
Asymmetric Action Abstractions for
Real-Time Planning in Extensive-Form Games

Rubens O. Moraes, Levi H. S. Lelis
Departamento de Informática

Universidade Federal de Viçosa - Campus Viçosa
Viçosa - Minas Gerais - Brazil
{rubens.moraes,levi.lelis}@ufv.br

Abstract—Action abstractions restrict the number of legal
actions available for real-time planning in multi-unit zero-sum
extensive-form games, thus allowing algorithms to focus their
search on a set of promising actions. Even though unabstracted
game trees can lead to optimal policies, due to real-time con-
straints and the tree size, they are not a practical choice. In
this context, we introduce an action abstraction scheme we
call asymmetric abstraction. Similarly to unabstracted spaces,
asymmetrically-abstracted spaces can have theoretical advan-
tages over regularly abstracted spaces while still allowing search
algorithms to derive effective strategies in practice, even in
large-scale games. Further, asymmetric abstractions allow search
algorithms to “pay more attention” to some aspects of the
game by unevenly dividing the algorithm’s search effort amongst
different aspects of the game. We also introduce four algorithms
that search in asymmetrically-abstracted game trees to evaluate
the effectiveness of our abstraction schemes. An extensive set
of experiments in a real-time strategy game developed for
research purposes shows that search algorithms using asymmetric
abstractions are able to outperform all other search algorithms
tested.

• Student level: MSc.
• Date of conclusion: 08/02/2019.
• Examining board members:

– Alexandre Santos Brandão (UFV)
– Leandro Soriano Marcolino (Lancaster University)
– Levi H. S. de Lelis (UFV)
– Luiz Chaimowicz (UFMG)

• Dissertation: Clickable Link
• Derived publications:

– Moraes and Lelis (AAAI’18) [1]
– Moraes et al. (AIIDE’18) [2]
– Moraes, Mariño and Lelis (AIIDE’18) [3]
– Silva, Moraes, Lelis and Gal (TG’2018) [4]
– Mariño, Moraes, Toledo and Lelis (AAAI’19) [5]
– Ontañon et al. (AAAI-Magazine’18) [6]

I. INTRODUCTION

In real-time strategy (RTS) games the player controls a
number of units to collect resources, build structures, and
battle the opponent. RTS games are excellent testbeds for
Artificial Intelligence methods because they offer fast-paced
environments, where players act simultaneously, and the num-
ber of actions grows exponentially with the number of units
the player controls. Also, the time allowed for planning is

on the order of milliseconds. In this paper we assume two-
player deterministic games in which all units are visible to
both players.

A successful family of algorithms for planning in real time
in RTS games uses what we call action abstractions to reduce
the number of legal actions available to the player. Action
abstractions reduce the number of legal actions a player can
perform by reducing the number of legal actions each unit can
perform. We use the word “action” if it is clear that we are
referring to a player’s or to a unit’s action; we write “player
action” or “unit-action” otherwise. For instance, Churchill and
Buro [7] introduced a method for building action abstractions
through what they called scripts. A script σ̄ is a function
mapping a game state s and a unit u to an action m for u. A
set of scripts P induces an action abstraction by restricting the
set of legal actions of all units to actions returned by the scripts
in P . We call an action abstraction generated with Churchill
and Buro’s scheme a uniform abstraction.

We introduce an action abstraction scheme we call asym-
metric action abstractions (or asymmetric abstractions for
short). In contrast with uniform abstractions that restrict the
number of actions of all units, asymmetric abstractions re-
strict the number of actions of only a subset of units. We
show that asymmetric abstractions can retain the unabstracted
spaces’ theoretical advantage over uniformly abstracted ones
while still allowing algorithms to derive effective strategies in
practice, even in large games.

Another contribution we offer is the introduction of four
general-purpose algorithms that search in asymmetrically-
abstracted trees: Greedy Alpha-Beta Search (GAB), Stratified
Alpha-Beta Search (SAB), and two variants of Asymmetrically
Action-Abstracted Naı̈veMCTS, denoted as A2N and A3N.
GAB and SAB are based on Alpha-Beta pruning, Portfolio
Greedy Search (PGS) [7], and Stratified Strategy Selection
(SSS) [8]. PGS and SSS are algorithms designed for searching
in uniformly-abstracted spaces. The other two algorithms,
A2N and A3N, are based on Naı̈veMCTS, a search algorithm
that uses combinatorial multi-armed bandits (CMAB) [9] to
search in unabstracted spaces. In addition to the two variants
of Naı̈veMCTS that search in asymmetrically-abstracted trees,
we also introduce a Naı̈veMCTS baseline that, similarly to
PGS and SSS, searches in uniformly-abstracted trees; we call
this baseline A1N.

