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Abstract—In recent years, the advances in technology have
produced datasets of increasing size, not only regarding the num-
ber of samples but also the number of features. Unfortunately,
creating a sufficiently large amount of adequately labeled data
with enough examples for each class is not easy. Labeling is a
challenging, expensive, and time-consuming task. It is usually
done manually, which may contribute to the insertion of noise
and errors in the data. Hence, it is of great importance to put
forward intelligent models that can benefit from the distinct
information that both labeled and unlabeled data can provide,
since, for many applications, there is a plentiful amount of
unlabeled data, but insufficient labeled ones. Semi-Supervised
Learning (SSL) is employed to achieve this. It is halfway between
supervised and unsupervised learning. In this sense, we highlight
two very influential models: Self-Organizing Maps (SOM) and
Learning Vector Quantization (LVQ). SOM is a biologically
inspired neural model that uses unsupervised and incremental
learning to produce prototypes of the input data, whereas the
LVQ can be seen as its supervised counterpart. The unsupervised
characteristic of SOM makes it unfeasible to execute SSL. In that
way, the current work proposes new models that incorporate
standard concepts from LVQ to the SOM algorithm to build
semi-supervised approaches. Such proposals can dynamically
switch between the two types of learning at training time,
according to the availability of labels and automatically adjust
themselves to the local variance observed in each cluster. The
experimental results show that the proposed models can surpass
the performance of other traditional methods not only in terms
of classification but also regarding clustering quality. It also
enhances the range of applications of SOM and LVQ-based
models by combining them with Deep Learning in a synergic
way to allow dealing with complex data structures, such as
images and sound. Moreover, we explore forms of learning good
representations of the input data, and manners to estimate the
unsupervised error when no labels are provided. Our approaches
demonstrated to be good at producing a meaningful topology and
clustering prototypes that appropriately represent the data.

Index Terms—self-organizing maps, semi-supervised learning,
unsupervised learning, clustering, classification.
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I. INTRODUCTION

Over the last few years, the use of machine-learning tech-
nology has driven many aspects of modern society. Recent
research on Artificial Neural Networks with supervised learn-
ing has shown great advances. It is the most common form
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of machine learning [6]. A key to the success of super-
vised learning, especially deep supervised learning, is the
availability of sufficiently large amounts of labeled training
data. Unfortunately, creating such properly labeled data with
enough examples for each class is not easy. As a result, the
use of supervised learning methods became impractical in
many applications, such as in the medical field, where it is
extremely difficult and expensive to obtain balanced labeled
data. In other areas, such as robotics, the dynamic imposed
makes it impossible to have real-time labels. Also, in certain
problems, new categories of elements may frequently arise,
making it infeasible to create a comprehensive previously
labeled training dataset.

On the other hand, due to the advances in technology that
have produced datasets of increasing size, in terms of the
number of samples and features, unlabeled data usually can
be easily obtained. In this sense, unsupervised learning can
be applied to perform clustering tasks. However, clustering is
a more challenging problem, and the nature of the data can
make it even more difficult. So, any kind of additional prior
information with respect to the data can be useful to obtain
a better performance. Therefore, it is of great importance to
put forward methods that can combine both types of data in
order to benefit from the information they can provide, each
of them in their way [7]. To do so, Semi-Supervised Learning
(SSL) is typically applied. It is halfway between supervised
and unsupervised learning and can be used to both clustering
and classification tasks [8].

In this regard, we highlight two very influential models
proposed by Kohonen: Self-Organizing Map (SOM) [9] and
Learning Vector Quantization (LVQ) [10]. SOM is a bio-
logically inspired neural model that uses unsupervised and
incremental learning to produce prototypes of the input data.
It maps data from a higher-dimensional input space to a lower-
dimensional output space, while preserving the similarities and
the topological relations found between points in the input
space. It can create abstractions and provide a simplified way
of exhibiting information. The LVQ shares many similarities
with SOM. Thus, it can be seen as its supervised counterpart.
Therefore, these methods are good candidates for developing
a hybrid approach that combines their concepts to allow SSL.

Various modifications of SOM and LVQ were proposed
to improve their performance in more challenging datasets.
For instance, high-dimensional data poses different challenges
for clustering and classification tasks. In particular, traditional
similarity measures may become meaningless due to the curse
of dimensionality [11], in which objects may appear approx-
imately equidistant from each other, which is aggravated by
the presence of irrelevant dimensions. Hence, such problems
require more sophisticated approaches. To do so, SOM and
LVQ-based methods [12], [13] usually apply weights to the
input dimensions, which has shown to provide outstanding
performance. It involves not only the clustering itself but
also the identification of the relevant subsets of the input
dimensions, also known as Subspace Clustering [14].

Still, clustering high-dimensional raw data such as image

and sound is a hard task, and the traditional prototype-based
methods are not suitable for it. However, techniques based
on Deep Learning (DL) have been very successful in yielding
good high-level representations [15]. For instance, [16] showed
that representations built by Convolutional Neural Networks
(CNN) are better than the state-of-art handcrafted features,
and [17] demonstrated that the representations learned by
GoogleLeNet could be used for the task of Unsupervised
Visual Object Recognition (UVOC), achieving about 75-90%
of agreement with labels assigned by humans in an unseen
dataset, when fed as input to a SOM-based clustering method.
Moreover, in a purely unsupervised scenario, some of the
most successful approaches for producing representations are
Autoencoders (AE), Variational Autoencoders (VAE), and
Generative Adversarial Networks (GAN). Therefore, those
techniques can be applied in different ways, such as with self-
labeling [18], or Deep Clustering (DC) [19].

Considering what has been set out, this research project pro-
poses new Semi-Supervised models based on the concepts of
both SOM and LVQ in order to improve the results obtained
with traditional SSL methods in the literature. Moreover, we
extend the application range of the models by scaling them
to a variety of deep learning tasks, considering not only the
SSL scenario but also the purely unsupervised perspective.
This combination with DL is performed in a synergic way to
allow dealing with complex data structures. We also explore
forms of learning good representations of the input data, and
ways to estimate the unsupervised error when no labels are
provided. The results demonstrate our proposal to be good
at surpassing its competitors in several scenarios, producing
meaningful topologically ordered clustering prototypes that
appropriately represent the data.

