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ABSTRACT
Traditionally, developers restricted themselves to collecting opin-
ions from a small group of users by using techniques such as in-
terviews, questionnaires, and meetings. With the popularization
of social media and mobile applications, these professionals have
to deal with crowd users’ opinions, who want to voice the soft-
ware’s evolution. In this context, one of the main related tasks is
the automatic identification of software requirements from app
reviews. Recent studies show that existing methods fail at this task,
since review texts usually contain informal language, contain gram-
matical and spelling errors, as well as the difficulty in filtering out
irrelevant information that has no practical value for developers.
In this paper, we present the RE-BERT (Requirements Engineering
using Bidirectional Encoder Representations from Transformers).
Our method innovates by using pre-trained neural language mod-
els to generate semantic textual representations with contextual
word embeddings. Our RE-BERT performs fine-tuning of the BERT
model with a focus on the local context of the software requirement
tokens. A statistical analysis of the experimental results involving 8
different apps showed that our RE-BERT outperforms three existing
state-of-the-art methods.
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1 INTRODUCTION
Extracting web and social media requirements has become a new
trend in Software Requirements Engineering (ERS) [4, 11, 12]. Tra-
ditionally, developers restricted themselves to collecting opinions
from a small group of users by using techniques such as interviews,
questionnaires, and meetings. With the popularization of social
media and mobile applications, these professionals have to deal
with crowd users’ opinions, who want to voice the evolution of
the software [13]. To create successful products quickly and with
greater acceptance by users, developers need to take a proactive
stance about the analysis of the feedback they receive from users
[11].

App reviews have become one of the primary sources of user
opinions about software. Users can express themselves through
evaluation notes and feedback in free texts [3, 12]. Free text opin-
ions can, for example, report defects, express your satisfaction with
an application-specific feature, or request a new feature [7]. How-
ever, popular applications receive hundreds of thousands or even
millions of reviews, and manual analysis of this large volume of
information becomes an impractical task [11–13]. Therefore, sev-
eral works were developed in the last decade to create tools to
support this process [14]. Among several review-based software
requirements engineering tasks, the correct identification of soft-
ware requirements from app reviews is one of the main steps. The
quality of the requirements extraction task will directly impact
other important tasks, such as the polarity classification (positive,
negative and neutral) of users regarding a software requirement.

The automatic extraction of requirements from app reviews is
not a trivial task [14]. Among several challenges, we can highlight
the i) use of natural (unstructured) and often informal language,
neglecting grammatical and punctuation, using eccentric syntactic
entities, ironic and sarcastic phrases [13]; ii) the same review has
multiple aspects of the app, where different opinions are related
to different features [7]; iii) large volume of noise present in the
reviews, irrelevant information, which has no practical value for
developers [9, 12]; iv) variety of app domains, where each domain
has a set of particular features and vocabulary [6].

ERS approaches, proposed to minimize these problems, explore
opinion mining from app reviews to automatically extract software
requirements [6, 7, 9, 15]. However, recent studies comparing the
performance of these approaches indicate that there are still major
open challenges to extracting software requirements effectively [4,
12]. Most of these approaches are based on linguistic rules applied
in the reviews. Such rules usually depend on part-of-speech (PoS)
tools that are not suitable for informal texts, with spelling and
grammatical errors. In addition, many requirements reported in
user reviews depend on context to be properly identified, which is
a limitation of methods based on linguistic rules.
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In this paper, we present the RE-BERT method (Requirements
Engineering using Bidirectional Encoder Representations from
Transformers), which has four pillars. First, it is based on context-
dependent language models. Therefore, it covers existing gaps in
using rule-based approaches such as efficiency, accuracy, gener-
alization, and dependence on external sources [1]. RE-BERT also
covers gaps in strategies based on non-contextual word embed-
dings, such as the difficulty of dealing with ambiguity and semantic
[5]. Second, RE-BERT uses a cross-domain training strategy, which
allows training a model on pre-existing labeled data from different
apps, so that the model can be used to extract requirements from
another different domain and unlabeled review dataset. Third, we
use a training strategy based on a local and global context [16]. In
particular, the local context is able to identify words semantically
more related to software requirements. Fourth, RE-BERT allows
pre-training and fine-tuning. The pre-trained version is ready for
use in any app reviews domain. The fine-tuning allows upgrading
the pre-trained model’s extraction capacity, thereby training with
reviews of the specific domain, when these texts are available.

