∗ search to compose the final
learned generalized landmark constraint L, that includes at
most one bounds literal for each operator. The strategy returns
bounds for operators that currently have count 0 but might
generate new states with an f -value at most fmax. The fmax
is the objective value of the relaxation of the node in the BC
tree, that is found while solving the operator-counting IP. This

node calls the the sequencing subproblem informing fmax and
the operator counts Cs0 . State s denotes a state expanded by
A∗ and s′ is a generated one.

L = { [Yo ≥ Cs0(o) + 1] | ∃s o−→ s′ : f(s′) ≤ fmax∧
((vo /∈ vars(s) ∧ c(o) > 0) ∨ s(vo) = 0)}

Further, if the f -value is more than fmax then we directly
bound the plan cost. To this end we introduce an auxiliary
variable Yf which represents the objective function value to
the operator-counting model, and is defined as

Yf =
∑
o∈O

c(o)Yo.

Now let fmin = mins′|f(s′)>Yf
{f(s′)}, i.e., fmin is the mini-

mum f -value for all states found during A∗ that have f -value
greater than fmax. Then, if fmin > −∞, we add the bounds
literal [Yf ≥ fmin] to L. Note that fmax is used during the A∗

sequencing procedure and fmin is used after A∗ to construct
the GLC when the operator counts is not sequencable.

To illustrate the solving process of OpSearch, we define an
example planning task Π2 with O = {o0, o1, o2, o3, o4, o5}
and costs c(o0) = 0, c(o1) = c(o2) = c(o3) = 1, c(o4) = 2
and c(o5) = 0. We assume that o1 is an action landmark for Π2

and the initial operator-counting IPC contains the constraint
Yo1 ≥ 1. The primal solution for this IPC provides the initial
operator counts Cs0 = {o1 7→ 1} and the objective function
value gives the fmax = 1. Fig. 4 illustrates the state-space
generated by A∗ with the perfect heuristic h∗, where vertices
represent nodes and arcs the application of operators. Solid
vertices and edges represent nodes and operators that are
generated or applied according to Cs0 . Nodes and operators
that cannot be generated or applied during the search are
dashed. Goals are indicated by doubly circled vertices.

n0
〈s0,

o1 7→1〉
f=3

n1
〈s1〉
f=3

n2
〈s2〉
f=3

n3
〈s1〉
f=5

n4
〈s4〉
f=4

n5
〈s5〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2
o5

o3

o0

o2

o4

o2

o4

o1

o1

Fig. 4. State-space of example problem Π2, 1st iteration.

Since f(n0) > Yf , OpSearch generates the constraint
[Yf ≥ 3] ≥ 1 informing that the f -value bound fmax must
increase to 3. Assume now that after adding this constraint
the master returns Cs0 = {o1 7→ 3} and Yf = 3. The resulting
state-space is illustrated in Fig. 5:

Now OpSearch expands n0 and generates node n2 by apply-
ing o1. Since we apply zero-cost operators freely during search

n0
〈s0,

o1 7→3〉
f=3

n1
〈s1,

o1 7→3〉
f=3

n2
〈s2,

o1 7→2〉
f=3

n3
〈s1,

o1 7→2〉
f=5

n4
〈s4〉
f=4

n5
〈s5〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2
o5

o3

o0

o2

o4

o2

o4

o1

o1

Fig. 5. State-space of example problem Π2, 2nd iteration.

OpSearch also generates n1 and n3 by applying o0 to n0 and
n2. Note that n1 and n3 have the same variable assignment
s1 but different operator counts {o1 7→ 3} and {o1 7→ 2} and
therefore are treated as different states. From this state-space,
OpSearch returns the constraint [Yo3 ≥ 1] + [Yf ≥ 4] ≥ 1.
The bound [Yo3

≥ 1] comes from the transition n2
o3−→ n5 and

[Yf ≥ 4] from n1
o2−→ n4, since transition n2

o0−→ n3 would
generate the bound [Yf ≥ 5]. Suppose that, after adding this
constraint, the IPC returns Cs0 = {o1 7→ 2, o3 7→ 1} and
Yf = 3. The resulting state-space is shown in Fig. 6:

n0
〈s0,

o1 7→2,
o3 7→1〉
f=3

n1
〈s1,

o1 7→2,
o3 7→1〉
f=3

n2
〈s2,

o1 7→1,
o3 7→1〉
f=3

n3
〈s1,

o3 7→1〉
f=5

n4
〈s4〉
f=4

n5
〈s5,

o1 7→1〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2o5

o3

o0

o2

o4

o2

o4

o1

o1

Fig. 6. State-space of example problem Π2, 3rd iteration.

