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Abstract—The performance of a meta-heuristic on a search
problem relies on the features of the problem instance, meaning
that it does not exist a single method that always achieves
the best performance. Therefore, approaches that automatically
select an algorithm can improve the robustness of an application.
Among the possible alternatives, the selection can be done with
meta-learning, which aims at mapping the characteristics (meta-
features) of problem instances to the performance of a set
of algorithms. Some works have proposed the use of Fitness
Landscape Analysis (FLA) to characterize the instances, where
the structure of a problem is analysed by extracting measures
of the search space, normally with a sample of solutions. This
dissertation is composed by a series of incremental studies on
meta-learning algorithm selection for the Quadratic Assignment
Problem. We experimented with a variety of meta-features, giving
emphasis on the FLA based metrics, and with a set of classic and
novel meta-heuristics. The reported results show that this meta-
learning approach is suitable for algorithm selection, yielding
good and balanced classification performance with a low addition
in computational effort.
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I. INTRODUCTION

In optimization problems, the goal is to seek the mini-
mization or maximization of one or more functions through
the attribution of a set of variables, sometimes subjected to
constraints [1]. The problems can be classified into two major
categories according to the nature of the variables (continuous
or discrete). A Combinatorial Optimization Problem (COP) is
the search for a solution in a discrete and finite search space.
COPs have great practical importance, making them the object
of study of several works [2].

The Quadratic Assignment Problem (QAP) is one of the
most challenging COP. The QAP was initially derived as a
mathematical model of assigning a set of economic activities
to a set of locations [3]. The goal is to minimize the total
flow between the facilities and the total distance between the
locations. There are several real world problems that can be
modeled as QAP, such as the typewriter keyboard design, the
location of the hospital departments, the backboard wiring,
among others [4].

Because the QAP is an NP-hard problem [5], the use of
exact methods is unfeasible for instances with large sizes. As
an alternative, we can use meta-heuristic approaches to obtain
good solutions in a reasonable computational time. Meta-
heuristics are generic methodologies that act as guiding strate-
gies for heuristic search operators [1]. Several meta-heuristics
have been proposed, each one with distinct properties. Some
of them can be based on single-solution perturbation, like the
Tabu Search [6], or can be population evolutionary approaches,
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like the Genetic Algorithm [7]. Additionally, some meta-
heuristics are constructive methods, such the Ant Colony
Optimization [8].

Although the existing meta-heuristics have achieved satis-
fying results, they have different biases. This means that there
is not a single algorithm able to outperform the others in all
cases [9]. Therefore, some algorithms may be more suitable
than others on different problems [10].

Because of that, there has been an increasing interest in
studying ways to automatically choose the most suitable meta-
heuristic for a particular problem instance. However, selecting
an appropriate algorithm for a given problem is a difficult task
[11] that requires expert knowledge on search algorithms [12].
In the machine learning community, the task of automated
algorithm selection has been tackled by meta-learning (MtL).
Meta-learning aims at understanding the relationship between
the characteristics of the problem and the performances of
the solving algorithms [13]. This, in turn, allows the se-
lection of the most promising algorithm using an inductive
learning process. Although the term was originally used for
applications on classification and data mining problems, the
concept has been extended to other application domains [13]
such as regression, time-series forecasting, sorting, constraint
satisfaction, optimization and recommender systems [14].

The success of a meta-learning approach relies mostly on
the quality of the characteristics used to represent the in-
stances, i.e., the meta-features. Some of them can be statistical
properties of the instance definition, such as matrix and graph
properties. Additionally, studies have shown that measures
based on Fitness Landscape Analysis (FLA) can be used for
this goal [15]. FLA is a technique that aims at gathering
knowledge about the internal structure of a problem. This is
done by analysing the shape of the function landscape formed
by a set of sampled solutions, given their objective values and
neighborhoods [16].

In this dissertation, we conducted a series of studies on
automatic algorithm selection for the Quadratic Assignment
Problem using meta-learning and FLA based features. The
main contribution is the empirical analysis of the set of meta-
features that we used for this task. Additionally, our meta-
heuristic pool (the meta-labels) includes popular well-known
methods (the Max-Min Ant System and the Robust Tabu
Search) and some recently proposed methods (the Breakout
Local Search and the Breakout Memetic Search).

In our first study [17], we investigated the algorithm selec-
tion problem as a single label classification for the instances
from the QAPLIB benchmark [18]. The experiments were
focused on improving not only the overall accuracy, but
also the prediction performance on individual meta-labels.
The best results were achieved after performing exhaustive
feature selection and by employing a cascade classification
scheme. Albeit the promising results, the additional work that
was required for achieving good classification performance is
undesirable for this type of application.

Besides, because more than one algorithm can have the
same performance for a given instance, it is reasonable to

handle this task as a multi-label learning problem. Therefore,
in the next study [19], with the same experimental setup as
before (QAP instances and meta-heuristic pool), we evaluated
the selection using multi-labeled datasets. The results indicated
that it is possible to achieve high classification performance
without requiring much manual effort as we did in the single
label experiments.

Following that, in our final study [20], we evaluated a larger
set of FLA based meta-features. Moreover, we employed a
different sampling methodology for extracting the features,
highlighting the required computational time. Additionally,
we added to the dataset new 17 large QAP instances. With
high classification performance, this study shows the viability
of building meta-learning datasets without the need of an
expensive sampling methodology, which is a recurring prob-
lem of meta-learning using FLA. Hence, we demonstrate that
the algorithm selection approach yields better optimization
solutions across the instances instead of only using single
meta-heuristic, and is faster than running all meta-heuristics.