We carried out an experimental comparison of RE-BERT using
the datasets and classification results previously reported by [4].
The RE-BERT performance was compared with ReUS [6], SAFE [9]
and GuMa [7]. Our method obtained 𝐹1 (harmonic mean between
precision and recall) performance statistically superior to the other
three methods in all eight app reviews datasets. In particular, it is
worth noting that RE-BERT was promising in the exact matching
evaluation scenario, in which the method must correctly identify all
tokens of the software requirement. In terms of evaluation measure
𝐹1, improvements ranged from 80% to 560%.

The rest of the paper is structured as follows: In Section 2, we
present an overview of the approaches we use as a basis for com-
parison for the proposed method. In Section 3, we present the
architecture of the proposed RE-BERT method. In Section 4, we
present details of the experiments carried out and discuss the re-
sults obtained. The conclusions and directions for future work are
presented in Section 5.

2 RELATEDWORKS
An automatic app review analysis pipeline can involve several steps.
The extraction of review requirements is responsible for locating
aspects in the review text related to a specific requirement [9]. The
review’s classification organizes the reviews in essential classes
for the developers, such as Bug Reporting, New Requirement, and
Use Experience with Existing Requirement [11]. The clustering of
requirements extracted from the apps review organizes similar re-
quirements and can also define a hierarchical relationship between
the extracted requirements [15]. Finally, the sentiment analysis of
the requirements extracted from the reviews defines the polarity
(positive, negative, or neutral) of the user’s feedback [7]. The qual-
ity of the requirements obtained in the extraction stage is key to
the other stages’ success, so the proposed approach focuses on im-
proving this stage’s performance. Therefore, even if the approaches
include other stages, we will restrict ourselves to the extraction
stage’s scope when presenting the related works.

GuMa [7] uses a collocation finding algorithm provided by the
NLTK toolkit to perform requirements extraction. Collocations

are the expressions of two or more words that correspond to a
conventional way of referring things. In this context, the authors
used a likelihood-ratio measure to find collocations that consist
of two words in the reviews. Next, a filter was made to find the
collocations, account only those collocations that appeared in at
least three reviews, and that are less than three words (nouns, verbs,
or adjectives) apart. In the end, were merged the collocations that
had the same meaning.

SAFE [9] extracts features based on linguistic patterns, including
18 part-of-speech patterns and 5 sentence patterns. Authors make a
manual analysis of the textual description to identify these patterns.
In the first stage, the approach performs text pre-processing, in-
cluding tokenizing a sentence review, eliminating noisy sentences,
and removing unnecessary words from the relevant sentences. In
the second and last stage, linguistic patterns are applied to each
sentence to extract software requirements.

ReUS [6] explores linguistic rules composed of grammatical class
patterns and semantic dependency relationships. The analysis and
extraction of characteristics are done based on these rules. These
two tasks are run out together. The approach extracts features and
an opinion word that conveys the features’ specific sentiments for
each sentence.

In [4], the authors presented an experimental comparison among
the SAFE, ReUS andGuMa approaches and in [8] the SAFE approach
was compared with the CLAP approach. The common factor among
all these approaches is that they use a rules-based information ex-
traction strategy, where a subset of app reviews have been previ-
ously analyzed for common linguistic patterns related to the text
passages that describe a software requirement. Subsequently, al-
gorithms were trained to automatically identify these pre-defined
patterns that represent the requirements. However, the literature
points out limitations for rule-based approaches [1]:

• Efficiency: a textual expression can be represented by a large
number of corresponding rules or by rules with high com-
plexity;

• Accuracy: a large volume of rules can generate many con-
flicts, or a small number of rules may not be representative
enough to extract the desired information;

• Generalization and lack of context: rules extracted by ana-
lyzing data from a specific domain generally do not meet the
context of other domains; and

• Dependency: requires the use of external dictionaries to ex-
tract context information, e.g., identifying whether a token
belongs to a specific type, such as titles, locations, and orga-
nizations.