The rest of this article is organized as follows: Section II
presents essential theoretical concepts and introduces related
work. Section III describes in detail the first proposed model
as well as its experiments and results. Section II presents
an extension and novel approach to the first model that
scales it to a broader range of tasks. Section V introduces
a detailed explanation of the last proposed model, together
with experiments, analysis, and results. Finally, Section VI
concludes this work by analyzing the obtained results and
indicating future directions and practical applications.

II. BACKGROUND

A. Self-Organizing Maps

Self-Organizing Map (SOM), proposed by Kohonen [9],
is an unsupervised neural network that maps data from a
higher-dimensional input space to a lower-dimensional output
space while preserving the similarities and the topological
relations found between points in the input space. SOM
is based on three essential processes: 1) Competition; 2)
Cooperation; and 3) Adaptation, which leads to a competitive
learning, where the neurons compete among themselves to be
the most activated when an input pattern is presented. The
competition results in a process that is called a winner-takes-
all competition, which produces just one winning neuron. In a



SOM, the neurons are placed at the vertices of a lattice or grid
that is commonly one or two-dimensional. Therefore, SOM is
characterized by the formation of a topographic map of the
input patterns, in which the spatial locations of the neurons
(prototypes) in the grid are indicative of intrinsic statistical
features contained in the input patterns [20]. These prototypes
can be seen as abstractions of the data and a simplified way
of exhibiting information.

An interesting fact about the development of SOM is
its neurophysiological inspiration, in particular, in a distinct
feature of the brain of primates: it is known that in certain
cortical regions, neural activity is organized in such a way that
topologically ordered computational maps represent different
sensory inputs. [21]. It comes from both anatomical and
physiological evidence of lateral interaction between cells: 1)
in neural tissues, an activated neuron that triggers a pulse
causes a short-range excitation of other neurons that ranges
from 50 to 100 µm; 2) the propagation of the excitation to
areas not related to the excitatory process is prevented by
a penumbra of inhibitory activity around the exciting area;
and 3) a weaker excitatory action surrounds the inhibitory
penumbra and ranges up to several centimeters of radius. SOM
captures the essential features of these maps and yet remains
computationally tractable [21].

The basic structure of a SOM (Figure 1) consists of an
input layer and an output layer. The input layer receives the
sensory inputs from the environment and propagates them to
the output layer. Let m denote the dimension of the input
space and x = [x1, x2, ..., xm]

T the input pattern vector.
Let the synaptic weight vector of neuron j be denoted as
wj =

[
wj1, wj2, ..., wjm

]T
, with j = 1, 2, ..., l, where l is the

total number of neurons in the output map. The output layer
computes the final map resulting from the self-organization
process, and its topology usually is a two-dimensional lattice,
where each node is connected with their immediate neighbors.

The Self-Organization in SOM occurs when an input
pattern x is presented to the input layer, triggering the compe-
tition process in order to choose the winner node j. Then, the
map adapts itself by moving the synaptic-weight vector wj

towards the input pattern. Moreover, it is crucial to the self-
organization process that the nodes are not affected indepen-
dently of each other, but as topologically related subsets. This
is done in a cooperation step by also moving local neighbors
of j to get closer to the input pattern, with a lower intensity.

B. Learning Vector Quantization

The Learning Vector Quantization (LVQ), also proposed by
Kohonen [10], is a family of algorithms for statistical pattern
classification that uses prototypes (codebook vectors) to rep-
resent class regions. These regions are defined by hyperplanes
between prototypes, resulting in Voronoi partitions. While the
basic SOM is unsupervised, the LVQ is characterized by
supervised learning. Also, unlike in SOM, no neighborhoods
around the winner are defined during the learning process, nor
any spatial order of the prototypes is expected. Since LVQ was

meant to be strictly for statistical classification and recognition,
its only aim is to define class regions in the input space [10].

Fig. 1: The basic structure of a SOM. The units x are the
input pattern. Each synaptic-weight vector wij represents a
connection between the i-th node in the input layer and the
j-th node in the output layer. Each node in the output layer is
directly connected with its neighbors (Adapted from [22]).

Basically, the LVQ classification scheme is based on
winner-takes-all strategy, as in SOM. LVQ iteratively tries
to improve some initial set of P prototypes, which are char-
acterized by W =

(
wj , cj

)
, j ∈ 1, ..., P , where wj is m-

dimensional, and cj ∈ {1, ..., C} its class label. Similarly to
SOM, the winner prototype is selected as the closest one to
the input pattern. The learning process aims to determine the
weight vectors in a way that the training data are mapped to
their corresponding class label region. Therefore, LVQ can be
seen as the supervised counterpart of SOM.

C. Semi-Supervised Learning

In the past years, there has been a growing interest in
a hybrid setting, referred to as Semi-Supervised Learning
(SSL). SSL is a combination of supervised and unsupervised
learning. The basic idea is to take advantage of both labeled
and unlabeled data during the training, combining them to
improve performance [7], [8], [23].

SSL can be further divided into semi-supervised classi-
fication and semi-supervised clustering [8]. Firstly, in the
semi-supervised classification, the training set is given in two
parts: S = {(xi, yi)|xi ∈ RD, yi ∈ Y, 1 ≤ i ≤ M}
and U = {ui ∈ RD|i = 1, · · · ,M}, where S and U are
the labeled and unlabeled data, respectively. At first hand,
it is possible to consider a traditional supervised scenario
using just S. However, the unsupervised estimation of the
probability function p(x) of the input set can take advantage
of both S and U to achieve better outcomes [8]. Many semi-
supervised classification algorithms have been developed in the
past decades, and, according to [23], they can be categorized as
1) Self-training, 2) SSL with generative models, 3) SSL with
Graphs, 4) SSL with Committees, and 5) Semi-supervised
Support Vector Machines (S3VM ), or Transductive SVM.

Secondly, in the semi-supervised clustering, the aim is to
group the data in an unknown number of groups relying on
some kind of similarity or distance measures in combination
with objective functions. Clustering is a more challenging



problem, and the nature of the data can make it even more
difficult. So, any kind of prior information with respect to
the data could be integrated into the learning process to
obtain a better performance. For instance, a subset of labeled
data, or constraints on pairs of patterns in form of must-link
and cannot-link [8], [23]. Prototype-based models (e.g., k-
means, and SOM), Hidden Markov Random Fields (HMRFS),
Expectation Maximization (EM), Label Propagation (LP), and
Label Spreading (LS) are examples that have been successful
applied in this area [8].

Moreover, it is also worth pointing out that the interest
for SSL is growing in machine learning alongside with the
DL context, as it is possible to see in [24]. Also, the term
Deep Semi-Supervised Learning (DSSL) is often employed
to express DL methods applicable to SSL.