The rest of this paper is organized as follows: in Section II
we present the relevant related works. Section III defines the
Quadratic Assignment Problem. Section IV explain the meta-
learning concepts, giving details on the meta-features that we
used and the algorithms to be selected. The main experimental
process and results are given in Section V, whereas Sections
VI and VII respectively show the runtime analysis and the
meta-learning output performance. At last, we draw some
conclusions and indicate future works in Section VIII.

II. RELATED WORKS

One of the first research on Algorithm Selection Problem
(ASP) was proposed by Rice [21], which focus on selecting an
algorithm from a portfolio that is likely to perform best based
on measurable features of the problem instances. The under-
standing of problem instances and algorithm performance is
a task that can be tackled with meta-learning approach. MtL
has been used effectively in algorithm portfolio to predict the
algorithm that likely performs best for unseen problems [13].

A pioneer work regarding automated algorithm selection for
QAP has been done in [13], in which three approaches were
evaluated for this task. First, a Multi Layer Perceptron was
trained to predict the percentage deviation from the known
optimal solutions, and then choose the algorithm with the least
distance. Next, a Probabilistic Neural Network was used to
select the best performing algorithm for each instance as a
single label classification problem. Finally, the author used
a Self Organizing Map to cluster the instances based on their
features, and then select the algorithm for a new instance based
on the assigned cluster.

More recently, the authors in [22] investigated algorithm
selection for QAP using a K-Nearest Neighbors (KNN) model.
With different parameters settings, a total of 10 algorithms
configurations were considered. However, in order to label the
entries of the dataset, the algorithms were clustered into 6
groups. Hence, the KNN had the task of predicting which
cluster of algorithms is better for a given instance. The best



results were achieved when using k = 1, which means that the
model was highly dependent on the existence of an instance
very similar to the one being tested.

Another related work was presented in [15], where 117
instances, two meta-heuristic algorithms and a total of 34
meta-features from FLA were considered. Here, the labels
were based on the dominance of the performances of the
algorithms, which was determined by taking snapshots of the
solution costs at determined times during the optimization.
The best classification results were obtained by using Support
Vector Machine, showing the representative power of the
gathered FLA information.

Albeit showing promising results, the two first works made
the experiments on small sets of instances. In [13], only 28
instances were analysed, whereas in [22] the size of the dataset
was 47. Moreover, the mentioned works did not evaluate the
individual classes performances. In [15], the only reported
evaluation metric was the accuracy, which may be deceiving.

Besides, all of them only tackle the algorithm selection as a
single label problem. Instead, the algorithm selection problem
can be treated as a multi-label classification task, since there
are instances in which more than one algorithm achieve
equivalent performance. In [23], a multi-label approach is
proposed for selecting meta-heuristics, but applied to the
Traveling Salesman Problem. The authors investigated three
transformation methods for dealing with multi-label learning.
The first consists in replicating the features of the instances
with many labels and assign to each copy only one of the la-
bels. The second method simply removes from the dataset the
multi-labeled instances. Finally, the third method transforms
the original problem to several single-label problems and
combines the predictions. Also, 4 classification models were
evaluated, being that the best results were achieved by a Deci-
sion Tree with the third transformation method. Furthermore,
this work demonstrated that multi-label algorithm selection for
combinatorial optimization problems is a promising research
direction.

Hence, our goal was to investigate the selection of meta-
heuristics for the QAP, both in single and multi-label config-
urations, and with different sets of meta-features and meta-
labels. Moreover, in our experiments we took into account
not only the accuracy, but also the performance on individual
classes and the computational effort.

III. QUADRATIC ASSIGNMENT PROBLEM

The Quadratic Assignment Problem can be described as the
problem of assigning a set of n facilities to a set of n locations,
the goal in QAP is to assign each facility into a unique location
in order to minimize the total flow and distance between the
associations. The problem can be formally defined as

min
φ∈Sn

n∑
i=1

n∑
j=1

fijdφ(i)φ(j) (1)

where Sn represents all possible permutations of a set
N = {1, 2, . . . n}, fij and dij are the correspondent values in

the flow and distance matrices, respectively, and the product
fijdφ(i)φ(j) is the singular cost of assigning the facility i to
the location φ(i) and the facility j to the location φ(j).

The instances are represented by two matrices that defines
the flow between facilities and the distances between locations.
Figure 1 exemplifies an instance of size 5 and one permutation
as a possible solution. Considering that each element on the
permutation represents a facility, their positions indicate the
respective assigned locations. Therefore, in the example, the
facility 3 is assigned to location 1, facility 4 to the location 2
and so on. Hence, the cost of this solution, according to (1),
would be equal to 2140.

Fig. 1: Example of an instance and a solution

(a) Flow matrix (b) Distance matrix

(c) Permutation

Across our experiments, we used all 135 instances 1 from
the standard benchmark library QAPLIB [18]. Additionally, in
our last conducted work, we included 17 new instances from
[24], which were designed to be hard for heuristic search.

IV. META-LEARNING

The field of meta-learning, especially with respect to al-
gorithm selection and configuration, has been an active area
of research since the seminal work of Rice (1976) [21].
According to [25], meta-learning is the study of principled
methods that exploit meta-knowledge to obtain efficient mod-
els and solutions by adapting machine learning and data
mining processes.

Approaches based on meta-learning heavily rely on the
characterization of the problem instances, i.e., the meta-data
of the problem. One important component of the meta-data
are the meta-features, that are informative properties of the
problem instance that affect the performance of the algorithms.
The other component is the meta-labels, which define or rank
the most suitable algorithms for each case.