In [10], the problem of extracting requirements from social soft-
ware development networks was mapped to the task of extract-
ing named entities. An approach based on the BI-LSTM model
(Bidirectional-Long Short Term Memory) with word embedding
was proposed using Word2Vec. This approach was also used in the
context of app reviews [15]. Word embedding-based approaches
have advantages over Bag-of-word based approaches with word fre-
quency counting (TF-IDF). However, word2vec-based approaches
have semantic limitations generated by their static representation
of the word embeddings [5]. Also, because word2vec is based on
architecture without an attention mechanism, it has an efficiency
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problem and difficulty in determining word dependency in long
texts [5].

Given these limitations, our work proposes a new approach for
requirements extraction based on Bidirectional Encoder Represen-
tations from Transformers (BERT). The BERT [5] model presented
promising results, surpassing rule-based approaches, static word
embedding approaches (word2vec), and in some natural language
tasks, even human performance. BERT model overcame the state-
of-the-art for natural language processing in many tasks.

3 THE RE-BERT METHOD
The extraction of software requirements from app reviews can be
defined as a token classification problem. We used the BIO format
(short for beginning, inside, outside) to structure the training set
reviews, as shown in Figure 1. Note that the tokens for each sentence
in the training set are labeled with class B, which indicates that the
token represents the beginning of a software requirement; class
I, which indicates that the token is inside a software requirement;
and class O, which indicates that the token is outside a software
requirement in the sentence.

The app crashes when I try to share photos
O O O O O O O B I

Figure 1: Example of app reviews labeling in OBI format for
software requirements extraction.

Given a sequence of tokens representing an app review x =

(𝑥1, 𝑥2, ..., 𝑥𝑇 ), the goal is to find a sequence of labels s = (𝑠1, 𝑠2, ..., 𝑠𝑇 ),
one label for each token, according to Equation 1.

ŝ = arg max
s

𝑝 (s|x) (1)

A promising strategy for estimating the probability function
𝑝 (s|x) is via sequence labeling models [2]. Sequence labeling meth-
ods are often based on a languagemodel that associates a probability
of occurrence for a given sequence of tokens x = (𝑥1, 𝑥2, ..., 𝑥𝑇 ).
In practice, the objective is to compute the likelihood of a token
sequence by using the chain rule presented in Equation 2.

𝑝 (x) =
𝑇∏
𝑡=1

𝑝 (𝑥𝑡 |𝑥1, 𝑥2, ..., 𝑥𝑡−1) (2)

A simple strategy to estimate the model in Equation 2 is to com-
pute conditional probability tables for each token given a subset of
preceding tokens, according to the classic n-gram model. However,
this count-based language model technique has well-known limi-
tations, such as high dimensionality and difficulty in dealing with
large sequences of n-grams. In this context, the recent BERT-based
language model has obtained state-of-the-art results for several
natural language processing tasks, in particular, for sequence la-
beling. Our RE-BERT method can be seen as an extension of the
BERT model, i.e. a fine-tuning model for software requirements
extraction tasks.

BERT is a contextual neural language model, where the repre-
sentation of a token is a function of the entire text in which it

occurs. Thus, for a given sequence of tokens, we can learn a rep-
resentation called word embedding 𝑒 (𝑥𝑡 ) for a token 𝑥𝑡 , which is
also often called a word vector. Semantic proximity between tokens
and entire sentences can be computed through their word embed-
dings, as well as using embeddings as an input to train classifiers
in order to obtain a good approximation of the general objective
defined in Equation 1. In the context of software requirements ex-
traction, given the token sequence of the review x = (𝑥1, 𝑥2, ..., 𝑥𝑇 ),
BERT model first generates a corrupted x̂ version of the sequence,
where approximately 15% of the words are randomly selected to
be replaced by a special token called [MASK]. Thus, the objective
function is to reconstruct the masked tokens x̄ from x̂, according
to Equation 3,

max
𝜃

𝑙𝑜𝑔 𝑝 (x̄|x̂, 𝜃 ) ≈
𝑇∑
𝑡=1

𝑚𝑡 𝑙𝑜𝑔

( exp(ℎ𝜃 (x̂)⊤𝑡 𝑒 (𝑥𝑡 ))∑
𝑥 ′ exp(ℎ𝜃 (x̂)⊤𝑡 𝑒 (𝑥 ′))

)
(3)

where 𝑒 (𝑥𝑡 ) indicates the embedding of the word 𝑥𝑡 ; the ℎ𝜃 (x̂)𝑡
is a sequence of 𝑇 hidden state vectors according to parameters 𝜃
from the neural network model; and𝑚𝑡 = 1 indicates when𝑤𝑡 is
masked.