From this state-space, OpSearch returns the constraint
[Yo2

≥ 1] + [Yf ≥ 4] ≥ 1. The bound [Yo2
≥ 1] comes from

the transition n5
o2−→ n8 and [Yf ≥ 4] from n1

o2−→ n4.
After adding this constraint, OpSearch returns a sequencable
operator counts Cs0 = {o1 7→ 1, o2 7→ 1, o3 7→ 1} and Yf = 3,
as illustrated in Fig. 7.

In this dissertation, we also prove that our approach
OpSearch generates admissible constraints, i.e., that do not
remove feasible solutions, from non-sequencable operator
counts. The resulting theorem is presented below.

Theorem 1. For a solvable SAS+ planning task Π, an
operator counts Cs with an associated f -bound value fmax,
such that OpSearch’s modified A∗ with an admissible heuristic
function h cannot sequence Cs, OpSearch always returns an
admissible constraint to the master integer program.

n0
〈s0,

o1 7→1,
o2 7→1,
o3 7→1〉
f=3

n1
〈s1,

o1 7→1,
o2 7→1,
o3 7→1〉
f=3

n2
〈s2,

o2 7→1,
o3 7→1〉
f=3

n3
〈s1,

o2 7→1,
o3 7→1〉
f=5

n4
〈s4〉
f=4

n5
〈s5,

o2 7→1〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2o5

o3

o0

o2

o4

o2

o4

o1

o1

Fig. 7. State-space of example problem Π2, 4th iteration.

Proof sketch. Consider an optimal plan π∗ = 〈o1, . . . , ok〉
with a corresponding state sequence 〈s0, s1, . . . , s∗〉. Let L
be a GLC generated by OpSearch with Cs and f -bound
fmax, and S be the set of (extended) states expanded by
OpSearch. Now, extend the state sequence 〈s0, s1, . . . , s∗〉 to
an (extended) state sequence 〈s′0, s′1, . . . , s′∗〉 with operator-
counting variables, such that the operator count of s′0 is Cs,
and that of the subsequent states is decreased according to
π∗. Since OpSearch failed to sequence Cs and maintains an
extended state, there must be a first state s′i /∈ S. If i = 0,
then f(s0) > fmax and the bounds literal [Yf ≥ fmin] must be
satisfied since the heuristic h is admissible. Otherwise, there
is a predecessor state s′i−1 ∈ S with s′i−1

o−→ s′i, and OpSearch
did not generate s′i. The reason for this is either f(s′i) > fmax
or s(o) = 0 or vo /∈ vars(s′i) ∧ c(o) > 0. But in the first
case f(s′i) ≥ fmin and by admissibility of h the bounds literal
[Yf ≥ fmin] is satisfied, and in the second case the bounds
literal [Yo ≥ Cs(o) + 1] must be satisfied by π∗.

C. Impact of Heuristic Functions in Generated Constraints

Using different heuristic functions to guide A∗ also plays an
important role in the generation of constraints, since we expect
more informed heuristics to generate smaller and stronger
constraints by OpSearch. To illustrate this behaviour in more
detail, we reintroduce the simple gripper example from [8]:
there are two balls, two rooms and a robot that can transport
one ball at a time. The robot starts in the left room and the
goal is to move the balls from left to right. Operators pick i j
and drop i j causes the robot to hold or release ball i at room
j and move i j causes the robot to move from room i to j.
All operators have unit-cost. An optimal plan with total cost
of 7 is 〈pick 1 l,move l r, drop 1 r,move r l, pick 2 l,
move l r, drop 2 r〉. The Domain Transition Graph (DTG)
for this example is illustrated in Figure 8. R represents the
location of the robot (in left or right room); Bi the location
of ball i (in left or right room or in the gripper); and G the
state of the gripper (empty or non-empty). For each variable,
the initial states are marked by an incoming arrow and goal
states are double circled.

lR : r

move l r

move r l

lBi : g r

pick i l

drop i l

drop i r

pick i r

eG : n

pick ∗ ∗

drop ∗ ∗

Fig. 8. DTGs for the gripper example introduced by [8].