Under theses concepts, the algorithm selection problem is
addressed like a traditional learning task. A meta-model is
induced, which can be described like the meta-data capable to
explain which algorithm works better than others in problems
with specific characteristics. Then, this meta-model is used
to predict the best algorithm(s) for a new problem. Figure
2 sumarizes the sequence of activities of the meta-learning
approach.

1the instance esc16f was removed because its flow matrix has only zeroes.
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Fig. 2: Meta-learning sequence of activities, adapted from [25]

A. Meta-features

Meta-features are characteristics of a problem instance that
ideally represent its inner information. They can be extracted
directly from the instance definition, called the static features,
or from a sampled set of solutions, which are based on Fitness
Landscape Analysis (FLA).

1) Static: The static features are obtained by solely
analysing the information contained in the instance definition.
Therefore, they are the most easily extracted meta-features,
specially when considering the required computing time. In
our works, we used seven simple characteristics that may
represent the QAP instances, which are described next. Apart
from the instance size, the other features are matrix measures.

- Size (n): this meta-feature is straightforward the size of the
instances, i.e., the number of facilities/locations associations.

- Flow (fd) and distance dominance (dd): the dominance
is defined as the coefficient of variation of values and is
obtained by 100 ∗ µ

σ , with µ and σ being the mean and
standard deviation of the matrices values, respectively. A high
dominance indicates that the weight of the relationships are
concentrated only on few pairs of items [26].

- Flow (fsp) and distance (dsp) sparsity: it is the amount of
values 0 related to the total number of cells (n2).

- Flow (fas) and distance (das) asymmetry: is the relative
number of cells (i, j) that are different from cells (j, i) to the
total number of pairs

(
n2−n

2

)
.

2) Fitness Landscape Analysis: In FLA, the goal is to
acquire some knowledge about the internal structure of a
problem. A common way to achieve this is to analyse the
properties of a collection of sampled solutions, given their
costs and neighborhoods. Therefore, FLA is highly dependent
on the operator that is used to gerante the neighbor solutions,
also called the move operator. In this work, we use the swap
operator, that exchanges the values between two elements
found in positions i and j, as shown in Figure 3, and, for

an instance of size n, produces n(n−1)
2 neighbors. This is the

same operator used during the local search phase in the meta-
heuristics described in Section IV-B.

2 4 8 1 3 5 6 7

2 5 8 1 3 4 6 7

Fig. 3: The swap operator

FLA methods can be separated in two major categories,
based on which type of sampling they use. It can be achieved
by local methods, that examine the immediate changes found
in paths made by random or directed walks, or global methods,
that seek to obtain a higher overview of a landscape, which in
done by analysing a sample of solutions (usually a set of local
optima) [16]. In our studies, we focused on the later category.

The sampling methodology is an important aspect of FLA,
because it is the most computationally expensive step. Initially,
we collected the sample using the same strategy proposed by
[27], which is also used in the related work from [13].

In this strategy, the Iterated Local Search (ILS) [26] is
executed 1000 times, with 500 iterations each, and all achieved
unique local optima solutions are stored. The best solutions
within this set are called the pseudo global optima, which
are required to compute some of the features, since it is
unfeasible to know the actual global optima set. Next, the
Best Improvement local search is randomly repeated until 5000
unique local optima are found, or until it exceeds a certain
amount of execution time (which we set to 5 minutes). At the
end, two sets of local optima are generated: the ILS set and
the BI set, and the same measures are extracted from both of
them (more details are given in Section V).



Then, in the later studies we wanted to investigate another
set of meta-features using a possibly cheaper sampling strat-
egy. Hence, we used the Metropolis-Hasting algorithm (MtH)
[28].

The MtH aims at sampling the space by giving more im-
portance to solutions with better fitness values, thus avoiding
the sample of solutions belonging to the same plateau [28].
Therefore, the algorithm iteratively adds to the sample a
solution with better fitness than the previous by a random
factor. This process is shown in Algorithm 1, where m is
the sample size, f(γk) is the fitness of individual γk, u is the
factor of acceptance and the α function is given by

α(x, y) = min
{
1,
y

x

}
(2)

Algorithm 1: Metropolis-Hastings
Result: The sample γ with m solutions
γ1 ← random solution
for k = 2 to m do

repeat
φ← random solution
u← random number from uniform (0,1) distribution

until u <= α(f(γk−1), f(φ))
γk ← φ
k ← k + 1

end

The MtH is executed until the sample reaches the size of
m. Then, the Best Improvement local search is applied on
every solution from the sample and all unique local optima are
stored. Therefore, this strategy results in two sets of solutions:
the base set, given by the MtH, and the local optima set from
the BI executions.

Next we describe the FLA meta-features that we used along
our studies. Some of them, such as the Fitness Distance
Correlation, are used in all experiments, some others only
appear in the last study. In Section V we detail which meta-
features are used in each study.

- Fitness Distance Correlation (FDC): considering a set of
solutions, the FDC measures the distance correlation between
the distances of each solution to the closest global optimum
and their costs [29]. The distance in this context is the number
of different assignments on two solutions, also known as the
Hamming Distance. Let ci and di be respectively the cost and
distance of the ith solution from a set of size m, the FDC is
calculated by

FDC =
1
m

∑m
i=1(ci − µc)(di − µd)

σc.σd
(3)

in which µc and µd are the average cost and distance, with
σc and σd being the respective standard deviations. However,
the global optima solutions are usually unknown. Hence, we
use instead a set of pseudo-global optima, which are the best
solutions from the sampled local optima.