https://github.com/rubensolv/Datasets/raw/master/DissertacaoFinalCTD.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17346/15770
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/viewPaper/18099
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/viewPaper/18098
https://doi.org/10.1109/TG.2018.2848913
https://doi.org/10.1609/aaai.v33i01.33012330
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2777


We evaluate our algorithms in µRTS [9], an RTS game
developed for research purposes. µRTS is a great testbed
for our research because it offers an efficient forward model
of the game, which is required by search-based approaches.
Finally, µRTS codebase1 contains most of the current state-
of-the-art search-based methods, including the systems used
in µRTS’s competitions [6], thus facilitating our empirical
evaluation. An extensive set of experiments show that our
algorithms that search in asymmetrically-abstracted trees are
able to outperform in terms of matches won their counterparts
that search unabstracted and uniformly-abstracted trees.

Although we present our abstraction schemes and search
algorithms in the context of RTS games, we believe our ideas
and algorithms to also be applicable in other scenarios. For
example, a robotic system, which controls several actuators
simultaneously while trying to accomplish a task, can benefit
from asymmetric abstractions. This is because some actuators
might require a finer control than the others. To illustrate, the
actuators controlling the arms of a robot planning a sequence
of actions to open a door might need a “finer plan” than the
actuators controlling the wheels of the robot, given that the
robot is already in front of the door to be opened. Asymmetric
action abstractions offer an approach that allows the planning
system to focus on the arms of the robot rather than on its
wheels. As another example, a search algorithm for uniformly-
abstracted trees is the core of the artificial player of the
commercial card game Prismata [10]. The idea we introduce
in this paper of performing search in asymmetric trees can
also be used in such card games to enhance the strength of
their artificial player. For example, the artificial player could
benefit from an algorithm that discovers finer plans for the
“more important” cards.

This paper is organized as follows. In Section II we define
RTS games as an extensive-form game and review search
algorithms used for planning in unabstracted spaces. Next,
in Section III, we describe the asymmetric abstractions we
introduce in this paper. Section IV introduces the four novel
algorithms for searching in asymmetrically-abstracted action
spaces. In Section V, we evaluate the introduced algorithms
with an extensive set of experiments on µRTS. Finally, in
Section VI, we present the conclusions.

II. BACKGROUND

RTS games can be described as zero-sum extensive-form
games with simultaneous and durative actions, defined by a
tuple ∇ = (N ,S, sinit,A,B,R, T ), where, N = {i,−i} is
the pair of players (i is the player we control and −i is our
opponent). S = D∪F is the set of states, where D denotes the
set of non-terminal states and F the set of terminal states,
i.e., states where the game has finished and no more actions
can be taken. Every state s ∈ S defines a joint set of units
Us = Us

i ∪ Us
−i, for players i and −i. A = Ai ×A−i is the

set of joint actions. Ai(s) is the set of legal actions player i
can perform at state s. Each action a ∈ Ai(s) is denoted by

1https://github.com/santiontanon/microrts

a vector of n unit-actions (m1, · · · ,mn), where mk ∈ a is
the action of the k-th ready unit of player i. A unit is not
ready if it is already performing an action (unit-actions can
have different durations). We denote the set of ready units of
players i and −i as Us

i,r and Us
−i,r. We denote the set of unit-

actions as M. We write M(s, u) to denote the set of legal
actions of unit u at s. Ri : F → R is a utility function with
Ri(s) = −R−i(s), for any s ∈ F . The transition function
T : S × Ai × A−i → S deterministically determines the
sucessor state for a state s and the set of joint actions taken
at s.

The game tree of ∇ is a tree rooted at sinit in which each
node represents a state in S and every edge represents a joint
action in A. For states sk, sj ∈ S, there exists an outgoing
edge from node representing sk to the node representing sj
in the game tree if and only if there exists ai ∈ Ai and a−i ∈
A−i such that T (sk, ai, a−i) = sj . Nodes representing states
in F are leaf nodes. We assume all trees to be finite and
denote as Ψ the evaluation function used by algorithms while
traversing the tree. Ψ receives a state s and returns an estimate
of the end-game value of s for player i. Since ∇ is zero sum,
i tries to reach nodes in the tree that maximizes Ψ, while −i
tries to reach nodes that minimizes Ψ.