D. High-Dimensional Data and Subspace Clustering

High-dimensional data poses different challenges for clus-
tering tasks. In particular, similarity measures used in tradi-
tional clustering techniques may become meaningless due to
the curse of dimensionality [11]. The presence of irrelevance
features strongly influences the appearance of clusters. Differ-
ent subsets of features may be relevant for distinct clusters,
and different correlations among the features may be relevant
for different clusters. This phenomenon is called local feature
relevance or local feature correlation [14].

A very common premise to reduce the infinite search space
of all possible subspaces is to consider axis-parallel subspaces
only. To illustrate this, Figure 2a displays a simulated dataset
with three dimensions, in which there are 12 clusters. Note
that, for each cluster, one of the three dimensions has the
data points spreading among its whole domain. Thus, such
a dimension is irrelevant for the clustering. Figure 2b is
a 2D projection concerning only two dimensions. In this
example, the data presents points of small variation (the
dots), determining the clusters. In such a dataset, none of
the three dimensions can be removed without losing relevant
information for 8 out of 12 clusters. So, this task involves not
only the clustering itself but also identifying relevant subsets in
the input dimensions for each cluster [14]. One way to achieve
this is by applying local relevances to the input dimensions.

E. Variants of SOM and LVQ

Various modifications of SOM and LVQ have been pro-
posed to improve their performance in more challenging high-
dimensional datasets. An important aspect to consider in the
original SOM and in some of its variants is the fixed topology.
It usually requires a deep understanding of the data, and
may not adequately represent clusters that live in different
subspaces [12]. This issue has been addressed by SOM-based
models that present a time-varying structure, as in Local Adap-
tive Receptive Field Self-Organizing Map (LARFSOM) [25]
and Local Adaptive Receptive Field Dimension Selective Self-
organizing Map (LARFDSSOM) [26]. These maps learn
the topology during the training and try to determine an
optimum arrangement. This approach relies on an incremental

and robust learning process, where not only the number of
nodes but also the connections between them must be learned.

(a) Example of a 3D dataset (b) 2D Projection

Fig. 2: Subspace Clustering Problems (Adapted from [12])

Some influential examples can also be found in the super-
vised context. For instance, the Generalized Relevance Learn-
ing Vector Quantization (GRLVQ) is proposed to be used in
high-dimensional real-world datasets as the weighting factors
allow the model to approximately determine the intrinsic
data dimensionality, i.e., the relevances identify the irrelevant
dimensions. It is based on the LVQ, and discriminates the
influence of different components of the input, increasing
or decreasing its relevance at training time [13], so forth
attenuating the curse of dimensionality.

F. Representation Learning and Self-Organizing Maps

Previous research has shown the potential that Deep Neural
Networks (DNN) have in building representations that are
useful not only for performing the task in which the network
was trained for but also for correlated ones that take data from
similar input distributions [16], [17].

Some of the most successful approaches for producing
representations from unlabeled data are AE, VAE, and GAN.
Those techniques can be applied in different ways, such as
with DC [19]. Current DC approaches treat representation
learning and clustering as a joint task and focus on learning
representations that are clustering-friendly, i.e., that preserve
the prior knowledge of cluster structure. [19] divides them
into three different main strategies. First, the so-called Multi-
Step Sequential Deep Clustering consists of two main steps:
1) learn a richer latent representation of the input data; 2)
perform clustering on this latent representation. For instance, it
can be distinguished by the use of transfer learning techniques
[27], relying on the use of pre-trained models to create or
extract representations that can be further fed to clustering
models. Second, in Joint Deep Clustering, the step where the
representation is learned is tightly coupled with the clustering.
Hence, models are trained with a combined or joint loss
function that favors learning a good representation while
performing the clustering task itself. Third, the Closed-loop
Multi-step Deep Clustering, which is similar to Multi-Step
Sequential Deep Clustering. However, after pre-training, the
steps alternate in an iterative loop, where the output of the



clustering method can be used to allow retraining or fine-
tuning of the deep representation.

It has been shown in [15] that combining clustering algo-
rithms working in the latent space of AE can obtain a good
clustering performance. Moreover, [19] provided evidence that
the most successful methods for clustering with DNN follow
the same principle of using the representations learned by a
DNN as input for a specific clustering method. However, to
the best of our knowledge, only two other models combine
AE or generative models with SOM to learn interpretable
latent space representations. First, the Self Organizing Map
Variational Autoencoder (SOM-VAE) [28] combines SOM,
VAE, and a probabilistic model. Second, Deep Embedded
Self-Organizing Map (DE-SOM) [29] combines an AE with
traditional SOM from [9] with a Gaussian neighborhood
function with exponential decay.

The concepts and ideas presented in this section arouse the
interest in studying a hybrid environment where the advantages
and concepts of each both SOM (unsupervised) and LVQ
(supervised) could be explored in combination to perform SSL
tasks. This results in proposed models that will be discussed
further in Section III, Section IV and Section V.

III. SEMI-SUPERVISED SELF-ORGANIZING MAP

Semi-Supervised Self-Organizing Map (SS-SOM)1 is a
semi-supervised hybrid LVQ-SOM, based on LARFDSSOM
[26], with a time-varying structure [25] and two different
ways of learning. More precisely, SS-SOM can learn in a
supervised or unsupervised way. It switches between these two
modes during the self-organization process according to the
availability of a class label for each input pattern. To achieve
this, we modified the LARFDSSOM to include concepts
from the standard LVQ [10] when the class label of an
input pattern is given. Moreover, as in LARFDSSOM, the
nodes of SS-SOM can consider different relevances for the
input dimensions and adapt its receptive field during the self-
organization process.

The operation of SS-SOM consists of three phases: 1) or-
ganization; 2) convergence; and 3) clustering or classification.
In the organization, there are two different forms to decide
the winner node of a competition, which nodes need to be
updated, and when a new node needs to be inserted. If the
class label of the input pattern is provided, the supervised
mode (Section III-B) is employed. Otherwise, the unsuper-
vised mode (Section III-A) is used. As in LARFDSSOM,
the cooperation is performed by adjusting the neighborhood
around the winner node. However, the neighborhood of SS-
SOM takes into account not only a similar subset of the input
dimensions but also their class labels, connecting only nodes
with the same class label or unlabeled nodes. Furthermore,
after a period determined by a parameter (age wins), the
nodes that do not win for a minimum number of patterns are
removed from the map, as in LARFDSSOM.