- Number of pseudo global optima: is the size of the set of
the best unique local optima solutions.

- Average distance to optima: this is the distance to the
closest (pseudo) global optimum solution (the µd itself).

- Accumulated Escape Probability: it is an evolvability
measure that classifies the hardness of a problem for an
Evolutionary Algorithm (the higher, the easier) [30]. It is the
average of the escape probability of every fitness levels of
the solution from the sample. The escape probability here is
calculated as the amount of equal or better neighbor solutions
for a given point divided by the neighborhood size.

- Dispersion Metric: the dispersion of a set of solutions is the
average pairwise Hamming distance of the set. The Dispersion
Metric is given by the dispersion of the t best solutions of
the sample minus the dispersion of the first t solutions from
the same sample. The key idea is to measure the change in
dispersion when improving the fitness of the solutions [31]. In
this work, we set t to be 5% of the considered sample size.

- Average descent: this is the number of movements per-
formed by the local search until reaching the local optima
from the starting point.

- Optima fitness coefficient: this metric is given by dividing
the standard deviation of the fitnesses of all optima solutions
by their mean.

Additionally, in our first conducted study, we included two
meta-features belonging to the group of FLA by local method,
namely the autocorrelation coefficient (acc) and the correlation
length (acl), which are metrics that represent the ruggedness
of a landscape. The former is the average variation of fitness
caused by a single step along the neighborhood, whereas the
later is the number of required steps to make the correlation
values statistically different [15]. Although this type of FLA is
more computational expensive, the authors from [32] proposed
the calculation of the acc and acl metrics in polynomial time
and without the need for sampling. They also provided the
calculated values for all instances from QAPLIB.

B. Meta-labels

The meta-labels represent the most suitable algorithms for
a problem instance. Therefore, to build the learning dataset,
they are executed on all instances and have their performance
measured. In our experiments, we compared the algorithms by
means of average solution cost.

The meta-label is then defined by the performances of the
competing meta-heuristics, which were chosen because of their
reported results, properties of exploration and availability of
implementation. Our first studies use the algorithms Breakout
Local Search (BLS) [33], the Max-Min Ant System with Best
Improvement Local Search (MMASBI) [27] and the Robust
Tabu Search (RO-TS) [34]. In the last work, due to the
relatively poor performance of the RO-TS, we replaced it to
the Breakout Memetic Algorithm (BMA) [35].

They all have in common the appliance of a local search
as an intensification mechanism. More precisely, they employ
the Best Improvement (BI) local search, in which the whole
neighborhood is first scanned and then it moves to the best
solution among them [4].

Because we are using the swap operator, it is possible to
make the BI faster by, instead of calculating the O(n2) cost
function (Equation 1) for each neighbor, we calculate just the



cost δ(φ, i, j) of swapping the elements from positions i and
j in permutation φ, with the linear equation [36]:

δ(φ, i, j) = dii ∗ (fφ(j)φ(j) − fφ(i)φ(i)) + dij ∗ (fφ(j)φ(i) − fφ(i)φ(j)) +

dji ∗ (fφ(i)φ(j) − fφ(j)φ(i)) + djj ∗ (fφ(i)φ(i) − fφ(j)φ(j)) +
n∑

k=1,k 6=i,j
(dki ∗ (fφ(k)φ(j) − fφ(k)φ(i)) + dkj ∗ (fφ(k)φ(i) − fφ(k)φ(j)) +

dik ∗ (fφ(j)φ(k) − fφ(i)φ(k)) + djk ∗ (fφ(i)φ(k) − fφ(j)φ(k)))
(4)

This computational cost can be even further reduced by
using information from preceding iterations. For the cases
where the swapping indexes {u, v} are different from the
previous indexes {i, j} that were used to generate the current
permutation φ′, such as that ({u, v} ∩ {i, j} = ∅), the
movement cost can be calculated in constant time by [36]:

δ(φ
′
, u, v) = δ(φ, i, j) ∗ (dru − drv + dsv − dsu)∗(fφ(j)φ(u) − fφ(j)φ(v) +

fφ(i)φ(v) − fφ(i)φ(u)) ∗
(dur − dvr + dvs − dus)∗(fφ(u)φ(j) − fφ(v)φ(j) +

fφ(v)φ(i) − fφ(u)φ(i))
(5)

Next, we briefly explain the meta-heuristics that we are
learning to select from.

1) Breakout Local Search: The BLS algorithm is similar
to the Iterated Local Search in the way that it initially applies
a local search procedure until a local optimum is found,
followed by a perturbation operation to jump to new search
regions. The difference is that BLS may apply three distinct
perturbation moves, depending on the search stage. The more
often executed one is the directed perturbation, which is based
on tabu search principles, meaning that it favors movements
which improve the cost function and that have not been
recently applied, thus performing an exploitation search. The
other two are the recency-based perturbation, that favors the
least recently performed moves, and the random perturbation.
Neither of them takes into account the cost degradation,
resulting in a more explorative behavior [33].

2) Max-Min Ant System: Following the Ant Colony Opti-
mization concepts, the MMAS is a constructive algorithm that
probabilistically chooses the assignments based on two infor-
mation: the heuristic (problem-specific) and the pheromone
trail (based on experience of the solutions constructed so
far) [8]. The main difference introduced by MMAS is that it
imposes maximum and minimum limits to the allowed values
of pheromone. This is intended to prevent search stagnation,
where all ants produce the same solution due to a high
predominance of that path in the pheromone matrix [27]. A
hybrid version of MMAS was employed in which, after every
ant finishes the constructions phase, the best improvement
local search is applied to the solution.