BERT-based models are promising in learning contextual word
embeddings from long-term dependencies between tokens in sen-
tences — and even between sentences. However, we note that the
extraction of software requirements from reviews is more impacted
by a local context, i.e. tokens closer to those of software require-
ments are more important than distant tokens. Thus, motivated by
the Local Context Focus mechanism proposed by [16] for sentiment
analysis tasks, we investigate local contexts to identify relevant
candidates for software requirements. Moreover, our RE-BERT has
a training process based on cross-domain learning, where we take
advantage of existing labeled data for some apps to learn a model
for extracting software requirements in new apps reviews, thereby
allowing the use of our pre-trained RE-BERT model as a ready-to-
use tool. In the next sections, we detail the fine-tuning process of
the proposed RE-BERT.

3.1 Local Context for Software Requirements
Extraction

A BERT-based language model can be fine-tuned to find signif-
icant correlations between the sequence of tokens in a review
x = (𝑥1, 𝑥2, ..., 𝑥𝑇 ) and a sequence of tokens x𝑎 = (𝑥𝑎1 , 𝑥

𝑎
2 , ..., 𝑥

𝑎
𝑆
)

that represents the software requirement, where x𝑎 is a subse-
quence of size 𝑆 (with 𝑆 ≥ 1) from x. The global context indicates
the model’s ability to learn general relationships between the re-
view and the software requirement. Such relationships based on
the global context are obtained by BERT’s existing next-sentence
prediction training strategy. However, we note that global contexts
usually fail to correctly identify software requirement tokens, since
review tokens that are distant from software requirement tokens
can negatively influence the extraction stage. Thus, we investigated
the idea of focusing on local contexts to increase the importance of
tokens close to the software requirement.

Figure 2 illustrates an app review organized in three parts: (1) soft-
ware requirement; (2) global context; and (3) local context. Global
context tokens capture the behavior and usage scenarios of the app
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in relation to the software requirement. For example, in the global
context, the “share photos” requirement has the behavior of crash-
ing the app in the usage scenario involving other social networks.
The local context is more associated with actions, manners and
objects related to the software requirement. Therefore, determining
and incorporating the local context during the BERT fine-tuning
process is one of the challenges that we believe is important for
properly identifying software requirements.

Let 𝑝𝑜𝑠 (𝑥𝑖 ) be a function that returns the position of a token 𝑥

in review x. Equation 4 defines the relative position distance (RD)
between a review token and the average position of the software
requirement tokens.

𝑅𝐷 (𝑥𝑖 ) =

������𝑝𝑜𝑠 (𝑥𝑖 ) − 1
𝑆

𝑆∑
𝑗=1

𝑝𝑜𝑠 (𝑥𝑎𝑗 )

������ (4)

We use a technique to reinforce local context features called
Context features Dynamic Weighted (CDW) [16], in which tokens
with high RD values will receive a weight decay during BERT’s
fune-tuning. Let w ∈ Rℎ be a weight vector used in the attention
mechanism of the neural network, where such attentionmechanism
helps to identify the contextual token embeddings and ℎ is the
number of attention layers. We initializewwith 1 values, indicating
that all tokens are of equal importance. During the fine-tuning stage,
CDW adjusts the weights according to the RD distance and an 𝛼

threshold parameter, as defined in Equation 5,

ŵ𝑖 =

{
w, if 𝑅𝐷 (𝑥𝑖 ) ≤ 𝛼

𝑇 ·w
𝑅𝐷 (𝑥𝑖 )+𝑇 , if 𝑅𝐷 (𝑥𝑖 ) > 𝛼

(5)

where ŵ𝑖 indicates the weight vector of the token 𝑥𝑖 , 𝛼 is the RD
threshold, and 𝑇 is the size of the token sequence. In the example
shown in Figure 2, we use the 𝛼 threshold equal to 3. Thus, the
weight vectors of the gray tokens are preserved, while the white
tokens have their weights reduced according to RD values.

