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Abstract—Statistical machine learning algorithms usually as-
sume that there is considerably-size data to train the models.
However, they would fail in addressing domains where data is
difficult or expensive to obtain. Transfer learning has emerged
to address this problem of learning from scarce data by relying
on a model learned in a source domain where data is easy to
obtain to be a starting point for the target domain. On the other
hand, real-world data contains objects and their relations, usually
gathered from noisy environment. Finding patterns through such
uncertain relational data has been the focus of the Statistical
Relational Learning (SRL) area. Thus, to address domains with
scarce, relational, and uncertain data, in this paper, we propose
TreeBoostler, an algorithm that transfers the SRL state-of-the-
art Boosted Relational Dependency Networks learned in a source
domain to the target domain. TreeBoostler first finds a mapping
between pairs of predicates to accommodate the additive trees
into the target vocabulary. After, it employs two theory revision
operators devised to handle incorrect relational regression trees
aiming at improving the performance of the mapped trees. In
the experiments presented in this paper, TreeBoostler has suc-
cessfully transferred knowledge among several distinct domains.
Moreover, it performs comparably or better than learning from
scratch methods in terms of accuracy and outperforms a transfer
learning approach in terms of accuracy and runtime.
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I. INTRODUCTION

Machine learning algorithms have been widely and success-
fully used in many areas such as computer vision, robotics,
social network analysis, and others [1], [2]. However, this
success usually comes with the presence of large amounts
of data. When the number of examples is relatively small,
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learning good models can be a challenging task. This is often
the case of several real-world problems where collecting data
is expensive or even impossible to obtain, such as collecting
data from movements of real-world robots [3], collecting WiFi
signal data from a large number of locations [4] and labeling
data for sentiment classification [5]. To handle this issue,
transfer learning techniques [6] leverage a model learned from
a source domain with more examples to learn from another,
related, domain where data is more scarce.

Transfer learning has been widely employed in classical
machine learning settings, such as ensembles [7] and decision
trees [8]. However, most of them do not take into account
the relationships between entities of the domain and the fact
that the examples may not be identically and independently
distributed, which is the case of a number of real-world
data such as interaction between proteins [9] and interaction
between accounts in social media [10]. In addition, real-world
data have noise and are generally uncertain. This is the focus
of the area called Statistical Relational Learning (SRL) [11].
Transfer Learning algorithms have also been developed in the
context of SRL. Two of these algorithms [10], [12] transfer
relational knowledge by creating a second-order representation
of formulas from learned Markov Logic Networks (MLN)
[13]. Other three algorithms [14]-[16] find predicate mappings
through search methods to perform transference of clauses
learned from MLNs by mapping their predicates.

Although these methods showed better results compared
to MLN models learned from scratch, [17] have shown that
applying a boosted approach to learn Relational Dependency
Networks (RDN) yielded superior performance over traditional
SRL approaches. Based on the predicate mapping algorithm
presented by [14] to transfer MLN clauses, we developed a
similar predicate mapping approach to perform transference
of Boosted RDNs, which are models that have a higher
expressiveness. We have opted for using Boosted RDNs as the
models to be transferred due to its efficiency in both training
and inference time and the capability of learning both the
structure and the parameters of RDNs simultaneously, which
is not the case of the MLN models used by related work.
RDN-Boost has been shown to have state-of-the-art results
in learning RDNs and superior performance over other SRL
models in much less training time.

In this dissertation, motivated by the need of learning from



scarce, relational and uncertain data, we present a transfer
learning algorithm called TreeBoostler that transfers Boosted
RDNs by mapping the predicates appearing in the trees. At
a higher level, the algorithm generates the possible predicate
mappings as it tries to recursively transfer nodes from the
source regression trees. After finding such mappings, they are
propagated to the rest of the tree and the other trees of the
next iterations. To complement the process and better adjust
the mapped trees to the new, target domain, TreeBoostler also
includes a theory revision [18] algorithm for proposing modifi-
cations to the mapped models in order to handle incorrectness
and to improve the performance.

We evaluated TreeBoostler in several real-world datasets
and simulated the scenario where only a few data are available
by training on one single fold and testing on the remaining
folds. Our results demonstrate that our method has successfully
transferred learned knowledge across different domains in a
smaller time compared to other transfer learning algorithms.
In addition, transference showed to be very useful in terms of
accuracy compared to learning from scratch methods based on
RDNs. Additional experiments were performed to investigate
the behavior of the algorithm as the number of examples
increases and when provided minimal target data. The results
demonstrate that our algorithm can be very competitive to
traditional methods that learn from scratch even with the
increase of the amount of data, also when provided only a
few examples.