We assume that the initial f -bound is fmax = 5 and the
initial operator counts is C = {drop 1 r 7→ 1, drop 2 r 7→
1,move l r 7→ 1, pick 1 l 7→ 1, pick 2 l 7→ 1}. Since this
operator counts is not sequencable, OpSearch learns some
violated constraint. Next we show examples to illustrate that
OpSearch with different heuristics generates different violated
constraints, even if the base operator-counting master IPC
initially contains the same set of constraints. To generate these
examples, we use an operator-counting with initial constraints
from disjunctive action landmarks hLMC [4], state equation
hSEQ [5], and the optimal delete relaxation h+ [15].

OpSeq generates a constraint with five bounds:
[YT ≥ 6] + [Ydrop 1 l ≥ 1] + [Ydrop 2 l ≥ 1] +
[Ymove r l ≥ 1] + [Ypick 1 r ≥ 1] ≥ 1. OpSearch with
the blind heuristic hblind, that returns zero for goal states
and one for others, also generates a constraint with five
bounds, but replaces the bound for YT by Ypick 2 r:
[Ydrop 1 l ≥ 1] + [Ydrop 2 l ≥ 1] + [Ymove r l ≥ 1] +
[Ypick 1 r ≥ 1] + [Ypick 2 r ≥ 1] ≥ 1. OpSearch with the
hLMCut heuristic generates a stronger constraint with only one
bound for the plan cost: [Yf ≥ 6] ≥ 1. Finally, OpSearch
with h∗ generates a perfect constraint that forces the IPC
objective value to directly increase up to the optimal plan
cost: [Yf ≥ 7] ≥ 1.

V. EXPERIMENTAL EVALUATION

The goals of the experiments are: i) to evaluate the per-
formance of OpSearch compared to OpSeq in terms of the
total number of sequencing subproblems and instances solved;
ii) to contrast the computational resources required by both
approaches in terms of total solving runtimes and memory
consumption on average; and iii) to experimentally validate
the hypothesis that OpSearch can generate stronger GLCs in
terms of average number of operators included.

We use the same benchmarks from IPC-2011 used by [8],
totaling 11 domains with 20 instances each. We used an Intel
Core i7 930 CPU (2.80 GHz) with a memory limit of 4 GB
and a time limit of one hour for each planner execution. We

implemented OpSearch and OpSeq inside the Fast Downward
planning system, version 19.06 [13]. For solving the satisfi-
ability subproblems we use the MiniSat 2.2 solver [10]. We
opted to used MiniSat to facilitate comparisons with [8] but
we could use any SAT solver with support to conflict analysis.
The IP solver used to solve linear programs is CPLEX 12.8.

The initial IPC contains constraints from the disjunctive
action landmarks hLMC [4], state equation hSEQ [5] and the
optimal delete relaxation h+ base formulation from [15].
We use hLMCut to guide OpSearch when sequencing operator
counts.

Since OpSeq’s source code is not publicly available, we
re-implemented its SAT-based approach strictly following the
description presented in [8]. The source code for OpSearch
and our version of OpSeq is publicly available to facilitate
further development of operator counts sequencing procedures.
The data and scripts used to generate the tables and figures
presented are also publicly available.

A. The Benchmark Set

Table I presents information about the benchmark set,
summarized by domain. |V| denotes the mean number of vari-
ables; |O| is the mean number of operators; zco indicates the
presence of zero-cost operators; cmin is the mean minimum
operator cost, ignoring zero-cost operators; cmax is the mean
maximum operator cost; lb is the mean best lower bound on
the optimal plan cost; z0 is the mean initial relaxed operator-
counting solution of our initial operator-counting master prob-
lem; and r0 and c0 are the mean number of rows and columns
in the initial IPC program, respectively.