1Available at: https://github.com/phbraga/ss-som

The convergence starts after the organization. Here, the
nodes are updated and removed when necessary, however,
without inserting new nodes. After finishing the convergence
phase, the map can cluster and classify input patterns. Depend-
ing on the amount and distribution of labeled input patterns
presented to the network during the training, in the end, the
map may have: 1) All the nodes labeled; 2) Some nodes
labeled; and 3) No nodes labeled.

For the first case, the clustering and classification are
straightforward: each test pattern is associated with the label
of the winner node. For the second case, if the winner node
has no class, the SS-SOM continues looking for another node
with a defined class label, and an activation above the threshold
at. For the last case, it is possible to identify the clusters of
the input test patterns, but not their classes.

1) Structure of the Nodes: As in LARFDSSOM, each
node j in SS-SOM represents a cluster and is associated
with three m-dimensional vectors. They are: cj = {cji, i =
1, · · ·,m}, the center vector that represents the prototype of
the cluster j in the input space; ωj = {ωji, i = 1, · · ·,m},
the relevance vector in which each component represents
the estimated relevance, a weighting factor within [0, 1],
that the node j applies for the i-th input dimension; and
δj = {δji, i = 1, · · ·,m}, the distance vector that stores
the moving average of the observed distance between the
input patterns x and the center vector. Moreover, δ is used
exclusively to compute the relevance vector.

2) Activation of the Nodes: The activation function
ac(Dω(x, cj), cj) (Eq. 1) of a node is calculated as a radial
basis function of a weighted distance Dω(x, cj) that has its
receptive field adjusted as a function of its relevance vector.
The activation grows as the distance decreases and as the
relevances increases.

ac(Dω(x, cj),ωj) =

m∑
i=1

ωji

m∑
i=1

ωji +Dω(x, cj) + ε
, (1)

where ε is a small value to avoid division by zero and
Dω(x, cj) is the weighted distance defined as per Eq. 2.

Dω(x, cj) =

√√√√ m∑
i=1

ωji(xi − wji)
2. (2)

3) Node Update: In SS-SOM, in order to update the
vectors associated with the nodes (the winner, the neighbors,
or the winner of a wrong class), a fixed learning rate is
used, depending on the undergoing procedure (supervised or
unsupervised). So, given a learning rate, the node will be
updated as follows:

cj(n+ 1) = cj(n) + e(x− cj(n)), (3)

where e is the learning rate.
To compute the relevance vectors, we estimate the average

distance of each node to the input pattern that it clusters. As
in LARFDSSOM, the distance vectors are updated through

https://github.com/phbraga/ss-som


a moving average of the observed distance between the input
pattern and the current center vector.

δj(n+ 1) = (1− eβ)δj(n) + eβ(|x− cj(n)|), (4)

where e is the learning rate, β ∈ ]0,1[ controls the rate of
change of the moving average, and the operator | · | denotes
the absolute value.

After updating the distance vector, each component ωji

of the relevance vector is calculated by an inverse logistic
function of the distances δji as follows in Eq. 5.

ωji =


1

1 + exp

(
δjimean−δji

s(δjimax−δjimin)

) if δjimin 6= δjimax

1 otherwise,
(5)

where δjimax, δjimin, δjimean are the maximum, the minimum,
and the mean of the components of the distance vector δj ,
respectively. The parameter s > 0 controls the slope of the
logistic function [26].

4) Node Removal: The parameter age wins controls the
periodicity of nodes removal. Whenever age wins is reached,
any nodes which do not win at least the minimum percentage
of the competitions lp× age wins will be removed. To manage
this, each node j in SS-SOM stores a variable winsj that
represents the number of the node victories since the last reset.
After each reset, the number of victories of the remaining
nodes is set to zero.

5) Neighborhood Update: In SS-SOM, the neighborhood
is formed by nodes with the same class or nearby unlabeled
nodes that apply similar relevances for the input dimensions.
So, a connection between two nodes means they cluster
patterns with the same class or at least similar subspaces. Eq. 6
denotes this behavior.

nodes i and j are



connected, if ( class(i) = class(j) or
class(i) = noClass or
class(j) = noClass )
and ‖ωi − ωj‖ < minwd

disconnected, otherwise
(6)

A. Unsupervised Mode

Given an unlabeled input pattern, SS-SOM looks for a
winner node disregarding its class labels. Therefore, as in
LARFDSSOM, the winner of a competition is the most
activated node according to Eq. 1.

Furthermore, SS-SOM has an activation threshold at. Ac-
cording to this, if the activation of the winner is lower than
at, a new node is inserted into the map at the position of the
input pattern (i.e., the winner is not close enough). Otherwise,
the winner and its neighbors are updated towards the input
pattern (Section III-3). Thereby, as in LARFDSSOM, two
fixed learning rates are considered : 1) eb ∈ ]0, 1[ for the
winner node; and 2) en ∈ ]0, eb[ for its neighbors.

B. Supervised Mode

In order to incorporate the supervised learning mode, each
node in the map can be associated with a class label. Hence,
when a labeled input pattern is given, we treat it properly. If
it is the case, SS-SOM takes the labels into account when
looking for a winner. If the most activated node s1 has the
same class of the input pattern or an undefined class, a very
similar procedure to the unsupervised mode is executed. The
difference is the fact that the class of s1 is set as the same as the
input pattern x, as well as update its connections. Otherwise,
if the winner node and the input pattern have different classes,
SS-SOM continues trying to find another winner matching the
following criteria: 1) has the same class of the input pattern or
an undefined class, and 2) an activation higher than at. This
procedure inhibits nodes of a different class.

If any node fulfills these conditions, a new winner s2 is said
to be found. Then, s2 and its neighbors are updated. However,
the fact that s1 was considered a “wrong” winner indicates
the need to push it away from this input pattern. Therefore,
similarly as in the LVQ, we push s1 away from the input
pattern with a fixed learning rate of −ew. Otherwise, if there
is no new winner and the maximum number of nodes in the
map has not been reached, a new node is inserted at the same
position and with the same class of the input pattern x.

C. Convergence

The organization phase does not guarantee that the remain-
ing nodes in the map are well-positioned and connected as
expected, according to the distribution, classes, and relations of
the input data. Therefore, they may still need to be updated, for
instance, to represent the input patterns previously clustered by
removed nodes. In the convergence phase, the self-organization
process continues, but the map is not allowed to create new
nodes. It can be viewed as a reorganization process.