II. CONTRIBUTIONS

To sum up, the main contributions of this dissertation
include:

o A transfer learning algorithm, namely TreeBoostler, that
constructs a target set of relational regression trees biased
by a predicate mapping found through the transfer process
given the structure of the source regression trees. This
is found by applying all legal mappings to a node and
selecting the one which gives the best split.

e A revision theory system that proposes modifications
to boosted trees through two revision operators. These
revision operators are: (1) pruning operator, which deletes
nodes from a tree and (2) expansion operator, which
expandes nodes in each tree.

o Three types of experiments to evaluate TreeBoostler
against baseline approaches. The experiments were con-
ducted as follows: (1) simulating a transfer learning
environment with limited target data, (2) providing to the
system a scenario with increasing amounts of target data
and (3) providing a scenario with learning from minimal
target data.

III. TREEBOOSTLER: THE PROPOSED ALGORITHM

We propose a method that transfers learned boosted trees
from a source domain to a target domain. The approach
is divided into two major steps: first, the source boosted
trees structure is transferred to the target domain by finding
an adequate predicate mapping, and second, the algorithm

revises its trees by pruning and expanding nodes in order to
better fit the target data. The regression values are learned
simultaneously in both steps. Next, we detail each of these
steps.

A. Transferring the structure

A fundamental problem when tackling transfer learning on
relational domains is to automatically find how to map the
source vocabulary to the target domain. In this way, the first
step of the overall process is to find this mapping, where we
reduce the overall vocabulary of both domains to their set
of predicates, making our first problem as to find the best
mapping of source predicates to target predicates. With that,
the boosted trees learned from the source domain are trans-
ferred sequentially to the target domain and the parameters
relearned to fit the target data. [14] introduced two approaches
for establishing a predicate mapping regarding MLNs: (1) a
global mapping, which finds a corresponding target predicate
to each source predicate and applies this mapping to the
entire source structure (i.e. all clauses) at once; and (2) a
local mapping, which finds an independent predicate mapping
for each independent part of the entire structure (i.e. each
clause). This later case constructs a predicate mapping only
for the predicates that appear in a specific clause, separately,
independently on how the predicates appearing in the other
clauses were mapped before. Generally, the local mapping
approach is more scalable since the number of predicates that
appears in a clause is naturally smaller than the total number
of predicates of a source domain and more flexible, as the
mapping in one part of the structure does not necessarily hold
or depends on all the other rest of the structure.

In this work, we choose to follow the local approach, by
finding the best local predicate mapping for transferring the
boosted trees. As we have mentioned earlier, each path from
the root to a leaf in the relational regression tree can be con-
sidered as a clause in a logic program. However, these paths
are not independent of each other as they may share the same
inner nodes with different paths in the relational regression
tree. In addition, trees cannot be interpreted individually since
each one depends on the previously handled trees. Thus, the
algorithm translates the predicates presented in the inner nodes
according to the previously found translations in order to keep
the found predicates mapping through the entire process of
learning trees.

1) Legal mappings: A mapping is legal if each given source
predicate is mapped to a compatible target predicate or to an
“empty” predicate. If the source and target predicates have
the same arity and their argument types agree with the current
type constraints they are considered compatible. Mapping is
done following the current type constraints which each type
mapped to at most one corresponding type in the target
domain. For example, the current type constraints are empty
and the first predicate to map is genre(person,genre), then
the target domain predicate projectmember(project,person) is
considered to be compatible. Therefore, the type constraints
are updated with the following constraints: person — project



and genre — person. Since all sequential predicates to be
mapped need to conform to the current type constraints, a
mapping for the predicate advisedby(person,person) can only
be compatible with sameproject(project,project). Algorithm 1
finds legal mappings given the source predicates to be mapped,
possible target predicates to consider and current predicate
mappings and type constraints.

Algorithm 1 Finding legal mappings given the source and
target predicates

Require: srcPreds, tarPreds,
typeConstraints

Ensure: mappingsList

1: mappingsList < []

2: Pick the first unmapped source predicate srcPred

3: for tarPred € tarPreds do

4. if isCompatible(srcPred, tar Pred) then

5 Add this mapping to a copy of predsMapping
6: Update a copy of typeConstraints
7
8

predsMapping,

Call legal_mappings with new parameters
Insert mappings to mappingsList

9: end if

10: end for

11: return mappingsList

A legal mapping is defined as follows: Let p(X7, ..., X,)
be an atom in the source vocabulary with predicate p and
arity n. Let ¢(Z1,...,Z,,) be an atom in the target do-
main with predicate ¢ and arity n. Let S = {types, —
typey, .. .types, — typer, + be the set of constrained types,
where the first term of each element is a type in the source
domain and the second term is a type in the target domain.
We say that p/n — ¢/m is a legal mapping when n = m
(they have the same arity), and for each pair of corresponding
terms (X;, Z;) where X is a term in p(X4,...,X,) and Z; is
atermin ¢(Z1, ..., Zm), if X; is associated to the type types,
and Z; is associated to the type typey,, then either type;, has
not appeared before as the second term of an element in S
or types, — typer, € S. The set of compatible types starts
empty and is iteratively filled in with a type correspondence
yielded from a predicate mapping.