We see that the domains elevators, parcprinter, openstacks,
pegsol and sokoban have zero-cost operators and the last three
only have zero-cost and unit-cost operators. Two domains have
only unit-cost operators: nomystery and visitall. Ignoring zero-
cost operators, some domains have diverse operators costs such
as barman, elevators, parcprinter, scanalyzer, transport and
woodworking. Among these, parcprinter is notable due to the
wide cost range of its operators.

We observe that some domains have few operators and
variables, such as nomystery and transport and others have
a large number of operators but few variables, such as visitall,
sokoban and scanalyzer. We can also note that z0 is very close
to lb in parcprinter, sokoban, transport and visitall. Some
domains have huge initial IPC such as visitall and sokoban
while others have very small ones, for instance, nomystery,
parcprinter and transport.

B. IP Solver Settings

We noticed that settings for IP solvers can change the BC
process and interfere with the operator counts sequencing
subproblem. In particular, some primal heuristics executed by
the IP solver can generate very large operator counts which
are not useful to sequence, and which in OpSeq lead to
memory problems when constructing the SAT models. We
have turned off these heuristics in both approaches. We used

TABLE I
INFORMATION ABOUT THE BENCHMARK SET.

domain |V| |O| zco cmin cmax lb z0 r0 c0

barman 53.3 358.3 − 1 10 30.15 15.75 7408.2 3896.0
elevators 40.0 866.0 6 32 3.75 1.00 12810.3 6265.0
nomystery 34.0 185.0 − 1 1 8.85 3.92 3701.9 1772.0
openstacks 108.2 663.2 1 1 123.35 76.58 14456.3 6231.6
parcprinter 59.9 254.8 987 217007 1223929.00 1223929.00 4340.6 2167.9
pegsol 12.2 572.5 1 1 59.05 34.09 8201.0 4120.8
scanalyzer 9.7 1280.0 − 1 3 521.90 295.91 26130.9 12515.8
sokoban 7.1 1380.8 1 1 24.85 21.60 47324.4 25688.1
transport 38.6 176.0 − 1 95 41.80 40.78 2096.2 1406.5
visitall 15.5 1659.5 − 1 1 36.90 30.62 189001.6 91734.2
woodworking 74.5 908.8 − 5 44 329.50 296.40 17438.5 7980.7

Fig. 9. IP emphasis (log2-log2 scale).

legacy callbacks of the C++ interface in CPLEX to add the
learned constraints through user cuts and lazy constraints.

Another relevant parameter is the IP emphasis. With default
setting “balanced” the solver tries to balance progress on good
feasible solution and a proof of optimality. When set to “best
bound” it prioritizes increasing the current best bound with
low effort in detecting feasible integer solutions. Considering
the incremental lower bounding technique used by OpSeq, we
use the “best bound” setting in our experiments. Fig. 9 shows
plots of the total number of sequence calls, comparing IP
emphasis “balanced” to “best bound”. We can see that when
the IP emphasis is set to “best bound”, both OpSearch and
OpSeq require fewer sequencing calls than with the “balanced”
setting.

C. OpSearch is Better than OpSeq

Table II shows results grouped by domain for OpSeq and
OpSearch. Best results are highlighted. Column C presents
the coverage for that particular domain; S the total number
of sequencing calls; R the total number of restarts; T̄t the
mean total solving time in seconds; M the mean memory
usage in MB; u the mean percentage of operators included
in the generated constraints; p the mean percentage of total
sequencing times by total solving time; and bb is the best
bound found by the IP solver. Since it is not possible to
dynamically allocate new variables during the BC, the linear
model IPC has a limited number of bounds literals, up to
k = 2, for each operator o ∈ O and for Yf . However, it
can be necessary to add new bounds literals during BC due

to the learned GLCs. In this case, both OpSeq and OpSearch
rebuild the model and restart BC.

We see that OpSearch has better coverage than OpSeq,
solving 10 more planning tasks. OpSearch performs better
on domains nomystery, openstacks, scanalyzer and sokoban.
OpSearch on openstacks and sokoban solves 13 and 5 tasks
not solved by OpSeq. We find that OpSearch uses 57% less
memory and generates violated constraints that are on average
70% smaller than OpSeq. We also observe that OpSearch has a
smaller total number of sequencing calls, approximately 18%,
more restarts, and that it found higher best bounds than OpSeq
in seven domains.