We call a decision-point of player j a state s in which j
has at least one ready unit; s is called a within-state of player
j otherwise. In this paper, the search algorithm controlling the
units of a player is invoked at every node n of the game tree,
independently if n represents a decision-point or within-state
of player j. We show in Section IV-A1 how search algorithms
can use the time available for search at within-states to plan
ahead.

A. Search Algorithms for Unabstracted Trees

In this subsection we review two search algorithms used for
planning in RTS games with unabstracted game trees: Alpha-
Beta Considering Durations (ABCD) and Naı̈ve Monte Carlo
Tree Search (Naı̈veMCTS).

1) Alpha-Beta Considering Durations (ABCD): Minimax
search with Alpha-Beta pruning [11] has been successfully
applied to games such as Chess [12]. The key idea of Alpha-
Beta is to compute the value of a game while pruning branches
of the tree that are not reached in optimal play.

Knuth and Moore [11] showed how Alpha-Beta can be
adapted to find an approximate solution for simultaneous-move
games. Once the Alpha-Beta search reaches a node in the
game tree in which both players act simultaneously, a policy
π decides who acts first, with the other player choosing their
action afterwards. The policy π transforms a simultaneous-
move game into a sequential-move game, for which Alpha-
Beta is suitable. The solution encountered in the transformed
sequential-move game can then be applied as an approximation
to the original game. Churchill et al. [13] showed that Alpha-
Beta with the alternate policy defeats the same algorithm with
the random policy in RTS combats.

Alpha-Beta, shown in Algorithm 1, is used in an iterative-
deepening manner, with the value of d passed as input to the



Algorithm 1 ALPHA-BETA
Require: State s, depth d, α = −∞, β =∞, evaluation function Ψ.
Ensure: An approximation of the game value of s.
1: if s ∈ F or d = 0 then
2: return Ψ(s)
3: j ← B(s)
4: if j = −i then
5: M ←∞
6: for each a ∈ A−i(s) do
7: M ← min(ALPHA-BETA(T (s, a), d− 1, α, β),M)
8: if M ≤ α then
9: return M

10: β = min(β,M)
11: if j = i then
12: M ← −∞
13: for each a ∈ Ai(s) do
14: M ← max(ALPHA-BETA(T (s, a), d− 1, α, β),M)
15: if M ≥ β then
16: return M
17: α = max(α,M)
18: return M

first call of Alpha-Beta set to 1; d is incremented by one if
the execution of Algorithm 1 finishes and there is still time
available for planning. Algorithm 1 is then invoked again with
the incremented value of d. Variables α and β store the best
values that can be achieved by players i and −i, respectively.

The Ψ-value of a node is returned if the search reaches its
maximum depth (d = 0 as d is decremented in each recursive
call) or if the node is terminal (line 2). Variable j stores the
player acting in the current state (line 3), which is either i or
−i for sequential-move games. If it is −i’s turn (lines 4–10),
then Alpha-Beta searches for all possible transitions from state
s, which is given by the actions in A−i. In the recursive call
of line 7, the transition function T takes two arguments: the
current state s and action a. This is because in Algorithm 1 we
assume sequential games, thus the transition function depends
on the action of only one player. The search is pruned in
−i’s turn (lines 8 and 9) if the current lower bound for i’s
solution value (given by α) is at least as large as the current
upper bound for −i’s solution (given by M ). If the expression
M ≤ α in line 8 is true, then it means that player i prefers
to choose an earlier action in the game tree that guarantees i
a game value of α, than allow −i to reach the current node
of the tree, which is guaranteed to be at most as good as α.
The same reasoning applies in lines 11–17, where player i is
to act, instead of player −i.

Algorithm 1 assumes sequential-moves games. Churchill
et al. [13] introduced Alpha-Beta Considering Durations
(ABCD), an algorithm that accounts for simultaneous-moves.

We need to perform two modifications to transform Alpha-
Beta into ABCD. First, we replace the assignment j ← N (s)
by j ← π(s) (line 3), where π is the policy that decides
the player who is to choose their action first. For states s
where N (s) = {i} or N (s) = {−i}, then π(s) = N (s). If
N (s) = {i,−i}, then π decides which player acts first. The
implementation we use employs the alternate policy: π returns
i if it returned −i in the previous state in which both players
acted simultaneously. π randomly chooses either i or −i for
the first state in the tree with simultaneous actions.