D. Clustering and Classification with SS-SOM

The center vectors cj and the relevance vectors ωj of each
node in the map can be used for clustering and classification
of the test patterns. Although the most active node is used
as the winner, if it has no defined class, SS-SOM continues
trying to find another winner candidate with a defined class
and an activation above at. If it exists, it is used to cluster and
its label to classify the test pattern. Otherwise, the most active
node is used only for clustering, and the model will not be
able to classify it. All in all, if none of the nodes produces an
activation equal to or above the threshold at for a particular
pattern, it is considered as an outlier or noise.

E. Experiments and Results

1) Classification Accuracy with Different Percentages of
Labeled Data: In order to evaluate the classification capa-
bilities of SS-SOM, it is compared with the following semi-
supervised methods: Label Propagation [30] and Label Spread-
ing [31]. In this sense, for studying the effects of the different
levels of supervision, i. e., the percentage of labeled data.
Seven real-world datasets from the OpenSubspace framework



[32] (Breast, Diabetes, Glass, Liver, Pendigits, Shape, and
Vowel) were used with the following percentages of labels:
1%, 5%, 10%, 25%, 50%, 75% and 100%.

So, for all of the algorithms on each dataset, a 3-times
3-fold cross-validation was used. Each method was trained
and tested 500 times for each fold with different parameter
values sampled from the parameter ranges presented in [1],
according to a Lating Hypercube Sampling (LHS) [33], while
the best accuracy achieved by each method in each fold was
recorded for each dataset. It comprises a total of 752,000
experiments. After that, the mean and the standard deviation
of the best results for each dataset were calculated separately.
For classification purposes, if available, the node class is
used as the predicted class. Otherwise, it is straightforwardly
considered as an error.

Figure 3 shows the obtained results for two datasets as a
function of the percentage of labeled data. However, in all
datasets, the performance of the SS-SOM is superior to the
other semi-supervised methods concerning the supervision rate
between 1% up to 75%, whereas with the highest percentage
(100%) the difference is smaller, but it still outperforms them
or obtains comparable results. These results show the robust-
ness of SS-SOM in situations when only a small number of
labeled data is available.

(a) Diabetes (b) Pendigits

Fig. 3: Best mean accuracy and standard deviation as function
of the percentage of supervision on (a) Diabetes, and (b)
Pendigits datasets for SS-SOM and its competitors.

2) Sensitivity Analysis and Sample Efficiency: A sensitiv-
ity analysis on the parameters of LARFDSSOM, presented in
[26], indicates that the parameter at is primarily responsible
for the variation observed in the results, followed by lp. To get
a deeper understanding of such analysis, we replicated it for
SS-SOM. Note that SS-SOM works exactly as LARFDS-
SOM when there are no labels available. So, it is expected to
reproduce the same behavior as its predecessor.

The charts displayed in Figure 4 were obtained from SS-
SOM. It is clear that, as in LARFDSSOM, at presents the
most significant impact on the results. Moreover, SS-SOM
also has a low sample efficiency [34], since its framework
ignores several samples in cases in which the map is full, and
the winning node is not close enough from an input pattern.

3) Image Classification Performance: To demonstrate an
extended capability and application range, the performance of
SS-SOM was assessed in an image classification benchmark.

More precisely, a pre-trained DenseNet-161 [35] network
on ImageNet [36] was used to perform a transfer learning,
extracting the features of Canadian Institute For Advanced
Research (CIFAR-10) [37] to feed the SS-SOM. DenseNet
was chosen due to its outstanding performance for object
recognition tasks on CIFAR-10.

(a) at (b) lp

Fig. 4: Sensitivity analysis of the Accuracy obtained with SS-
SOM as a function of its parameters, (a) at, and (b) lp, for
Pendigits dataset using 50% of the available labels, and 1
fold randomly chosen from the 3-times 3-fold cross validation
scheme. The red lines are the linear fits to the data.

TABLE I: Classification Accuracy on CIFAR-10 using 4000
and all labeled data.

Accuracy 4000 All
SS-SOM 0.72 0.85

Spike-and-Slab Sparse Coding 0.68 -
View-Invariant K-means 0.71 0.82

Particularly, the performance on the features extracted from
CIFAR-10 dataset with DenseNet-161 [35] pre-trained model
is measured. A sampling of 4000 balanced labeled data was
made to avoid oversampling or undersampling of any class.
After that, the SS-SOM was trained using the same ranges as
those defined in [1]. However, only ten parameters set were
sampled, and the best result was chosen to perform further
comparisons with with Spike-and-Slab Sparse Coding (S3C)
[38] and View-Invariant K-means (VIK) [39].

The S3C is an effective feature discovery algorithm for both
supervised and semi-supervised learning with small amounts
of labeled data based on inferences. The VIK is a modified
simple K-means dictionary learning. It extends the concept
of spatial pooling by drawing a strategy of directly modeling
complex invariances of object features. Also, despite being
remarkable in the literature, they both have an experimental
methodology in which it was possible to compare without the
need for implementation and rerunning. Table I presents the
obtained results, and SS-SOM showed to be the best. This set
of experiments clarified that SS-SOM can perform well with
high-level features extracted from images.

IV. DEEP CATEGORIZATION WITH BATCH SS-SOM

To extend the range of applications of SS-SOM, Batch
Semi-Supervised Self-Organizing Map (BATCH SS-SOM)2 is

2Available at: https://github.com/phbraga/batch-sssom

https://github.com/phbraga/batch-sssom


introduced. Initially, to take advantage of Graphics Processing
Units (GPU), to allow mini-batch training, and thus to be more
integrated with other DL approaches that commonly use the
same framework and structure, the implementation uses the
PyTorch framework. Moreover, three important modifications
to the baseline model in order to improve its performance
under the new set of conditions are proposed.

First, when a mini-batch is given to the model, it is separated
into two different mini-batches: 1) the unsupervised mini-
batch; and 2) the supervised mini-batch. For the unsupervised
case, the key-point modification is to compute an average
vector Xu of all unlabeled samples that each winner node
j succeeded to be the most activated during the competition.
After that, the process continues straightforwardly to the
unsupervised procedure with all the average vectors and their
representative winner nodes.