Note that the boosted trees are learned with respect to
a query atom; because of that, the transfer algorithm must
receive as input the source and target query atoms to start
the transference. Hence, the predicate mapping starts with
a mapping from the source query predicate to the target
query predicate. For example, considering to transfer the
source query atom workedunder(person,person) from IMDB
dataset to the target query atom advisedby(person,person)
from UW-CSE dataset, where person is the type of both
arguments, in both target query domains. The algorithm starts
the type constraints set with the mapping person — person
and the predicate mapping set with workedunder(A,B) —
advisedby(A,B). Table I shows the final predicate mapping set,
found after transferring the entire boosted tree structure.

TABLE I
FOUND PREDICATE MAPPING FOR TRANSFERRING IMDB—UW-CSE.
workedunder(A,B) | — advisedby(A,B)
director(A) — professor(A)
actor(A) — student(A)
movie(A,B) — publication(A,B)

2) Finding best mapping and transferring the structure:
To find the best predicate mapping for the entire structure, we
perform an exhaustive search through the space of all legal
mappings of the predicates that are in the inner node which
have not been translated yet. The legal mapping that provides
to the node the best split is selected as the best node and
mapped predicate. We defined the weighted variance as the
split criterion. Transference starts from the root node of the
first source tree and proceeds to find not-mapped predicates
recursively in order to update the current predicate mapping.

In case the algorithm does not find a compatible mapping, a
predicate in the source domain will be mapped to an “empty”
predicate. This is used to decide how to map the nodes in
the trees, encompassing three cases: (1) all the literals in
an inner node have a non-empty predicate mapping. This
is the best scenario, as we can keep the same number of
literals in the transferred tree; (2) an inner node has some
predicate mapped to an “empty” one, but there is at least
one predicate mapped to a non-empty, then the ones mapped
to empty are discarded and the others remain; (3) an inner
node has all their literals mapped to an empty predicate.
This is the more complicated scenario, as discarding all the
literals yields an empty node, which affects the tree structure,
leading to no structure transference in the worst case. For
example, the transference UW-CSE — Cora would result in
a null theory as shown in Figure 1 due to the fact that Cora
dataset has no unary predicates and the root nodes of learned
source trees are conjunctions of unary predicates. To deal
with such scenarios the algorithm discards the “empty” node,
promotes its left child and appends its right child to the right-
most path of the subtree. If the left child is a leaf, then the
“empty” node is discarded and the right child is promoted.
It is important to mention that the transfer process is also
subject to the search bias growing tree parameters, namely
the maximum depth and the maximum number of leaves per
tree. It means that the nodes and the subtrees appended to the
right-most path of the tree may be ignored in the process.
In some cases, the transference may result in inner nodes
that cover all the examples in their left or right path making
the node with no examples useless. To save tree depth, the
algorithm discards such nodes and promotes the child that
covers all examples. The Algorithms 2 and 3 present the
transfer mechanism described.

Our method includes three search bias to conduct the way
the algorithm performs the mapping. The first one, called here
as searchArgPermutation, allows searching for the permutation
of all arguments in the target predicate to check if one of
them makes the source and target predicates compatible. It
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Fig. 1. One regression tree to be transferred from UW-CSE to Cora for query
predicate advisedby. Regression values are not considered for transference.
They are relearned in the process.

allows for example, the mapping of a source predicate with
the inverse relation of a target predicate (e.g. wokedunder(A,B)
— advises(B,A), which is the same as advisedby(A,B)). The
second search bias, named searchEmpty, allows generating
an additional “empty” mapping even if there is a compatible
target predicate to map the source predicate. The last one,
named allowSameTargetMap, allows mapping distinct source
predicates to the same target predicate. If this bias is not
used, the algorithm finds a one-to-one correspondence between
source and target predicates (except for “empty” mappings).