3) Robust Tabu Search: The Tabu Search algorithm is a
simple meta-heuristic that accepts degrading movements when
stuck in local optima. Then, in order to avoid returning to the
same positions, it maintains a list of forbidden movements for
a given number of iterations, or until the aspiration criteria is
met, which is traditionally when the tabu movement results

in a solution better than the best found so far [6]. The
robust version introduces a randomly variable duration for
considering each movement as tabu, and also an additional
aspiration criteria which is met when the elements being
swapped will be placed to positions that they have not being
for the last defined number of iterations [34].

4) Breakout Memetic Algorithm: The BMA is a steady-
state evolutionary algorithm that, in each generation, the BLS
is applied on the new offspring solution. It uses the Uniform
Crossover (UX) operator for reproduction. The UX creates an
offspring by assigning at each position one element from either
of the parents in that same position with equal probability,
as long as the element has not been assigned yet. At the
end, if there are unassigned positions, they are set randomly
among the remainder values [35]. The BMA also applies an
adaptive mutation procedure on the whole population when
the best found solution has not changed for a certain amount
of generations. The mutation operator exchanges a number
of elements in order to create a solution with a determined
Hamming distance, which is increased after each mutation
appliance until being reset [35].

V. EXPERIMENTAL RESULTS

For this dissertation, we conducted a series of incremental
studies on automatic algorithm selection for the Quadratic
Assignment Problem. At each time, we identified some weak-
nesses of the approach, and then proceeded to address them
in the next study. With this, at the end we were able to
reliably select algorithms with a multi-label approach using
the described FLA based meta-features.

In all experiments, we used the Random Forest (RF) as
classification model. Specifically, we used the implementation
from the scikit-learn library 2. The only parameters that
we set were to use 100 tree estimators and a tree depth limit
of 10, the other parameters were left as the default. The RF
classifier is a model based on an ensemble of decision tree
classifiers, where each tree is trained using a bootstrapped
subset of the training samples and a random subset of the
features [37]. The classification is then given by averaging all
decision tree outputs.

For ranking the algorithms (which defines the meta-labels),
we must compare their performance. Therefore, the executions
of the meta-heuristics should have the same allowed effort, i.e.,
the same stopping criteria. Some works have used the maxi-
mum number of iterations for this end [17], [38], which can
be hard to set if we are dealing with very different algorithms.
For this same reason, using the number of solution evaluations
as the stopping criteria [15], [22], [39] may disregard the cost
of other operations present in the algorithms, which could even
be more expensive or more frequently used [40].

Another possibility is to use the CPU time for this purpose
[23], [35], [41], [42], which has the disadvantages of being
sensible to implementation, compilation, and hardware settings

2http://scikit-learn.org/stable/index.html
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[40]. Nevertheless, it is still a valid approach if some care is
taken in the experiments.

Initially, for the single label experiment, we used the number
of iterations as the stopping criteria and the CPU time for
untying the performance (when the average objectives are the
same). Thereafter, tn the multi-label experiments, we ran the
meta-heuristics limited to CPU time (which varies according
to the instance size).

For all datasets that we built, each meta-heuristic is executed
30 times for every QAP instance (always using the same set
of 30 seeds).

In the first study [17], we investigated the meta-learning
approach as a single label classification problem. Here, we
built the dataset by extracting 12 meta-features and with the
BLS, MMASBI and RO-TS algorithms as meta-labels.

We set as the stopping criteria for the meta-heuristics
the number of iterations, which was chosen according to
preliminary tests. The BLS and MMASBI were limited to
100 ∗ n iterations, where each iteration contains a full local
search appliance. For the RO-TS, the stopping criteria was
2000 ∗ n iterations, because here each iteration is equivalent
to one single swap movement.

Then, for labeling the instances, we ranked the three al-
gorithms based on their average solution costs over the 30
executions and chose the one with the least average cost. In
case of ties, the selection was based on the average execution
time. Table I shows the resulting classes distribution.

TABLE I: Full dataset

Class Instances
BLS 33

MMASBI 89
RO-TS 13

Besides the seven static features described in Section IV-A1,
we extracted seven FLA meta-features, shown in Table II.
The values of the acc and acl meta-features for all QAPLIB
instances are given in [32]. The other five features are the same
used in [13]. They are extracted using the sampling method
proposed by [27], which consistis of collecting the solutions
found by runs of the Iterated Local Search (ILS) and the Best
Improvement algorithm (BI) (as described in Section IV-A2).

Initially, we trained the Random Forest for the complete
dataset and with the 14 meta-features, in which, due to
class imbalance, the minority classes had considerably worse
performance. Therefore, some data cleansing was necessary
to improve the results. For this, we inspected the optimization
performance and noticed that for several instances, mostly with
small sizes, the three meta-heuristic achieved the same average
cost. So, a new and more balanced dataset was generated by
removing those instances.

Following this, we managed to further improve the clas-
sification performance by reducing the dimensionality of the
dataset. Because there were only 14 features, it was feasible
to make an extensive search of the best subset of features.
We acknowledge that doing it over the cross-validation folds
rises the risk of overfitting the model, as is the case for any

other supervised feature selection approach [43]. Even so, we
wanted to discover if there was an optimal subset of features
capable of improving both the accuracy and individual classes
performances for the existing benchmark instances.