On the other hand, the supervised scenario results in three
distinct situations, that must be handled differently after
finding the winner node for each sample contained in the
supervised mini-batch (likewise in SS-SOM): A: A node with
an undefined class is the winner for a labeled sample; B: A
node with a defined class is the winner for one or more samples
of the same class; and C: A node with a defined class is the
winner for one or more samples of different classes.

First, in A, the actions are to set the node class as the same
as the input pattern and then update it towards such an input.
Second, in B, it is necessary to compute the average vector
X l, where l is the unique related class label, considering all
the samples that are under this situation. Following, the usual
supervised update procedure of SS-SOM is called, where the
class is the same for both node and average sample vector.

Finally, C is handled as follows: for all the classes contained
in this subset of samples, every different class duplicates the
original winner node j by preserving the centroid vector cj ,
the distance vector δj , and the relevance vector ωj , but setting
the class of the new duplicated node to be the same as the
current treated class, as well as setting its number of victories
to zero. After that, for each class l found in the subset, a vector
X l is calculated, and the respective duplicated node is updated
using both X l and l, suchlike in B, in which the winner node
is updated using its corresponding vector and class.

Moreover, all the operations are performed in parallel on
the GPU, which optimizes the computational cost and allows
the model to be applied to more complex tasks, datasets, and
architectures. Finally, in BATCH SS-SOM, it is possible to use
the weighted distance (Eq. 2) as a loss function to estimate the
error at training time. It can be further used to backpropagate
errors to previous layers, when coupled to DL architectures.

A. Experiments and Results

To assess BATCH SS-SOM in a more challenging task,
the following strategy was developed. First, a CNN model
was trained with supervision from scratch, and then features
were extracted. More specifically, we extracted the features
before the classifier layer, using them as input to BATCH SS-
SOM. Second, we defined several supervision rates, i.e., the

TABLE II: Accuracy obtained with BATCH SS-SOM on each
dataset according to a percentage of labeled data.

% MNIST SVHN Fashion-MNIST
1% 0.788 0.560 0.624
5% 0.9643 0.716 0.797

10% 0.974 0.713 0.798
25% 0.9793 0.777 0.834
50% 0.983 0.792 0.847
75% 0.9839 0.810 0.840
All 0.9836 0.826 0.846

percentage of available labels. It is worth mentioning that the
sampling was not balanced. Also, this experiment indicates the
effects of the number of labeled samples in the outcome results
for MNIST, Fashion-MNIST, and SVHN. For this scenario, we
started from MNIST and then expanded to the other datasets
to guide a case study about the behavior of the model.

The main idea is not to surpass any other model, but
understand its behaviors when applied to more complex data
structures or representations. Different CNN architectures
were evaluated in order to achieve better results for each
dataset in particular. Detailed description can be found in [4].

Table II illustrates the best results over 10 runs on each
dataset with a batch size of 32. As expected, BATCH SS-SOM
has increasing gains as the number of labeled samples grows,
specifically for beginning percentages. Following through, at
a certain point, around 5% of labeled data, the performance
stabilizes. This behavior is observed across all the datasets,
showing that the proposed method is a good approach to the
problem at hand. Notice that transfer learning is a difficult
task, and it is a challenge for a great variety of methods. Such
performance defines a promising path through the use and
application of SOM-based methods.

V. ADAPTIVE LOCAL THRESHOLDS SEMI-SUPERVISED
SELF-ORGANIZING MAP

Adaptive Local Thresholds Semi-Supervised Self-
Organizing Map (ALTSS-SOM)3 is a SOM with Adaptive
Local Thresholds [40] based on SS-SOM. Hence, being
based on SS-SOM, ALTSS-SOM can also learn in a
supervised or unsupervised way depending on the availability
of labels, and maintains the general characteristics of its
predecessors. However, it introduces new behaviors on both
sides, supervised and unsupervised, to allow better usage, and
consequently, a better understanding of the data statistics. By
doing this, ALTSS-SOM aims at overcoming the problems
presented by SS-SOM, such as the high sensitivity to the
parameters, and the low sample efficiency.

Therefore, the parameterized activation threshold (at) used
in both previous methods is replaced by an adaptive thresh-
olding technique that takes into account the local variance to
provide the model the ability to learn the receptive field of

3Available at: https://github.com/phbraga/alt-sssom

https://github.com/phbraga/alt-sssom


each node. The objective is to estimate optimal local regions
in the space with respect to the distribution of the input
patterns x for each node in the map. To do so, inspired by
the Adam algorithm [41], a method for efficient stochastic
optimization that only requires first-order gradients with lit-
tle memory requirement, ALTSS-SOM updates exponential
moving averages of the distances between each input pattern
x and the centroid of the nodes for each dimension. In SS-
SOM and LARFDSSOM, this estimate was done by using
not only β but also the learning rate e in equation (Eq. 4).
However, ALTSS-SOM modified this approach to use solely
the parameter β ∈ [0, 1) for controlling the exponential decay
rate of the moving averages.

The moving averages themselves are estimates of the first
moment (the mean) of the distances between the input patterns
and the centroids of the nodes. Because of that, such means
can be used as estimates of the uncentered variance of the
nodes in each dimension. However, these moving averages are
initialized as vectors of zeros, leading to moment estimates that
are biased towards zero, especially during the initial steps, and
when the decay rate is low (close to 1) [41]. Still, according to
[41], this initialization bias can be counteracted, resulting in
a bias-corrected estimate δ̂j . During the learning process, this
bias-corrected estimate δ̂j , together with the relevance vector
ωj can be used as reject options [42], determining whether or
not an input pattern is in the receptive field of a winner node.

The operation of ALTSS-SOM is similar to SS-SOM.
However, before the update of a node, it is necessary to decide
if it will affect the whole node structure or just the weighted
averages and the relevance vectors. The neighborhood of
ALTSS-SOM is also defined as the same as in SS-SOM.

A. Structure of the Nodes

In ALTSS-SOM, each node j in the map represents a
cluster and is associated with four m-dimensional vectors: The
first three vectors, cj , ωj , and δj , are the same as defined in
Section III-1. However, δj in SS-SOM and LARFDSSOM
is initialized as a vector of zeros. Because of that, it is biased
towards zero, specifically at initial steps. Thus, it can be seen
as the biased first moment estimate. To overcome this problem,
ALTSS-SOM introduces a fourth vector, δ̂j = {δ̂ji, i =
1, · · ·,m}, which is the bias-corrected first moment estimate.