Algorithm 2 Top-Level Transfer Algorithm, the Transfer
function

Require: theory, a set of regression trees

Ensure: transferred, the transferred regression tree
1: transferred < ()
2: for tree € theory do
3. if isCompatible(srcPred, tar Pred) then

4 newTree + ()

5 TransferTree(tree, newl'ree)

6: Append newT'ree to transferred
7 end if

8: end for

9: return transferred

B. Revising the structure

When transferring learned theories from one domain to
another it is usually not enough to map the vocabularies
from both domains to achieve a model representative of the
target domain [14]. Such theories may contain multiple faults
that prevent them to correctly predict examples due to the
difference in the distribution of both domains. These faults
can be repaired through the process of theory revision [18]-
[20]. The main idea of theory revision is to search for points
in the theory that are preventing the examples to be correctly
classified and propose modifications to them. In a transfer

Algorithm 3 Top-Level Transfer Algorithm, the TransferTree
function

[publication(N, B)]

Require: node, transferNode
1: if node is leaf then
2:  Define transferNode as leaf
3 Stop procedure
4: end if
5. predicates < Get set of predicates not mapped from
node
6: if predicates is empty then
7: newNode < Translates predicates in node
8: transferNode <+ newNode
9: else
10:  Call LegalMappings given predicates and current pred-
icate mappings and type constraints
11:  Generate possible nodes by translating predicates in
node according to legal mappings
12:  Find the node that gives the best split

13:  Update the global variable predsMapping and
typeConstraints

14:  transferNode < best node

15: end if

16: if transfer Node is not empty then

17:  Call TransferTree(node.left, transferNode.le ft)
18:  Call TransferTree(node.right, transferNode.right)
19: else

20:  if node.left is leaf then

21: Call TransferTree(node.right, transfer Node)

22:  else

23: Append node.right to to the right-most path of
node.left

24: Call TransferTree(node.left, transferNode)

25:  end if

26: end if

learning scenario, the revision process attempts to adjust the
initial mapped source theory to fit the target data. The goal
is to achieve more accurate theories due to the fact that the
theory revision allows the learning algorithm to build clauses
from partial or incomplete theories that would otherwise not
be found in the constrained search space.

Our theory revision component follows the three major
steps:

1) Searching for paths in the trees responsible for bad
predictions of examples and defining them as revision
points.

2) Proposing possible modifications to the revision points
by applying the revision operators.

3) Scoring both transferred and revised theory and choosing
to stay with the best one.

In the traditional theory revision literature concerning ILP,
the points to be changed are defined according to a mis-
classified example defined according to the proved examples.
However, this concept does not hold for the SRL case which



considers the uncertainty of the domain. Thus, we define the
points to be changed according to the bad predictions made
by the trees. Here, a node is marked as “badly” predicting
when its weighted variance is greater than a given threshold
0, reflecting the fact that a node is not good enough to stop
the growth of its subtree.

Revision Point: Let v be a leaf node in a tree and let §,
be the weighted variance of examples being covered until v.
Given a threshold §, we say that v is ”badly” predicting the
examples when J,, > . Hence, the leaf node v is marked as
a Revision Point.

The revision points need to be modified during the revision
process in order to increase accuracy. In the traditional ILP
setting, examples incorrectly covered determine the revision
operator to be applied: a positive example not covered by the
theory indicates that the theory is too specific and needs to be
generalized, on the other hand, a negative example covered by
the theory indicates that the theory is too general and needs
to be specialized. In the case of RRTs, positive and negative
examples are covered by the paths in the tree, with their
respective weights determining the weighted variance of the
covered examples. In this way, instead of determining the type
of the revision point, as a specialization or a generalization
one, we only assume that some paths are responsible for
harming the accuracy. To make this matter simpler, we define
as a revision point any leaf that has a ”bad” weighted variance
as defined before. Arguably, modifications on the paths ending
up on such leaves will change the way an example is covered
resulting in a differently weighted variance.

We considered two types of revision operators: (1) a pruning
operator, which increases the coverage of examples by deleting
nodes from a tree (and in such a way, it may be seen as a
generalization operator); and (2) an expansion operator, which
decreases the coverage of examples by expanding nodes in
each tree (in the same way, it can be seen as a specialization
operator). We describe them as follows:

o Pruning operator prunes the tree from the bottom to top
by removing a node whose children are leaves marked as
revision points

« Expansion operator recursively adds nodes that give the
best split in a leaf considered as a revision point.

Our Top-Level Theory Revision Algorithm fully applies the
pruning and expansion operators in all the revision points
at once. The first step is to call the Pruning procedure for
each tree in the model. The Pruning procedure receives a root
node of a given tree as input and recursively removes nodes
that contain leaves marked as revision points. However, this
process may completely prune an entire tree eventually leading
to the deletion of all the trees particularly because the threshold
0 can be very sensitive. If this happens, the revision algorithm
would face the expansion of nodes from an empty tree which
is the same as learning from scratch. To avoid that, if the
pruning results in a null model, the effect of this operator is
ignored as if it was never applied.