An important metric for comparing the solvers is the per-
centage of operators in the learned constraints. On average,
constraints generated by OpSeq have 20% of the operators,
while constraints generated by OpSearch have only 6% of the
operators. Also, OpSeq learns constraints with more than 10%
of the operators on seven domains, while OpSearch learns
constraints with more than 10% of the operators on only
two domains, which confirms the potential of search-based
methods to solve the operator counts sequencing subproblem
generating smaller and potentially more informed constraints.

Fig. 10 shows plots comparing the total number of sequenc-
ing calls S, memory usage M , mean percentage of operators
by learned constraints ū, total sequence times St and total
solve time Tt for OpSearch and OpSeq. Visually, we can
confirm the results presented before: i) OpSearch solved fewer
sequencing subproblems; ii) in most of the times OpSearch
uses less memory than OpSeq; and iii) OpSearch usually
generates smaller constraints than OpSeq.

Table III summarises the results only considering instances
solved by both OpSearch and OpSeq. This table shows that,
when we compare OpSearch and OpSeq using the same
set of instances, OpSearch in fact solves fewer sequencing
subproblems, uses slightly less memory, generates smaller
constraints than OpSeq, but spends more time sequencing, as
indicated by p̄.

D. Better Heuristics Improve OpSearch Performance

Table IV shows results for OpSearch using different heuris-
tic functions in A∗. We have tested the hblind, hLMCut and
operator-counting hOC with constraints from state-equation
and action landmarks. We have chosen these functions because

TABLE II
RESULTS FOR OpSeq AND OpSearch.

OpSeq OpSearch
domain C S R T̄t M̄ ū p̄ bb C S R T̄t M̄ ū p̄ bb

barman 0 40556 16 3417 857 20 0.1 2484 0 36565 1 3548 202 5 0.1 2496
elevators 0 5922 0 3275 2931 17 0.8 690 0 10802 7 3555 254 4 0.2 865
nomystery 0 3660 0 1459 736 44 0.6 437 3 10383 4 1120 322 1 0.1 443
openstacks 0 24383 3 1709 433 29 0.1 20 13 266 14 966 968 0 23.6 67
parcprinter 20 21 0 1 126 0 74.0 8524162 16 21 0 271 377 0 55.9 8524162
pegsol 11 22998 15 1964 175 47 0.0 154 10 12906 2 1888 123 16 0.0 166
scanalyzer 0 3377 0 1305 955 18 0.0 585 1 700 5 1001 1046 2 0.0 592
sokoban 0 7907 0 3208 2385 9 0.8 319 5 17695 51 2779 183 3 0.2 455
transport 0 5800 0 1879 265 8 0.0 6251 0 910 11 1707 222 1 0.0 6235
visitall 15 5632 0 957 298 19 0.2 848 14 9078 10 1112 119 29 0.0 839
woodworking 17 946 0 437 355 4 0.5 6348 11 111 0 974 224 5 43.7 6258
Total 63 121202 34 1783 865 20 0.4 8542298 73 99437 105 1720 367 6 4.4 8542578

Fig. 10. Detailed comparison between OpSeq and OpSearch (log2-log2 scale).

TABLE III
SUMMARY FOR 50 INSTANCES SOLVED BY BOTH METHODS.

S R T̄t M̄ ū p̄

OpSearch 2169 1 191 118 9 46.4
OpSeq 2738 6 92 122 15 0.3

TABLE IV
SUMMARY FOR 49 INSTANCES SOLVED BY ALL HEURISTICS.

C S R T̄t M̄ ū p̄

hblind 79 3717 1 93 171 10 21.5
hLMCut 73 2161 1 183 116 9 22.9
hOC 70 1119 3 141 99 8 17.4
OpSeq 63 2725 6 90 121 16 23.4

hOC dominates hLMCut and hblind is the least informative. The
table only shows results for the 49 instances solved by OpSeq
and OpSearch using each one of the heuristics cited before,
except by the column C that considers all the 220 instances.