Finally, when observing that there was still a large difference
in the individual classes performances, we concluded that it
would be better to project our multi-class problem into se-
quential binary problems, resulting in the proposed cascading
scheme.

In this approach, the multi-class problem is divided into
two binary output problems, with each being tackled by a
specifically trained Random Forest. At the first level, the model
is trained to classify the class MMASBI (the majority class)
against the joint of classes BLS and RO-TS. If the output of
this classification is not MMASBI, then the input is forwarded
to a second model that is trained to distinguish only the
instances belonging to classes BLS and RO-TS. Moreover,
in order to better discriminate the classes, the models were
trained using their respective optimal subset of features, which
were found after performing exhaustive searches. Figure 4
illustrates the proposed scheme, along with the best meta-
features for each model.

Step 1
BLS/RO-TS x MMASBI

IF 
MMASBI

Step 2
BLS x RO-TS

Input

Start

Output

fd, dd, dsp, n_opt, 
ils_fdc, bi_fdc

Meta-features

n, fsp, fas, n_opt

Meta-features
No Yes

Fig. 4: Proposed cascade classification scheme

Table III shows the prediction performances (accuracy and
F-score of the labels) of the cascade approach. The evaluation
was made with the 10-Fold cross-validation strategy. With
this, we were able to achieve a satisfactory accuracy and with
similar performance on each class, which is important in a
algorithm selection application.

However, the good classification results were achieved only
after several manual steps, which is not desirable for an
automated algorithm selection application. Therefore, in the
next study [19] we investigated the algorithm selection task
as a multi-label classification problem, using the same exper-
imental setup as before: same QAP instances, meta-heuristics
and meta-features (except the acc and acl meta-features).

In multi-label classification, the data entries can be assigned
to more than one class simultaneously [44]. Since more than
one meta-heuristic can have the same performance for a



TABLE II: FLA based meta-features in the single label experiment

Abbreviation Name Description
n opt Number of pseudo global optima Best unique solutions found by ILS
ils dst Average distance to optima Hamming distance to the closest pseudo optimumbi dst
ils fdc Fitness Distance Correlation [29] FDC =

1
m

∑m
i=1(ci−µc)(di−µd)

σc.σdbi fdc

acc Autocorrelation coefficient [32] Average fitness variation caused by a single
step along the neighborhood

acl Correlation length [32] Number of required steps to make the
correlation values statistically different

TABLE III: Evaluation metrics for the cascade scheme classi-
fication

Accuracy F-score
BLS MMASBI RO-TS Average

0.8765 0.875 0.8912 0.8333 0.8665

given instance, this approach is adequate to perform algorithm
selection [23]. Moreover, we did not performed the extensive
feature selection anymore.

Here, we used the CPU time as the stopping criteria. With
the average times that the algorithms spent to reach their best
found solutions in the previous study, we fit a polynomial
function that gives the maximum CPU time for an instance
according to its size. In this way, for an instance with size
150, for example, the meta-heuristics are executed for 17
minutes. An instance of size 256, in turn, requires 2 hours.
Then, after comparing the average cost over the 30 runs, the
class distribution ended up as displayed in Figure 5.

30 18
13

2

5 6

61

BLS (109) MMASBI (98)

RO-TS (74)

Fig. 5: Multi-label dataset (BLS/MMASBI/RO-TS)

We compared two approaches for dealing with multi-label
classification. The first is based on transforming the dataset
into a multi-class single label dataset by considering each sub-
set of classes as a distinct label (powerset labels). Therefore,
we turned the problem into a single label problem by treating
each subset of classes as a unique label. In this way, the model
is trained to predict among 7 different labels, shown in Table
IV.

Alternatively, the learning algorithm can be trained directly
on the multi-label configuration. In the literature, this approach
is called algorithm adaptation [45]. In the scikit-learn RF
implementation, the multi-label task is handled by, instead of
assigning only the class with the highest mean probability, it

TABLE IV: Powerset labels

Subset Samples
only BLS 30

only MMASBI 18
only RO-TS 2

BLS/MMASBI 13
BLS/RO-TS 5

MMASBI/RO-TS 6
BLS/MMASBI/RO-TS 61

assigns to all classes with a probability higher than 0.5.
We reported the classification performance as the accuracy

and the F-scores of each individual class. However, for multi-
label classification, there are different types of accuracies that
can be measured. In this work, we used the traditional instance
accuracy, given by the Jaccard similarity coefficient between
the true and predicted labels, and the subset accuracy, which
requires that the predicted set of labels to be an exact match
of the original label set [44].

Additionally, we used what we called the recommendation
accuracy, that evaluates if the system is able to recommend
only the best performing algorithms, i.e., it considers the
classification as correct if there are no false positives for that
instance. As far as we know, this type of accuracy is usually
not discussed in the multi-label learning literature, and has
not yet been applied in the context of algorithm selection for
optimization problems.

Initially, we observed very high classification performance.
However, almost half of our dataset was labeled to all three
meta-heuristics (the BLS/MMASBI/RO-TS powerset), thus
increasing the accuracies. Thus, we calculated the accuracy
metrics (Table V) without those instances (using the Leave-
one-out cross-validation strategy).

TABLE V: Accuracies of the multi-label classification on the
reduced dataset

Approach Instance Subset Recommendation
Powerset Labels 0.802 0.676 0.703

Multi-labels 0.818 0.703 0.720

Although the models did not achieve a very high perfor-
mance, the recommendation accuracy was still considerably
above random. Besides, this low performance was mainly due
to the prediction of the minority class (RO-TS), as displayed
in Table VI.