The second modification deals with the “delayed effects”
of an action. ABCD handles this as follows. In states with
simultaneous actions, the transition function is not applied
during the function’s recursive calls, as shown in lines 7 and
14 of Algorithm 1. Instead, we pass as parameters the current
state s and the action a the player is going to perform at s. This
way the set of actions of the other player can be computed
within the next function call and only then a is applied to s.
The ABCD implementation we use in our experiments employ
a transposition table to avoid expanding multiple paths leading
to the same state [14], [15].

2) Naı̈ve Monte Carlo Tree Search (Naı̈veMCTS): Ontañón
[9] modeled the search problem of deriving strategies in
RTS games as a combinatorial multi-armed bandits (CMAB)
problem. A CMAB problem can be defined by a tuple (X,µ),
where,

• X = {X1, · · · , Xn}, where each Xi is a variable that can
assume Ki different values Xi = {v1

i , · · · , v
Ki
i }, with

X = {(v1, · · · , vn) ∈ X1 × · · · × Xn} being the possible
combinations of value assignments for the variables in
X; a value assignment V ∈ X is called a macro-arm.

• µ : X → R is a reward function, that receives a macro-
arm and returns a reward value for that macro-arm.

The goal in a CMAB problem is to find a macro-arm
that maximizes the expected reward. This can be achieved
by balancing exploration and exploitation until converging to
an optimal macro-arm. In the context of RTS games, each
decision-point s can be cast as a CMAB problem in which X
contains one variable for each ready unit of a player in s. Thus,
a macro-arm V ∈ X represents a player action and each value
v ∈ V represents a unit-action. The set Xi = {v1

i , · · · , v
Ki
i }

represents the set of Ki legal actions for the i-th unit at s.
Naturally, the goal is to find a macro-arm (player action)
that maximizes the player’s reward, which is defined by an
evaluation function.

Since the number of macro-arms in X is often too large
in RTS games, Ontañón [9] derived a sampling procedure
called Naı̈ve Sampling (NS) to help deciding which macro-
arms should be evaluated during search. NS divides a CMAB
problem with n variables into n+1 multi-armed bandit (MAB)
problems:

• n local MABs, one for each variable Xi ∈ X . That is,
for variable Xi representing the i-th unit, the arms of the
MAB are the Ki values (unit-actions) in Xi.

• 1 global MAB, denoted MABg , that treats each macro-
arm V considered by NS as an arm in MABg . Naturally,
MABg has no arms in the beginning of NS’s procedure.

At each iteration, NS uses a policy π0 to determine whether
it adds an arm to MABg through the local MABs (explore) or
evaluates an existing arm in MABg (exploit).

1) If explore is chosen, then a macro-arm V is added to
MABg by using a policy πl to independently choose a
value for each variable in X . Here, NS assumes that
the reward of a macro-arm V can be approximated by



Algorithm 2 NAÏVEMCTS
Require: State s, sampling strategies π0, πl and πg , and evaluation function

Ψ.
Ensure: Action a
1: root ← node(s)
2: while hasTime() do
3: leaf ← SELECTANDEXPANDNODE(root, π0, πl, πg)
4: v ← Ψ(leaf.state)
5: PROPAGATEEVALUATION(leaf, v)
6: return GETMOSTVISITEDACTION(root)

Algorithm 3 SELECTANDEXPANDNODE
Require: A game tree node n0 and sampling strategies π0, πl and πg
Ensure: A node in the tree
1: j ← π(n0.state)
2: n← NS(n0.state, π0, πl, πg , j)
3: if n ∈ n0.children then
4: return SELECTANDEXPANDNODE(n0.child(α))
5: else
6: n0.addChild(n)
7: return return n

the sum of the rewards of the individual values vi ∈ V ,
denoted µ′(vi). That is, µ(V ) ≈

∑
vi∈V µ

′(vi).
2) If exploit is chosen, then a policy πg is used to select

an existing macro-arm in MABg .
Ontañón [9] showed that NS can be used in the context of

Monte Carlo Tree Search (MCTS) by introducing an algorithm
named Naı̈veMCTS (see Algorithm 2). Naı̈veMCTS differs
from other MCTS algorithms in that it uses NS to decide
which player actions should be evaluated in search. Instead of
uniformly sampling which player action to evaluate next as
in a vanilla MCTS algorithm, Naı̈veMCTS uses NS to select
player actions composed of unit-actions that tend to yield good
rewards.