3.2 Model Training
In the model training stage, we generate training data from labeled
reviews using the BERT structure, [𝐶𝐿𝑆] 𝑥1, 𝑥2, ..., 𝑥𝑇 [𝑆𝐸𝑃] 𝑥𝑖 ,
for each token 𝑥𝑖 of the review. Thus, a review with 𝑇 tokens will
generate 𝑇 training examples. Each training example is mapped
to a label (𝑥𝑖 , 𝑦), according to the token 𝑥𝑖 , where label 𝑦 is one of
the three labels of the BIO format. The [𝐶𝐿𝑆] and [𝑆𝐸𝑃] tokens
are reserved from the BERT model and indicate classification and
sentence separation tokens, respectively.

We have two independent representations of a text review. Let
o𝑔 = 𝐵𝐸𝑅𝑇𝑔 (xi) be the representation with global context features
and o𝑙 = 𝐵𝐸𝑅𝑇 𝑙 (x, 𝛼) the representation with local context features
according to an 𝛼 parameter. The two representations are concate-
nated into a single vector o𝑙𝑔 = [o𝑙 ⊕ o𝑔 ] and used as an input data
for a dense layer of the neural network, followed by an attention
mechanism (MHSA) to obtain the final representation ẑ, as defined
in Equation 6,

ẑ = 𝑀𝐻𝑆𝐴(𝑊 𝑙𝑔 · 𝑜𝑙𝑔 + 𝑏𝑙𝑔 ) (6)

where𝑊 𝑙𝑔 and 𝑏𝑙𝑔 are the parameters and bias of the dense layer,
respectively, and the MHSA function represents a Multi-Head Self-
Attention encoder from BERT’s Transformers architecture.

In the output layer, we use the softmax to predict the BIO label
of each token, according to Equation 7. Thus, the general sequence
labeling task previously described in Equation 1 is approximated
when we classify each token in a review. Finally, we use the well-
known cross-entropy loss function for training the network.

𝑦𝑙 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (ẑ𝑙 ) =
exp(ẑ𝑙 )∑{𝐵,𝐼,𝑂 }

𝑗=1 exp(ẑ𝑗 )
(7)

An important step in RE-BERT training is to use existing labeled
review data from different app domains, i.e. a cross-domain learn-
ing. This strategy allows the use of RE-BERT to extract software
requirements from app domains with no labeled data, since the
manual labeling process is an expensive task. Furthermore, we ar-
gue that incorporating different domains during the training stage
is a robust technique for learning a model with better generalization
capabilities.

4 EXPERIMENTAL EVALUATION
We carried out a cross-validation process based onmultiple domains
to evaluate the proposed RE-BERT. Figure 3 shows this strategy
for a scenario involving reviews from 8 different apps. The fine-
tuning process of RE-BERT is applied from labeled data with seven
different apps. The trained model is then evaluated in the task of
extracting software requirements from an eighth app. This process
is repeated until all apps are used as a test data.

The following hyperparameters of RE-BERT were defined in the
experimental evaluation:

• The learning rate is set to 2 × 10−5;
• The contextual word embedding dimension are set to 768;
and

• The 𝛼 parameter for local context is set to 3.

We compared the RE-BERT performance with three other state-
of-the-art methods in the literature: GuMA, SAFE and ReUS, ac-
cording to the experimental results reported in [4].

4.1 Datasets
We use the datasets created by [4] in the experimental evaluation.
According to the authors, the dataset was generated following a
rigorous manual annotation process, conducted by two humans,
using guidelines from the literature for data selection, labeling,
agreement analysis, and reliability analysis.

Table 2 shows some statistics about the datasets. Initially, 341,843
reviews were collected, in free English text, registered by app users
in the Play Store and Amazon Store. The reviews are from 8 apps
of different categories and time periods. A subset of these reviews,
extracted at random, was analyzed manually by the annotators
In total, 1,172 different requirements were extracted from 1,000
reviews, which were structured in 2,062 sentences. In the list of
labeled software requirements, 530 requirements had only one word
and 991 more than one word.
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The app crashes when I try to share photos with my contacts from another social network

Software requirement

Local context

Global context

Figure 2: Example of an app review organized in three parts: (1) software requirement; (2) global context; and (3) local context.