Therefore, the multi-label approach still demonstrated to
be able to provide good prediction results without additional



TABLE VI: Labels F-scores on the reduced dataset

Approach BLS MMASBI RO-TS Average
Powerset Labels 0.835 0.909 0.538 0.760

Multi-labels 0.823 0.947 0.560 0.778

manual effort. Both strategies had similar performance, but
letting the model learn directly on the multi-label dataset,
instead of transforming it into powerset labels, had a small
advantage in terms of classification.

For the next study [20], we targeted the weaknesses that
we identified before. First, one of the meta-heuristics, the
Robust Tabu Search (RO-TS) [34] had a considerably worse
performance compared to the other algorithms, making the
meta-learning dataset highly unbalanced.

Furthermore, Figure 6 shows the boxplot distributions of
each meta-feature for each label from the single label dataset.
We can notice that the instances labeled to RO-TS were very
similar to those labeled as BLS, meaning that both meta-
heuristics work better on instances of similar nature.

These similarities are actually not surprising, since both the
RO-TS and BLS algorithms share same common properties.
Both are single solution based with iterative improvement
strategies. And, because the RO-TS outperformed the other
algorithms on fewer instances, it ends up getting more disad-
vantaged from these similarities.

Because of that, we replaced the RO-TS by the more novel
Breakout Memetic Algorithm [35]. By doing so, we also
improved the diversity of the nature of our algorithm pool by
having one perturbative (BLS), one constructive (MMASBI)
and one populational evolutionary strategy (BMA).

Moreover, we increased the dataset by including additional
QAP instances that were designed to be hard for heuristic
search [24]. Specifically, they are 12 instances of the type
drexx with sizes ranging from 15 to 132, and 5 instances of
the type taixxeyy, all with the size of 343, which is very
large in the context of the QAP.

Another key improvement of this study is that we compared
the meta-heuristics using hypothesis test. Therefore, the meta-
label for a particular instance is set as the algorithm with the
lowest average cost (over the 30 runs), and all the algorithms
with no statistical difference to it (with a confidence level of
95%). For this, we used the Kruskal-Wallis hypothesis test
with the Nemenyi post-hoc test. Figure 7 shows the resulting
dataset distribution.

Finally, and mainly, we used a new set of FLA based meta-
features from the literature, such as the Accumulated Escape
Probability and the Dispersion Metric (as discussed in Section
IV-A2). Besides that, the main drawback of FLA features for
algorithm selection is the high time consumption for their
extraction [15]. Therefore, we investigated a cheaper sampling
methodology, using the Metropolis-Hasting algorithm [28]
(Section IV-A2).

We ran the MtH until a maximum of 5000 unique solutions
were stored, which are then referenced as the set of base
solutions. With this set, the two following meta-features are

extracted:
• Accumulated Escape Probability (aep)
• Base Dispersion Metric (base dm)
Then, for each base solution, we applied the Best Improve-

ment local search and stored all unique local optima. This
set of local optima is used to calculate the remaining 5 FLA
meta-features:
• Optima Fitness Coefficient (opt fit coef)
• Average Descent (avg descent)
• Fitness Distance Correlation (fdc)
• Average Distance to Optima (avg dst)
• Optima Dispersion Metric (opt dm)
Since one of our goals is to investigate the computational

effort for using FLA features, we built five datasets considering
different sizes of the MtH sampling: 100, 500, 1000, 2500, and
5000.

Table VII shows the performance over each of the five
datasets with the Leave-one-out cross-validation strategy. Al-
though all sampling sizes resulted in very high instance
accuracies, this is due to the high imbalance present in the
datasets (Figure 7). Nevertheless, we achieved satisfactory
subset accuracies in all cases, with a small advantage for the
meta-features extracted with the sample of size 1000.

TABLE VII: Classification accuracies

Sample size Instance Accuracy Subset Accuracy
100 0.92 0.84
500 0.93 0.85
1000 0.93 0.86
2500 0.93 0.85
5000 0.93 0.84

In fact, by looking at the subsets F-scores in Table VIII
we can notice that the five datasets performed similarly well
on the three majority subsets. Again, the sampling size of
1000 resulted in an overall slightly better performance, since
it had at least the second-best F-score in all cases. However, the
models failed to correctly classify the minority cases, which is
reasonable considering the small number of instances on such
subsets.

TABLE VIII: Subsets F-scores

Subset (size) Sampling size
100 500 1000 2500 5000

only BLS (1) 0.00 0.00 0.00 0.00 0.00
only MMASBI (13) 0.72 0.66 0.76 0.76 0.76
only BMA (4) 0.00 0.00 0.00 0.00 0.00
BLS/MMASBI (2) 0.00 0.00 0.00 0.00 0.00
BLS/BMA (36) 0.88 0.90 0.89 0.87 0.86
MMASBI/BMA (7) 0.37 0.37 0.46 0.40 0.40
BLS/MMASBI/BMA (89) 0.92 0.93 0.92 0.92 0.91

Moreover, in order to investigate if there is any difference
among the five datasets when learning a classification model,
we compared their average Cross-Entropy Error (CCE). The
CEE is computed by the sum of the logarithmic error of each
true class. In our context, the error is given by 1−p, in which
p is the class assignment probability given by the Random
Forest.



Fig. 6: Features distributions for each class
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Fig. 7: Multi-label dataset (BLS/MMASBI/BMA)

Table IX displays the means and standard deviations of
the CEEs. The datasets marked with gray background had no
statistically difference (p > 0.05) from the one with the lowest
mean (in boldface). We used a pairwise Wilcoxon hypothesis
test with the Bonferroni correction for this comparison.