Naı̈veMCTS expands a tree in its search procedure, which
we will refer to as the MCTS tree. The MCTS tree starts
only with the root node representing the current state of game
(line 1). While there is time allowed for planning, Naı̈veMCTS
iteratively selects a node to be added to the MCTS tree,
through a call to SELECTANDEXPANDNODE (line 3), which
is described in Algorithm 3.

Since SELECTANDEXPANDNODE uses the NS procedure
described above, in addition to the root of the tree, it requires
as input the policies π0, πl, and πg . Similarly to ABCD,
Naı̈veMCTS uses a policy π to sequentialize simultaneous-
move states by allowing one of the players to decide their
action before the other player (line 1 of Algorithm 3). The
NS procedure is invoked to decide which player action will
be explored. If the node n returned by NS is part of the
MCTS tree (line 3), NS chooses to exploit and SELECTAND-
EXPANDNODE is called recursively to select a player action
from n. Otherwise, NS chooses to explore, and a new macro-
arm is chosen, leading to a state n that is not in the MCTS
tree. In this case, n is added to the MCTS tree (line 6) and is
returned to Naı̈veMCTS’s main procedure (Algorithm 2).

Once Naı̈veMCTS (Algorithm 2) runs out of time, it returns
the most visited player action from root.state, as the actions
with largest estimated utility for the player are visited more

Algorithm 4 Portfolio Greedy Search
Require: state s, default script σ̄d, set of scripts P , time limit e, and

evaluation function Ψ.
Ensure: action a for player i’s units.
1: σ̄i ← choose a script from P considering that −i acts according to σ̄d
2: σ̄−i ← choose a script from P considering that i acts according to σ̄i
3: ai ← {σ̄i(u1), σ̄i(u2), · · · , σ̄i(un)}, where u1, u2, · · · , un ∈ Us

i,r
4: a−i ← {σ̄−i(u1), σ̄−i(u2), · · · , σ̄−i(um)}, where u1, u2, · · · , um ∈
Us
−i,r

5: while time elapsed is not larger than e do
6: for each u ∈ Us

i,r do
7: for each σ̄ ∈ P do
8: a′i ← ai; a′i[u]← σ̄(s, u)
9: if Ψ(T (s, a′i, a−i)) > Ψ(T (s, ai, a−i)) then

10: ai ← a′i
11: if time elapsed is larger than e then
12: return ai
13: return ai

often. The most visited action is returned by GETMOSTVIS-
ITEDACTION (line 6).

B. Search Algorithms for Uniformly-Abstracted Trees

In this section we present the uniform abstractions and
two algorithms used for searching in uniformly-abstracted
trees, Portfolio Greedy Search (PGS) and Stratified Strategy
Selection (SSS).

1) Uniform Action Abstractions: We define a uniform
action abstraction (or uniform abstraction for short) for
player i as a function mapping the set of legal actions Ai

to a subset A′i of Ai. Action abstractions can be constructed
from a set of scripts P . Let the action-abstracted legal actions
of unit u at state s be the actions for u that is returned by a
script in P , defined as,

M(s, u,P) = {σ̄(s, u)|σ̄ ∈ P} .

Definition 1: A uniform abstraction Φ is a function that
receives a state s, a player i, and a set of scripts P . Φ returns
a subset of Ai(s) denoted A′i(s). A′i(s) is defined by the
Cartesian product of actions in M(s, u,P) for all u in Us

i,r,
where Us

i,r is the set of ready units of i in s.
Algorithms using a uniform abstraction focus their search

on actions deemed as promising by the scripts in P , as the
actions in A′i(s) are composed of unit-actions returned by the
scripts in P .

2) Portfolio Greedy Search: Churchill and Buro [7] intro-
duced Portfolio Greedy Search (PGS), a hill-climbing search
procedure for uniformly-abstracted trees. Algorithm 4 shows
the pseudocode of PGS.

PGS starts by selecting the script σ̄i from P that yields the
largest Ψ-value when i executes an action composed of unit-
actions computed with σ̄i, assuming that −i executes an action
composed of unit-actions computed with σ̄d (line 1). The same
process is executed to select σ̄−i, considering that i executes
unit-actions computed by σ̄i (line 2). Action vectors ai and
a−i are initialized with the unit-actions computed from σ̄i
and σ̄−i. Once ai and a−i have been initialized, PGS iterates
through all units u in Us

i,r and tries to greedily improve the



Algorithm 5 Stratified Strategy Selection
Require: state s, default script σ̄d, set of scripts P , time limit e, evaluation

function Ψ, and a type system T for the set of units Ui in s.
Ensure: action a for player i’s units, boolean c indicating if the algorithm

finished a complete iteration over all types in T
1: σ̄i ← choose a script from P considering that −i acts according to σ̄d
2: σ̄−i ← choose a script from P considering that i acts according to σ̄i
3: ai ← {σ̄i(u1), σ̄i(u2), · · · , σ̄i(un)}, where u1, u2, · · · , un ∈ Us

i,r
4: a−i ← {σ̄−i(u1), σ̄−i(u2), · · · , σ̄−i(um)}, where u1, u2, · · · , um ∈
Us
−i,r