Next, for each tree, the Expansion procedure is called
and recursively expands the revision points. The last step is

done by scoring both the transferred theory (before applying
theory revision) and the revised theory. The revised theory is
implemented in case it has a scoring better than before. The
scoring function is the conditional log-likelihood (CLL) over
the examples. The Algorithm 4 presents the theory revision
process after mapping the vocabulary of the source and target
domain.

Algorithm 4 Top-Level Theory Revision Algorithm

Require: theory, a set of regression trees
Ensure: newTheory, the possibly revised trees
1: newTheory + 0
2: for tree € theory do
3 newl'ree < pruning(tree)
4:  Append newT'ree to newT heory
5: end for
6: if newTheory is null then
7. newTheory < theory
8: end if
9: for tree € newTheory do
10:  tree < ExpandNodes(tree)
11: end for
12: Compute score theory and newT heory
13: if scorenewTheory > SCOT€theory then
14:  return newT heory
15: else
16:  return theory
17: end if

Next, we provide more details about the revision operators
devised in this work.

1) Pruning: Pruning is a technique that reduces the size of
trees by removing nodes of the tree where the bad predictions
lie. The pruning operator has two major goals: (1) to cover
more examples along a path, which is the equivalent of
generalizing clauses, by removing nodes (literals) possibly
responsible for bad predictions; and (2) to reduce the size of
the trees which may contribute to three additional benefits:
(1) improve the inference time, (2) make the trees more
interpretable, and (3) help on the rest of the revision process,
since it is also subject to tree depth limitations.

The structure of our pruning algorithm is quite simple: it
makes a bottom-up pass through a given tree, and decides,
for each node, whether to leave the node as it is, or whether
to delete this node and make its parent become a leaf. The
decision is made considering the successful or failure weighted
variance of a path ending in a node. Thus, the algorithm
recursively attempts to remove nodes whose children are
leaves and revision points, from bottom to up, and keeps
subtrees that contain at least one path not marked as a revision
point.

As mentioned earlier, a node is good enough to stop the
growth of its subtree when its weighted variance is less than
a given 9. In the opposite way, we consider a node not good
enough to remain in the tree when its weighted variance is
greater than 6. By removing such a node, we are giving a



chance for the algorithm to later find a possible expansion of
nodes that would result in better splits. The Pruning operation
is presented as Algorithm 5.

Algorithm 5 Pruning Operator: Removes nodes recursively if
they fit the definition of Revision Point

1: left +— pruning(node.left)
2: right <— pruning(node.right)
3: if left and right child are leaves and both have variance
greater than ¢ then
. Remove node from node and put a leaf in its place
5. end if
6: return node

2) Expansion: The Expansion operator proceeds by adding
nodes in an initial theory. As the initial theory is preferably
nonempty, as required by the Algorithm 4, this process takes
advantage of a starting point, instead of learning from scratch.
Adding new nodes and performing splits from starting points
may lead to paths that would otherwise not be found in the
constrained search space possibly resulting in better covering.
Thus, this process is important for two main reasons: (1)
by adding nodes in existing paths, it has the same effect of
specializing clauses by adding literals to make them more fit
to target data; and (2) it takes advantage of the starting point
obtained by transference. The expansion is done similarly
to the process of learning from scratch; it considers leaves
that still need to grow into subtrees as revision points and
searches for the node that gives the best split according to the
weighted variance as the splitting criterion. The leaves and
their regression values are computed when the path is good
enough or the tree has reached the maximum depth or number
of clauses. Algorithm 6 presents the procedure used here to
perform the expansion of nodes.

Algorithm 6 Expansion Operator: Performs expansion of
nodes

. left < left child of node

if left is a leaf and it has variance greater than ¢ then
Find a new node that gives the best split
Add this best node to left
left « ExpandNodes(left)

end if

right < right child of node

if right is a leaf and it has variance greater than § then
Find the node that gives the best split
Add this best node to right
right < ExpandNodes(right)

end if

: return node
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IV. EXPERIMENTAL RESULTS

We have performed three types of experiments: (1) an
approach simulating a transfer learning environment with

limited target data, (2) a scenario with increasing amounts
of target data and (3) a scenario that represents learning from
minimal target data.