In general using more informed heuristic functions in
OpSearch results in: i) fewer sequencing subproblems solved,
as indicated by S; ii) greater mean total solving times T̄t since
computing the heuristics are more expensive; iii) less mean
memory usage, as indicated by M̄ ; and iv) smaller constraints
are generated on average, as indicated by ū.

Table V shows results for OpSearch using all the 282
instances from IPC-1998 to IPC-2014 in which h∗ can be
computed by a full pattern database (PDB) using at most
4 GB of memory. Similarly to the previous test, we used hblind,
hLMCut, operator-counting hOC with constraints from state-
equation and action landmarks, and h∗. The table only shows

TABLE V
SUMMARY FOR 154 INSTANCES SOLVED BY ALL HEURISTICS.

C S R T̄t M̄ ū p̄

hblind 191 25059 57 10 82 18 11.2
hLMCut 195 13304 75 11 82 11 2.5
hOC 200 7215 40 39 81 10 13.3
h∗ 241 3214 19 13 234 8 1.3
OpSeq 169 29106 53 37 95 18 12.4

results for the 154 instances solved by all methods, except by
the column C that considers all the 282 instances.

We can observe that: i) the total number of sequencing
subproblems solved decreases as the heuristic function is more
informed, as indicated by S; ii) the total solving times T̄t for
hOC is twice as much as for the other heuristics; iii) h∗ uses
much more memory M̄ than the other heuristics due to the full
PDB; and iv) on average, smaller constraints are generated by
more informed heuristics, as indicated by ū.

VI. FINAL REMARKS

A. Publication

The paper Sequencing Operator Counts with State-Space
Search describing the details of the proposed approach and
presenting the main results of the dissertation was accepted
for publication at the International Conference on Automated
Planning and Scheduling (ICAPS 2020) (Qualis A2). ICAPS
the most important and internationally recognized conferences
on planning and search.

B. Research

Our work contributes to the advancement in planning re-
search by extending several awarded papers published in
important international journals and conferences such as [19],
that received the ICAPS 2014 Outstanding Paper Award; the
doctoral thesis [3], that received the awards ICAPS 2018 Best
Dissertation Award and EurAI Artificial Intelligence Disser-
tation Award 2017; and [8], that received the ICAPS 2015
Outstanding Paper Award.

C. Impact

This dissertation presents theoretical and experimental con-
tributions to the operator counts sequencing problem, which is
a novel research problem with great potential of development
in both areas of operations research and artificial intelligence.
Our approach opens new research directions towards special-
ized methods or heuristics to the operator counts sequencing
problem and establishes an interface to the use of well-known
technologies from the planning community and combinatorial
optimization. Finally, we made the source code for OpSearch
and our version of OpSeq publicly available to facilitate further
research in this topic.

D. Conclusion and Future Research

We showed that our approach is better than the previous
state-of-the-art method based on SAT in several metrics of
practical interest, such as the solving time and the memory
consumption. We are jointly researching in this topic with
the most recognized planning group (University of Basel). We
aim to submit our new contributions to relevant journals and
conferences.

E. Applications

Our research results are relevant in practical applications be-
sides the further development of automated planning, that is a
general technique to problem solving. Furthermore, OpSearch
can be used as an anytime method to obtain lower-bounds
on plan costs, in agile planning to solve solve planning tasks
for which informative heuristics are already known. Another
practical application of our approach is for diverse planning,
used for example by IBM, that aims to find several plans while
guaranteeing diversity. With our approach, it is possible to
iteratively generate constraints from non-sequencable operator
counts that guarantee a minimum of diversity.

REFERENCES

[1] Pereira, R. F., Pereira, A. G., and Meneguzzi, F. 2019. Landmark-
Enhanced Heuristics for Goal Recognition in Incomplete Domain Mod-
els. In International Conference on Automated Planning and Scheduling,
329–337.

[2] Bento, D. S., Pereira, A. G., and Lelis, L. H. S. 2019. Procedural Gen-
eration of Initial States of Sokoban. In International Joint Conferences
on Artificial Intelligence Organization, 4651–4657.

[3] , Pommerening, F. 2017. New perspectives on cost partitioning for
optimal classical planning. In University of Basel

[4] Bonet, B., and van den Briel, M. 2014. Flow-based heuristics for
optimal planning: Landmarks and merges. In International Conference
on Automated Planning and Scheduling, 47–55.