Table 1: The overview of the datasets used in the experimental evaluation.

labeled distinct single-word multi-word
App reviews reviews sentences features features features features
Evernote 4,832 125 367 295 259 82 213
Facebook 8,293 125 327 242 204 80 162
eBay 1,962 125 294 206 167 78 128
Netflix 14,310 125 341 262 201 94 168
Spotify 14,487 125 227 180 145 69 111
Photo editor 7,690 125 154 96 80 39 57
Twitter 63,628 125 183 122 99 39 83
WhatsApp 248,641 125 169 118 100 49 69

App1 App2 App3 App4 App5 App6 App7 App8

Iteration #1 Train Train Train Train Train Train Train Test

Iteration #2 Train Train Train Train Train Train Test Train

Iteration #3 Train Train Train Train Train Test Train Train

Iteration #4 Train Train Train Train Test Train Train Train

Iteration #5 Train Train Train Test Train Train Train Train

Iteration #6 Train Train Test Train Train Train Train Train

Iteration #7 Train Test Train Train Train Train Train Train

Iteration #8 Test Train Train Train Train Train Train Train

Figure 3: Cross-domain training strategy involvingmultiple
domain app reviews.

4.2 Evaluation Metrics
We use the 𝐹1 evaluation measure that corresponds to the harmonic
mean of Precision (Equation 8) and Recall (Equation 9), where 𝑇𝑃
(True Positive) refers to the number to features that were both
extracted and annotated; 𝐹𝑃 (False Positive) are features that were
extracted but not annotated; and 𝐹𝑁 (False Negative) refers to the
features annotated but not extracted. Equation 10 defines the 𝐹1
measure.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (8) 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9) 𝐹1 =

2 × 𝑃 × 𝑅

𝑃 + 𝑅
, (10)

To determine whether an extracted feature is true or false pos-
itive, we compared them with annotated features in the ground
truth. To this end, we used the feature matching method[4]: Let
Γ be the set of words in a review sentence and 𝑓𝑖 ⊆ Γ be the set
of words used to refer to feature 𝑖 in that sentence. Two features
𝑓1, 𝑓2 ⊆ Γ match at level 𝑛 (with 𝑛 ∈ N) if and only if (i) one of the
feature is equal to or is a subset of the other, i.e. 𝑓1 ⊆ 𝑓2 or 𝑓2 ⊆ 𝑓1,
and (ii) the absolute length difference between the features is at
most 𝑛, i.e. | |𝑓1 | − |𝑓2 | | ≤ 𝑛.

4.3 Results and Discussion
We present and discuss the results of software requirements extrac-
tion from app reviews considering two scenarios: exact matching
and partial matching. In the exact matching scenario, the precision
and recall metrics are calculated with matching level 𝑛 = 0, i.e. we
consider an error when the model does not identify all the tokens
in the software requirement. In the partial matching scenario, we
evaluate two levels of matching 𝑛 = 1 and 𝑛 = 2. For example, if
the labeled software requirement is “credit card payment”, then we
do not consider an error if the model extracts the “payment” token
as a requirement, when the matching level is 𝑛 = 2.

Table 2 presents a general comparison of the proposed RE-BERT
and three state-of-the-art methods for software requirements extrac-
tion. Remember (Section 2) that the GuMa, SAFE and REUSmethods
are based mainly on linguistic rules from the part-of-speech of the
review text, while our RE-BERT is based on a neural languagemodel
(contextual word embeddings). The results show that RE-BERT out-
performs the three state-of-the-art methods. In particular, RE-BERT
performs significantly better in the exact matching scenario.

1 2 3 4

RE-BERT
ReUS GuMa

SAFE

CD

Figure 4: Critical difference diagram for the exact matching
scenario.

We carried out a statistical analysis of the experimental results
using the Friedman test, followed by the post-hoc Nemenyi. Fig-
ure 4 shows a critical difference diagram for the exact matching
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Table 2: Comparison (macro 𝐹1 measure) of approaches GuMa,SAFE, ReUS and RE-BERT.

APP Exact Match (n = 0) Partial Match 1 (n = 1) Partial Match 2 (n = 2)
GuMa SAFE ReUS RE-BERT GuMa SAFE ReUS RE-BERT GuMa SAFE ReUS RE-BERT