A. Research questions

We conducted the experiments in order to investigate the
following research questions considering both transfer learning
and learning from scratch baselines:

¢ Q1: Does TreeBoostler learn more accurate models than
the baselines?

o Q2: Does theory revision improve the performance of the
transfer process?

e Q3: Does TreeBoostler transfer well across domains?

o Q4: Is TreeBoostler faster than the baselines?

e Q5: Does TreeBoostler perform better than the baselines
with increasing amount of examples in the target data?

e Q6: Does TreeBoostler perform better than the baselines
with minimal target data?

The question Q1 addresses a common question when com-
paring different algorithms. It is important to evaluate the
algorithm and conclude if it performs better than learning from
scratch approaches and related transfer learning approaches.
Question Q2 is important to evaluate the effectiveness of a
theory revision process and demonstrates that the process is
capable of improving the performance of the transferred model
in the target domain. This research question was also addressed
in [16]. The question Q3 addresses if the transfer process is
capable of providing good models while question Q4 asks if
the algorithm is faster than related transfer learning algorithms
and learning from scratch algorithms. It would be desirable to
provide a transfer learning approach that could be faster than
learning from scratch. Since the transfer learning system is
provided with a trained model from the source domain, part
of the time-consuming in the learning process is already done.
The question Q5 addresses how the algorithms behave with
increasing amounts of data. This question was also addressed
in [10], [12], [14], [16] through learning curves describing the
accuracy in different numbers of mega-examples. The question
Q6 addresses the problem of minimal target data where the
learner is provided with only a few examples. This problem
was the motivation of SR2LR [15] which addressed the single-
entity-centered setting in which the learner is provided with
information concerning only a single entity, i.e. background
knowledge contains only information related to the single
entity. Differently, in this work, we provided to the learner all
the background knowledge available but only a few positive
and negative examples.

B. Datasets

Following previous literature, we present our results consid-
ering different publicly available datasets described as follows.
e The UW-CSE dataset [21] consists of information about
professors, students, and courses from 5 different areas of
computer science. The goal is to predict the advisedby
relation which identifies a student being advised by a
professor.
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Fig. 2. The transfer learning process stages with their respective trees. Obtained from source domain by learning from scratch (top-left); transferred by
mapping predicates (top-right); after the pruning process (down-left) and after the expansion of nodes (down-right).

o IMDB [22] is a dataset that describes a movie domain.
The goal is to predict the workedunder relation which
identifies an actor that has worked for a director.

o The Yeast protein [9] dataset is obtained from MIPS
4 Comprehensive Yeast Genome Database and includes
information about proteins. The goal in this dataset is to
predict the class of a protein.

o Twitter [10] is a dataset that contains tweets about Bel-
gian soccer matches. The information is basically words
that are tweeted, relations between accounts and the type
of accounts. The goal is to predict the type of an account.

o« NELL [23] is a machine learning system that extracts
probabilistic knowledge base from online text data. We
consider only the Sports domain and the Finances do-
main. The goal is to predict the relation that defines
a team playing a sport and to predict the relation that
defines a company belonging to an economic sector.

C. Methodology and results

We compared the performance of TreeBoostler against two
baseline approaches that learn from scratch from target data:
RDN-B, which learns a set of regression trees using boosting
method and RDN which learns a single large regression
tree. We also compared it against TODTLER [10], a transfer
learning method that lifts a source structure to second-order
logic.

4Munich Information Center of Protein Sequence

To observe if the revision stage improves the performance
of the whole transfer process, two stages of the algorithm are
considered: transference considering predicates mapping and
parameter learning only, i.e. the first stage of the complete
algorithm (TreeBoostler*) and the complete transfer system
using predicate mapping and theory revision (pruning and
expansions of trees) (TreeBoostler). For TreeBoostler, we
restricted the depth limit of the trees to be 3, the number of
leaves to be 8, the number of regression trees was 10, and the
maximum number of literals per node was restricted to 2. We
used the same settings to learn from scratch using the method
RDN-B. For the single tree RDN method, we used 20 leaves.
For the threshold used in the theory revision step, we set its
value as 2.5 x 103 which is the same value used as default in
the RDN and RDN-B algorithms to decide if a variance of a
node is small enough to become a leaf in the learning process.
For training all the RDN based algorithms, we subsampled
the negatives examples in a ratio of two negatives for one
positive. Thus, following [17], we set the initial potential to
be -1.8. For testing, we presented all the negative examples.
For the MLN based approach TODTLER, we used Alchemy
with default settings and MC-SAT algorithm (option -ms) to
compute the probabilities. Also, we kept the default parameters
and generated second-order templates containing at most three
literals and three object variables.