TABLE IX: Average Cross-Entropy Errors

Sample size Cross-Entropy Error (std)
100 0.331 (1.318)
500 0.253 (0.957)
1000 0.191 (0.332)
2500 0.169 (0.269)
5000 0.166 (0.306)

Based on these results, we concluded that the sampling size
of 1000 is an adequate choice for this algorithm selection task,
since it had both high accuracies and good performance for
training the model, as indicated by the CEE.

VI. RUNTIME COMPARISON

Additionally, in this study we compared the runtime con-
sumption of the meta-learning approach using both sampling
methodologies: the ILS/BI sampling that we used in the first
two studies, and the Metropolis Hasting sampling with 1000
samples.

Figure 8 illustrates their CPU time performance by instance
size. This includes the time required for running one selected
meta-heuristic. The 1000 MtH required less time than the
ISL/BI, whereas both were better than running all three meta-
heuristics.
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Fig. 8: CPU time of each approach by instance size

These differences on runtime between the sampling ap-
proaches are coherent if we consider the amount of total and
partial solution evaluations. Both the MtH and BI are similar
in the way that, for every iteration, an O(n2) evaluation is
performed (Equation 1) on random solutions, followed by
local searches with n(n−1)

2 O(n) evaluations (Equation 4) and



several O(1) evaluations (Equation 5). The main difference,
however, is that the MtH is executed until 1000 random base
solutions are accepted, whereas the BI requires 5000 unique
local optima solutions. Furthermore, the ILS/BI sampling
has still the cost of 1000 ILS appliances, meaning 1000
complete evaluations (O(n2)) and the same linear and constant
evaluations related to local search, with the additional O(n)
evaluations made due to the perturbation moves.

VII. ALGORITHM SELECTION OUTCOME

With the trained model from the last study (using the sample
size of 1000), we investigated the efficiency of the selection
approach in terms of the overall achieved QAP solutions.
Therefore, we compared the objective values obtained by one
selected algorithm against the objective values obtained with
an Oracle approach, that always select the meta-heuristic with
the best performance. However, because we are dealing with
multi-label classification, there is more than one algorithm that
could be chosen for execution, that, in turn, can yield different
results. Hence, we consider the case in which the best correctly
predicted algorithms for each instance are chosen (Selected
(best)), i.e., only true positive labels, and the case that this
choice is performed at random among the predicted classes
(Selected (random)). The former is an idealistic scenario,
whereas the latter is more realistic to an actual application.

Moreover, we also compared an approach that always
chooses the algorithm related to the class with the highest
probability estimate from de model (Selected (prob)), which
would be the case in a single label classification task. Figure
9 shows, for each scenario, the number of instances where the
selection approach was statistically equivalent to the Oracle
approach. For comparing each two sets of 30 objective values
(one approach versus the Oracle), we used the Kruskal-Wallis
hypothesis test at a confidence level of 95%. Additionally,
we also report the performance of a purely random selection
strategy (Random) and the performance of each meta-heuristic
individually (BLS, MMASBI, and BMA).

Instances

BMA

MMASBI

BLS

Random

Selected (prob)

Selected (random)

Selected (best)

Oracle

132

110

119

117

134

140

151

152

Fig. 9: Amount of instances that each selection approach
achieved equivalent performance to the Oracle

In the Selected (best) case, our approach was very close to
the Oracle, meaning that the classifier could correctly predict

at least one true positive label for almost all instances. In turn,
the more realistic Selected (random) scenario outperformed
the Selected (prob), thus highlighting the advantage of using
a multi-label approach for this task instead of treating it
as a single label problem. Nevertheless, the meta-learning
strategies were better than running only one meta-heuristic
on all instances or making the selection at random.

VIII. CONCLUSION

This research presented a set of incremental studies about
algorithm selection with meta-learning concepts and measures
based on Fitness Landscape Analysis. Each progression of
the work was responsible for increasing the robustness of the
approach and also was fundamental to draw some different
conclusions.

The first work highlights the potential of achieving high
classification accuracy provided that the practitioner performs
some steps to improve the results. It showed not only overall
good accuracy, but the performance across the labels were also
balanced.

Then, we changed our approach to a multi-label strategy,
where more than one algorithm can be set as meta-label for a
given instance. The results from this study show that, even
without the manual effort made in the previous study, the
selection approach yield reliable results. From this, we draw
the conclusion that treating the algorithm selection problem as
a multi-label task is adequate.

Finally, we investigated a meta-learning approach with a
new set of meta-features based on Fitness Landscape Analysis.
The results demonstrated that it is possible to obtain high
classification performance with metrics that, in turn, can be
extracted using low time consumption sampling, which is a
recurring problem of FLA. Moreover, by using the meta-
learning selection approach, we could improve the overall
performance on the set of QAP instances, without adding too
much effort in the process.

We used as a case study the Quadratic Assignment Problem,
which is known for being a very hard problem and also being
a generalization of other combinatorial problems. However,
an interesting topic for future investigation is the performance
of these FLA based meta-features on selecting algorithms for
different optimization problems.

Moreover, one of the main drawbacks of the study was the
relatively small number of instances. Therefore, in future work
the dataset can be increased by introducing newly artificial
instances created with a generator, which would improve the
robustness of the results.

Additionally, the relatively low-cost extraction process in-
dicates that this type of features could also be used in other
automated techniques for solving optimization problems, such
as hyper-heuristics and adaptive operator selection.
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