Evernote 0.08 0.07 0.07 0.45 0.21 0.23 0.19 0.55 0.24 0.33 0.28 0.63
Facebook 0.04 0.03 0.09 0.43 0.15 0.16 0.14 0.53 0.19 0.24 0.19 0.61
eBay 0.05 0.04 0.06 0.40 0.18 0.24 0.14 0.46 0.22 0.36 0.21 0.53
Netflix 0.05 0.03 0.06 0.47 0.18 0.20 0.19 0.54 0.21 0.28 0.27 0.62
Spotify 0.07 0.04 0.14 0.44 0.24 0.23 0.21 0.51 0.28 0.35 0.27 0.60
PhotoEditor 0.11 0.10 0.13 0.66 0.25 0.30 0.22 0.72 0.28 0.34 0.26 0.81
Twitter 0.09 0.06 0.02 0.57 0.24 0.23 0.11 0.61 0.27 0.35 0.26 0.67
WhatsApp 0.08 0.11 0.06 0.48 0.22 0.32 0.19 0.57 0.26 0.39 0.24 0.61
Mean 0.07 0.05 0.07 0.46 0.22 0.23 0.19 0.55 0.25 0.34 0.26 0.62

1 2 3 4

RE-BERT
SAFE GuMa

ReUS

CD

Figure 5: Critical difference diagram for the partial match-
ing scenario.

Figure 6: Overall methods comparison using the average 𝐹1
measure calculated from all matching scenarios.

scenario. Each method is ordered according to its average ranking
calculated from the 𝐹1 measure of all datasets. The critical differ-
ence (CD) indicates a statistically significant difference between
two methods. In the diagram, two methods connected by a line
indicate no statistically significant difference between them, given
the value of critical difference. Thus, in our analysis there is no
significant difference between the three methods GuMa, SAFE and
ReUS for the exact matching scenario, while RE-BERT presents a
statistically superior performance.

Figure 5 presents a similar statistical analysis for the scenario
involving partial matching (𝑛 = 1 and 𝑛 = 2). In this scenario,
no significant differences were identified between RE-BERT and
SAFE. However, RE-BERT has a statistically superior performance
to GuMA and ReUS methods.

Figure 6 shows a general comparison with the average 𝐹1 calcu-
lated from all matching scenarios. We emphasize that such promis-
ing results are obtained by the fine-tuning step of RE-BERT, where
we have a model training phase while the other methods are pre-
defined linguistic rules and heuristics. However, it is worth noting
that our RE-BERT model is trained from labeled data of different
app reviews domains, which is potentially useful for extracting re-
quirements for new app reviews without labeled data. In this sense,
we published a pre-trained RE-BERT model on the GitHub project
page https://omitted-due-to-the-double-blind-review. This model can
be used as a ready-to-use software requirements extractor, just like
existing state-of-the-art rule-based models.

We present an example of using the RE-BERT pre-trained in
the context of an extractor module (Figure 7). The module receives
raw texts from app reviews and returns the classification confi-
dence level of each token belonging to requirement software class
𝐵 (before) or 𝐼 (inside). Thus, in addition to the BIO label, software
engineers can explore requirements extracted through different
confidence levels.

5 CONCLUSION
App reviews have become an important and valuable knowledge
source for requirements engineering. Users often describe details
about the app’s features they’re enjoying or about requirements
with bad behavior, as well as compare features with other compet-
ing apps. Software requirements extraction tasks from app reviews
are the first and crucial step in mining users’ opinions for require-
ments engineering. However, existing literature methods are often
based on linguistic rules, which are not suitable for dealing with
ambiguities, noise, misspelling, and informal texts. Thus, we intro-
duced RE-BERT, which extends the state-of-the-art neural language
models for software requirements extraction tasks. In particular, RE-
BERT uses a local context mechanism, thereby allowing to generate
word embeddings for tokens according to the sentence’s context in
which the requirement occurs.
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I use the app to apply filters to my photos and it's really fun .

0.01 0.25 0.01 0.02 0.87 0.85 0.96 0.87 0.99 0.99 0.01 0.01 0.00 0.00 0.01

Figure 7: Example of using the pre-trained RE-BERT extractor module for app reviews.

Our RE-BERT obtained competitive results and presented a per-
centage increase of several orders of magnitude in the 𝐹1 measure.
In addition, we proposed a training strategy based on cross-domain,
which allows the use of RE-BERT to extract requirements from new
app reviews without labeled data.

The directions for future work involve extending RE-BERT to the
other stages of review mining for requirements engineering. In spe-
cial, the semantic clustering of the extracted software requirements,
in which different writing variations of the same requirement will
be standardized according to the formed cluters. Another direction
for future work is to incorporate a polarity classification step (posi-
tive, negative and neutral) of the extracted requirement, thereby
allowing a software requirements-based sentiment analysis.
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