For all our experiments, we allowed TreeBoostler to search
for all permutations of arguments of a given predicate. This



was very important for transferring among NELL datasets
since some source predicates can be considered as the inverse
of a possible mapped target predicate. Also, we did not allow
more than one distinct source predicate to be mapped to the
same target predicate, as this bias does not improve the results
while still increases the training time. The option searchEmpty
was also set to false to avoid increasing the amount of training
time.

The first experiment was done in order to simulate the
learning process from very limited data which is the more
suitable scenario to transfer learning. We employed the same
methodology used in related works [10], [12], [16]: training is
performed on 1 fold and testing on the remaining n — 1 folds.
The results are then averaged over n runs. For each run, a
new learned source model is used for transference. Specifically
for TODTLER, the results were obtained from one single run
due to extremely time-consuming resources when computing
scores for each first-order clause using Alchemy. TODTLER
was not able to finish computing scores for clauses in NELL
dataset after one week. We used the following measures to
compare the performance: conditional log-likelihood (CLL),
the area under the ROC curve (AUC ROC), the area under
the PR curve (AUC PR) and training time. Note that in the
training time of transfer systems we did not consider the time
necessary to learn from the source domain.

The results are presented in the Tables II, III, IV and V.
It can be observed that our algorithms are competitive or
better than TODTLER and learning from scratch methods.
Our algorithms and learning from scratch methods outperform
TODTLER in most of the results presented, mostly due
to the efficiency and expressiveness of the language used
for representing RDNs. Therefore, it is more interesting to
compare our algorithms against learning from scratch methods.
The TreeBoostler algorithm performed comparably or better
than learning from scratch methods in all but one experiment
for AUC ROC. Even for the TreeBoostler*, which is restricted
only for mapping, was able to learn more accurate models than
learning from scratch in 2 experiments for AUC ROC and 3
for AUC PR. Then only mapping the predicates and learning
the parameters for the mapped trees may be very useful when
target training data is scarce. The most significant result can
be observed in the transference from the real-world dataset
NELL Sports to NELL Finances. Bold results are significantly
better than the performance of all baselines (RDN, RDN-B
and TODLTER) for at least one TreeBostler algorithm. The
statistical significance was measured using a paired t-test at
the 95% confidence level. Based on these experiments and
observations, we can positively answer the questions Q1 and
Q3 posed before.

As can be seen, the training time consumed by TreeBoost-
ler* is usually smaller than RDN-B and equivalent to RDN.
This is because the transfer algorithm only needs to find the
best split for those nodes that have not-mapped predicates,
otherwise it already knows which mapped node to consider
in the split, avoiding searching and evaluating other possible
mappings. The first time a predicate appears in the set of

TABLE 11
RESULTS ON TRANSFERENCE FROM IMDB TO UW-CSE DATASET.
IMDB — UW-CSE
Algorithm CLL AUC ROC | AUC PR Time
RDN -0.194 0.918 0.247 1.79 s
RDN-B -0.261 0.935 0.265 8.17 s
TODTLER -3.699 0.570 0.037 208 min
TreeBoostler* | -0.274 0.926 0.275 1.16 s
TreeBoostler -0.241 0.940 0.305 9.20 s
TABLE III
RESULTS ON TRANSFERENCE FROM NELL SPORTS DOMAIN TO FINANCES
DOMAIN.
NELL Sports — NELL Finances
Algorithm CLL AUC ROC | AUC PR Time
RDN -0.180 0.532 0.020 459 s
RDN-B -0.317 0.713 0.083 22.12's
TODTLER NA NA NA NA
TreeBoostler* | -0.164 0.978 0.062 46.63 s
TreeBoostler -0.161 0.979 0.074 229.36 s

regression trees is the only time a mapping has to be found for
this predicate. It saves time in the rest of the tree and the next
iterations as the algorithm knows how to transfer a source inner
node. On the other hand, TreeBoostler, considering theory
revision, improves accuracy but is computationally costly since
it is another search approach. This training time considers
the time spent in the entire process which includes the time
taken for transference, the time taken for evaluating both
the transferred and the revised model, and the time taken
for pruning and expansion. In summary, we can answer Q4
affirmatively for TreeBoostler* and affirmatively comparing
to other transfer learning system for TreeBoostler. The results
show that question Q2 can also be answered positively. The
theory revision process shows an improvement in the perfor-
mance for all the metrics except for a worse AUC PR in a
single experiment.

TABLE IV
RESULTS ON TRANSFERENCE FROM YEAST TO TWITTER DATASET.