[5] Bonet, B. 2013. An admissible heuristic for SAS+ planning obtained
from the state equation. International Joint Conference on Artificial
Intelligence 2268–2274.

[6] Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+
planning. Computational Intelligence 11(4):625–655.

[7] Ciré, A.; Coban, E.; and Hooker, J. N. 2013. Mixed Integer Pro-
gramming vs. Logic-Based Benders Decomposition for Planning and
Scheduling. In Gomes, C., and Sellmann, M., eds., Integration of
AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, 325–331. Berlin, Heidelberg: Springer Berlin
Heidelberg.

[8] Davies, T. O.; Pearce, A. R.; Stuckey, P. J.; and Lipovetzky, N. 2015.
Sequencing operator counts. In International Conference on Automated
Planning and Scheduling, 61–69.

[9] Edelkamp, S. 2014. Planning with pattern databases. In European
Conference on Planning, 84–90.

[10] Eén, N., and Sörensson, N. 2003. An extensible SAT-solver. In
International conference on theory and applications of satisfiability
testing, 502–518. Springer.

[11] Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics 4(2):100–107.

[12] Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2007. Flexible abstraction
heuristics for optimal sequential planning. In International Conference
on Automated Planning and Scheduling, 176–183.

[13] Helmert, M. 2006. The Fast Downward planning system. Journal of
Artificial Intelligence Research 26:191–246.

[14] Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders decompo-
sition. Mathematical Programming 96(1):33–60.

[15] Imai, T., and Fukunaga, A. 2014. A practical, integer-linear pro-
gramming model for the delete-relaxation in cost-optimal planning. In
European Conference on Artificial Intelligence, 459–464.

[16] Karmarkar, N. 1984. A new polynomial-time algorithm for linear
programming. Combinatorica 4:373–395.

[17] Karpas, E., and Domshlak, C. 2009. Cost-optimal planning with
landmarks. In International Joint Conference on Artificial Intelligence,
1728–1733.

[18] Katz, M., and Domshlak, C. 2008. Optimal additive composition of
abstraction-based admissible heuristics. In International Conference on
Automated Planning and Scheduling, 174–181.

[19] Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2014. LP-
based heuristics for cost-optimal planning. In International Conference
on Automated Planning and Scheduling, 226–234.

[20] Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the most
out of pattern databases for classical planning. In International Joint
Conference on Artificial Intelligence, 2357–2364.

[21] van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen, T. 2007. An
LP-based heuristic for optimal planning. In International Conference on
Principles and Practice of Constraint Programming, 651–665. Springer.

[22] Wolsey, L. 1998. Integer Programming. Wiley Series in Discrete
Mathematics and Optimization. Wiley.

[23] Sinz, C. 2005. Towards an optimal CNF encoding of boolean cardinality
constraints. In International Conference on Principles and Practice of
Constraint Programming, 827–831. Springer.

[24] Ghallab, M.; Nau, D.; and Traverso, P. 2004 Automated Planning:
Theory and Practice Elsevier

[25] Geffner, P.; Haslum H.; and Haslum, P. 2000 Admissible heuristics
for optimal planning International Conference of AI Planning Systems,
140–149

[26] Hoffmann, J.; and Nebel, B. 2001 The FF planning system: Fast plan
generation through heuristic search Journal of Artificial Intelligence
Research, 253–302

[27] Bonet, B.; Geffner, H. 2001 Planning as heuristic search Artificial
Intelligence, 5–33

[28] Edelkamp, S. 2014 Planning with pattern databases European
Conference on Planning, 84–90

[29] Helmert, M.; and Domshlak, C. 2009 Landmarks, critical paths and
abstractions: what’s the difference anyway? International Conference
on Automated Planning and Scheduling, 162–169

[30] Mitchell, J. 2002 Branch-and-cut algorithms for combinatorial opti-
mization problems Handbook of Applied Optimization, 65–77

[31] Marques-Silva, J.; and Sakallah, K. 1999 GRASP: A search algorithm
for propositional satisfiability IEEE Transactions on Computers, 506–
521 IEEE