B. Estimating bias-corrected moving averages

The distance vectors are updated through a moving average
of the observed distance between the input pattern and the
current center vector cj , as per Eq. 7:

δj(n+ 1) = βδj(n) + (1− β)(|x− cj(n)|), (7)

where β ∈ ]0, 1] is the parameter that controls the rate of
change of the moving average, and |x − cj(n)| denotes the
absolute value applied to the elements of the vectors.

In order to correct the bias towards zero of δj , ALTSS-
SOM divides it by the term

(
1− βtj

)
, as in Adam [41], where

tj indicates the current timestep of each node j. In sum, the

bias-corrected moving averages vectors are updated at every
node timestep according to the Eq. 8.

δ̂j(n+ 1) =
δj(n)

1− βtj
(8)

To obtain accurate information about the relevance of each
dimension for a given node, an update of the relevance vectors
must follow every moving averages update. It is calculated
by an inverse logistic function of the bias-corrected estimated
distances δ̂ji, as follows in Eq. 9.

ωji =


1

1 + exp

(
δ̂jimean−δ̂ji

s(δ̂jimax−δ̂jimin)

) if δ̂jimin 6= δ̂jimax

1 otherwise,
(9)

This function is pretty similar to Eq. 5, however, instead of
using δj , the ALTSS-SOM replaces it by δ̂j in order to get
a more accurate and unbiased estimation.

C. Local Thresholds

The distance vectors δ̂ represent the corrected moving
average of the observed distances between the input patterns
x and center vectors c for each node j in the map. As a result,
they can be considered as the variances of the nodes.

In addition, the ω vectors express how each of the dimen-
sions is important for each node, which indicates its subspaces
of the input dimensions. So, by combining ω and δ̂, it is
possible to define a local region around each node center cj
to act like a reject option for some input patterns. If only
the variances were used, some unimportant dimensions with a
low variance could misguide the process when a similar input
pattern x is outside the acceptance region of a node j, but only
in dimensions that are not relevant to it. Therefore, a flexible
variance is defined to act as a local threshold and rejection
option to mitigate such problems:

Var(δ̂j ,ωj) =
δ̂j
ωj

(10)

When a dimension has a high relevance to the node, it will
not impact its variance value. However, when a dimension has
a small relevance, ALTSS-SOM will relax the constraints to
allow a better definition of subspaces. Therefore, the general
acceptance rule is defined by Eq. 11, where the idea is to
approximate to an optimal rule.

A(x, cj ,vj) =


True, xi ∈ ]cji ± vji[ ,

∀ cji ∈ cj , xi ∈ x, and vji ∈ vj

False, otherwise,
(11)

where x is the input pattern, cj is the center vector, and vj =
Var(δ̂j ,ωj) is the relaxed variance vector as per Eq. 10.

D. Unsupervised Mode

Given an unlabeled input pattern, the most activated node
is considered as the winner, disregarding its class labels. In
this sense, ALTSS-SOM verifies if the condition expressed
by the Eq. 11 is satisfied. If so, the winner and its neighbors
are updated towards the input pattern. Otherwise, a new node



is inserted into the map at the input pattern position. However,
since s1 is the original winner, it will improve its knowledge
about the region where it is located by updating its moving
averages and relevances, but not its center. This mechanism
provides the nodes the ability to learn about the region they
are inserted in. An additional case is handled when the map
has reached the maximum number of nodes. In this situation,
aiming at not losing the information that the input pattern
can provide, as in previous models, thus, improving sample
efficiency, ALTSS-SOM updates the moving average and the
relevance vectors of the winning node.

E. Supervised Mode

This procedure is similar to the one presented in Sec-
tion III-B for SS-SOM. However, instead of using at as the
threshold parameter that controls the activation, the acceptance
criteria expressed by the Eq. 11 is employed.

If there are no new nodes to replace s1 as a new winner,
and the map is not full, s1 node is duplicated, preserving the
moving averages vectors, the centroid vector as well as the
relevance vector. However, the class of this new duplicated
node is set to the same as the input pattern. Moreover,
whenever the map is full, the moving averages and relevance
vector of the current defined winner continue to be updated in
order to improve its knowledge about the surrounding area.

Moreover, both node removal and neighborhood update
(include its definition) remain the same as in SS-SOM.

F. Experiments and Results

1) Classification Accuracy with Different Percentages of
Labeled Data: In order to evaluate the classification rate of
ALTSS-SOM, the experiments conducted in Section III-E1
were replicated, but adding the ALTSS-SOM in the compar-
ison. The ranges used for ALTSS-SOM are defined in [3].

(a) Diabetes (b) Pendigits

Fig. 5: Best mean accuracy and standard deviation as function
of the percentage of supervision on (a) Diabetes, and (b)
Pendigits datasets for ALTSS-SOM, SS-SOM, Label Spread-
ing and Label Propagation

Figure 5 shows the obtained results for two datasets. How-
ever, ALTSS-SOM improved the performance of SS-SOM
overall, except for the Diabetes dataset (Figure 5a) where
the results obtained were slightly lower, but yet comparable.
The flexibility provided by the estimation of the receptive
field of nodes and the improved sample efficiency allowed
such results. Still, the standard deviation for all datasets in

all supervision levels was also minimized, which indicates
another positive aspect of the ALTSS-SOM: it is more robust
to variations on both datasets and parameters. While the
other semi-supervised learning methods surpassed SS-SOM
in Pendigits and Vowel datasets, ALTSS-SOM achieved a
consistent improvement by outperforming the results of both
LP and LS, in all datasets, except for Vowel at 100%.

2) Clustering Performance: Aiming to assess the perfor-
mance of ALTSS-SOM in a purely unsupervised clustering
task due to the changes made in the original framework
that it was inspired, it was compared with Densitive-based
Optimal projective Clustering (DOC) [43] , PROjected CLUS-
tering algorithm (PROCLUS) [44], LARFDSSOM/SS-SOM
and BATCH SS-SOM (with a batch size of 32). We refer
to the LARFDSSOM and SS-SOM together due to their
equivalence for clustering tasks solely. The first two meth-
ods are originally from the data mining area. This choice
of comparison was defined in accordance with the analysis
provided by [26]. The parameters used for ALTSS-SOM to
execute clustering tasks are slightly different from the previous
classification tasks. They are pointed in [3], whereas the ranges
of the other methods were the same as those used in [26].