Yeast — Twitter

Algorithm CLL | AUC ROC | AUC PR Time
RDN -0.155 0.964 0.271 4.08 s
RDN-B -0.118 0.993 0.382 2442 s
TODTLER -1.259 0.520 0.368 1342 s
TreeBoostler* | -0.138 0.986 0.394 6.12 s
TreeBoostler -0.118 0.993 0.362 114.71 s

TABLE V

RESULTS ON TRANSFERENCE FROM TWITTER TO YEAST DATASET.

Twitter — Yeast
Algorithm CLL AUC ROC | AUC PR Time
RDN -0.182 0.695 0.081 4.46 s
RDN-B -0.257 0.919 0.231 18.80 s
TODTLER -0.023 0.497 0.002 39 min
TreeBoostler* | -0.180 0.986 0.273 4.14 s
TreeBoostler -0.180 0.986 0.272 60.99 s
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In order to compare the performance of our method with
increasing amounts of target data, we performed a learning
curve experiment transferring the same pairs of datasets.
For these experiments, we employed the traditional cross-
validation methodology when training is performed on n-1
folds and testing on the remaining 1 fold. The data selected
for training is then shuffled and divided into 5 sequence
parts. All systems observed the same sequence of these parts.
The entire process is done in n runs and the curves are
obtained by averaging the results. The Figures 3, 4, 5 and
6 demonstrate this experiment. As can be seen, our algorithm
outperforms or equates learning from scratch RDN-B in most
of the results, particularly with smaller amounts of data (about
40% of the target data). In this experiment, TreeBoostler is
outperformed by RDN-B until 80% of the target data, although
it outperforms RND-B in terms of AUC PR. Thus, question
QS can be answered affirmatively.

A third experiment was conducted in order to address
the problem of minimal target data and investigate how the
algorithms behave when learning from only a few examples.
We also performed a learning curve experiment with the
same pairs of datasets. We employed the traditional cross-
validation methodology, then we shuffled the data for training
and selected 5 groups of 5 positive examples and 5 groups of
5 negative examples. All systems observed the same sequence
of these groups of examples, i.e. systems observed from
5 up to 25 examples for each label. Similarly to the last
experiment, the entire process is done in n runs and the
curves are obtained by averaging the results. The Figures 7,
8, 9 and 10 demonstrate this experiment. As indicated in the
experiments, our algorithms easily outperform the learning
from scratch algorithms RDN-B and RDN in all the presented
results. The small amount of training data available was
insufficient to learn good models in learning from scratch
approaches. Providing more examples has shown to increase
the performance of these approaches, however it was still
insufficient comparing to TreeBoostler which also increased
its performance when more examples are provided. As can

be seen, the revision step also showed to slightly decrease
the performance in the experiments. This may be basically
due to difficulty of revising and simultaneously relearning
parameters of models given very few examples. Since the
pruning and expansion operators are subject to the threshold 9,
very few examples may not be sufficient to determine correctly
when a node is “badly” predicting. Thus, according to these
experiments, we can answer question Q6 positively.

V. CONCLUSION

In this work, we have proposed a novel transfer learning
method, named as TreeBoostler, that transfers Boosted RDNs
learned from a source domain to a desirable target domain.
TreeBoostler constructs a target set of regression trees biased
by a predicate mapping found through the transfer process
given the structure of the source regression trees. Then, it
applies a second stage process relying on theory revision,
to propose modifications to the mapped model. These mod-
ifications are done through two proposed revision operators
for the regression trees which are the pruning operator and
the expansion operator. The pruning operator showed to be
important for deleting nodes in the tree and providing space
for the expansion of new nodes.

Through experimental results, we found out that even the
first state of the entire transfer process, which only maps predi-
cates and learn the parameters of them, can give better results
than learning from scratch in a smaller amount of training
time. The application of theory revision in transfer learning
approaches brings the benefit of handling incorrectness that
has come from a different yet related domain through transfer-
ence. Thus, a transference may not provide a good model due
to differences between domains. However, this incorrectness
may be successfully handled by the modifications proposed in
the system.

Our experimental results demonstrate that this algorithm is
effective compared to the other transfer algorithm TODTLER
mainly because of the efficiency and expressiveness of the
language used for representing RDNs. We have performed
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the experiments by simulating a transfer learning scenario
where only a few data are available. We showed from ex-
periments that transfer learning may result in much more
accurate models compared to learning from scratch methods,
however, it may also hurt the learning performance and result
in less accurate models. Moreover, the theory revision process
improved the performance of the transferred models showing
the effectiveness of proposing modifications to fit the model
to the target data. However, the experiments also showed that
theory revision is more time consuming since it is another
search approach. According to the experiments, our algorithm
demonstrated to be as much efficient as learning from scratch
methods.
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