Table III shows the results of the Clustering Error (CE)
obtained with the methods. None of the methods achieved the
best result for all real-world datasets. ALTSS-SOM presented
the best result for 6 out of 7 datasets, but achieved the
same results of LARFDSSOM for Breast and Glass datasets.
Moreover, PROCLUS presented good results when the pa-
rameter controlling the number of clusters was defined close
to the correct value. Furthermore, the good results obtained
by LARFDSSOM is directly related to a good choice of
the parameters at and lp, which significantly impact the
results. However, ALTSS-SOM achieves good results without
needing an exact definition of the parameter values.

Furthermore, BATCH SS-SOM also showed to perform
well. In Breast, it achieved the same value as other clustering
methods. In Diabetes and Vowel, it was statistically equal
to LARFDSSOM/SS-SOM. In the Glass, Liver, and Shape
datasets, the batch size has a slightly negative influence on the
outcome, which is an effect of the mean vector update rule.

3) Sensitivity Analysis: In previous methods, the most
two critical parameters were the at and lp. at played a role
of great importance due to its high impact on the results
with just a small change on its values, i.e., at impacted the
results exponentially. Because of that, a sensitivity analysis
was also performed for ALTSS-SOM in order to elucidate
the improvements. Figure 6 shows the scatter plots for lp
and eb. They were chosen due to their semantical importance.
Notice that there are no significant trends to parameter values,
and they do not damage the performance with slight changes
in its values. This same behavior was observed for all the
other datasets and parameters used in this set of experiments.
Nevertheless, a thorough analysis is presented in [3].



TABLE III: CE Results for Real-World Datasets. Best results for each dataset are shown in bold

CE Breast Diabetes Glass Liver Pendigits Shape Vowel Avg STD

DOC 0.763 (1) 0.654 0.439 0.580 0.566 0.419 0.142 0.509 0.201
PROCLUS 0.702 (2) 0.647 0.528 0.565 0.615 0.706 0.253 0.574 0.156

LARFDSSOM/SS-SOM 0.763 (1) 0.727 (1) 0.575 (1) 0.580 (2) 0.737 (2) 0.719 (2) 0.317 (1) 0.631 0.158
ALTSS-SOM 0.763 (1) 0.697 (2) 0.575 (1) 0.603 (1) 0.741 (1) 0.738 (1) 0.319 (1) 0.633 0.156
Batch SS-SOM 0.763 (1) 0.723 (1) 0.537 (2) 0.580 (2) 0.735 0.693 0.301 0.619 0.151

(a) lp (b) eb

Fig. 6: Sensitivity analysis of the Accuracy obtained with
ALTSS-SOM as a function of its parameters, (a) lp, and (b)
eb, for Pendigits dataset using 50% of the available labels,
and 1 fold randomly chosen from the 3-times 3-fold cross
validation scheme. The red lines are the linear fits to the data.

4) Performance of SS-SOM and ALTSS-SOM in Fully
Supervised Scenarios: To draw a better understanding of
the behavior of both SS-SOM and ALTSS-SOM, they were
evaluated in the scenario of a regular supervised learning task
on the same UCI datasets from previous experiments (Breast,
Diabetes, Glass, Liver, Pendigits, Shape, and Vowel). It is
not expected they go well since they were not built for it.
Still, they were compared with traditional supervised methods
such as Multilayer Perceptron (MLP) [20], Support Vector
Machines (SVM) [45], and Generalized Relevance Learning
Vector Quantization [13]. The ranges of the parameters are
given in [3]. Moreover, the semi-supervised methods used
100% of the labeled data to allow a fair comparison with
supervised methods such as GRLVQ, MLP, and SVM.

The proposed methods showed results better than or at least
close to the best. SS-SOM appears as the best overall among
the semi-supervised methods, showing an average accuracy of
0.84. On considering all methods at 100% of supervision, the
MLP is the best, achieving 0.851 of accuracy on average.
However, in most of the datasets, there are no statistical
differences between SS-SOM and MLP, as well as between
ALTSS-SOM and MLP. [3] presents detailed information
about particular results for each dataset.

VI. CONCLUSION

The lack of labels in the midst of the great volume of
information that has been produced every day is still a problem
for a significant number of machine learning models. This
work was intended to take another step, attaining to build more
sophisticated solutions.

SS-SOM and ALTSS-SOM were developed by combining
the concepts of both SOM and LVQ to improve the results
obtained with traditional SSL methods in the literature not
only in terms of classification rate but also in clustering
quality. The behavior of both models was shown to have
led to significant improvements in classification results for
small amounts of labeled data, establishing its position as a
good option when dealing with such problems. It showed its
robustness under this condition, being better than other semi-
supervised models, achieving impressive results even with only
1% of labeled data, in comparison with other SSL methods.

Furthermore, to extend its application range, SS-SOM was
tested with features extracted from images. This allowed the
model to perform well, also with more complex data types.
Nevertheless, BATCH SS-SOM, a novel approach that allows a
mini-batch training procedure for the traditional shallow archi-
tecture of a SOM, was proposed. The results were surprisingly
good. It is true that a great range of techniques that may
benefit the performance of BATCH SS-SOM exist. However,
this version established a baseline for future development.

Moreover, with ALTSS-SOM, a strategy was developed
to estimate local rejection options as a function of both
local variance and the relevance of input dimensions to make
pattern rejection decisions. In addition to it, the model was
able to reduce the dependency and the variability to the
most important parameters. This parametric robustness can
be considered as one of the most important contributions of
this current work. In addition to it, the usage of a relaxed
estimated variance allowed the method to explore the local
information of the data clusters better. Also, it provided the
ability to improve sample efficiency by not merely discarding
data in certain cases but kept digging into its characteristics
in order to establish a better estimation of their statistics. This
can be summarized in the idea of developing models that can
exploit to the utmost the information carried in the data, either
for generating prototypes or for adjusting their receptive fields,
but also to recognize and disregard outliers when necessary.

As a further matter, it is important mentioning some addi-
tional considerations. SS-SOM and ALTSS-SOM were put
on trial in a scenario of full supervision by comparing their
results with state-of-the-art supervised learning models. Even
though not being built for that, both models presented good
results, being better than or at least close to the best. Therefore,
we consider the proposed models as useful tools for promoting
the formation of meaningful representations of the data.

Finally, we have left for future work an adaptation of



the proposed models to act in a gradient-based approach,
where the unsupervised error could be estimated and used in
a jointly training process with AE or generative models in
order to learn even better latent representations and compete
with state-of-art models on a broader range of tasks. For
instance, disentanglement and compositionality can be pointed
out as interesting directions that could extend the application
domains.
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