5: c← false
6: while time elapsed is not larger than e do
7: for each t ∈ T do
8: for each σ̄ ∈ P do
9: a′i ← ai with the actions of all units u of type t replaced by

σ̄(u)
10: if Ψ(T (s, a′i, a−i)) > Ψ(T (s, ai, a−i)) then
11: ai ← a′i
12: if time elapsed is larger than e then
13: return ai and boolean c
14: c← true // iterated over all types
15: return ai and boolean c

unit-action assigned to u in ai, denoted by ai[u]. Note that
PGS only considers the unit-actions in the uniform abstraction,
i.e., those in M(s, u,P). PGS evaluates ai while replacing
ai[u] by each of the possible unit-actions m for u. PGS keeps
in ai the action vector found during search with the largest Ψ-
value. This process is repeated until PGS reaches time limit e
and returns ai (see lines 12 and 13).

Note that the action vector a−i remains unchanged after its
initialization (see line 4). Although in its original formulation
PGS alternates between improving player i’s and player −i’s
action vectors [7], in their experiments, Churchill and Buro
allow PGS to improve only player i’s action vector while
player −i’s is fixed. Moraes et al. [3] showed that, if set to
improve both ai and a−i, PGS can suffer from a pathological
issue they called the non-convergence problem. Due to the
non-convergence problem, PGS can find worse strategies than
PGS with a−i fixed, even if the former is granted more
computation time than the latter. In addition to identifying
the pathology, Moraes et al. introduced an algorithm called
Nested-Greedy Search (NGS) that alters both ai and a−i while
not suffering from the pathology. We use PGS with a−i fixed
instead of NGS because NGS was shown to not scale well to
large games [3].

3) Stratified Strategy Selection: Lelis [8] introduced Strati-
fied Strategy Selection (SSS). Similarly to PGS, SSS performs
a hill-climbing search. However, in contrast with PGS, SSS
searches in the space of script assignments induced by a type
system, which is a partition of units. SSS assigns the same
script to units of the same type. For example, all units with
low hit point values (type) move away from the battle (strategy
of a script). A type system is defined as follows.

Definition 2 (Type System): Let Ui be the set of player i’s
units. T = {t1, . . . , tk} is a type system for Ui if it is a
partitioning of Ui. If u ∈ Ui and t ∈ T with u ∈ t, we write
T (u) = t.

Algorithm 5 shows the pseudocode of SSS. In implemen-
tation SSS also performs the seeding process described above

for PGS. That is, SSS starts by selecting the script σ̄i from
P that yields the largest Ψ-value when i executes an action
composed of unit-actions computed with σ̄i, assuming that −i
executes an action composed of unit-actions computed with
the default script σ̄d (line 1). The same process is executed to
select σ̄−i, considering that i executes unit-actions computed
by σ̄i (line 2). SSS initializes actions ai and a−i with the
unit-actions returned by the the scripts σ̄i and σ̄−i. SSS then
performs a greedy search to improve the unit-actions in ai
(lines 6–11). Namely, SSS evaluates all possible assignments
of unit-actions according to the scripts in P to units of a given
type t while the unit-actions of units with types other than t
are fixed. SSS keeps in ai the unit-actions with largest Ψ-value
encountered during search (lines 10 and 11). SSS returns the
player action ai once it reaches the time limit e (lines 13
and 15). The boolean value c is used by SSS with Adaptive
Type Systems (SSS+). Similarly to PGS, the action a−i is
fixed throughout search and SSS tries to approximate a best
response to the opponent’s action given by script σ̄−i.

Depending on the number and on the diversity of units
present in the match, SSS might be unable to iterate through all
types in T before reaching time limit e. Aiming at preventing
SSS from not iterating at least once over all types, Lelis [8]
developed a meta-reasoning system to adjust the granularity
of the type system used. This adjustment occurs in between
searches and is based on the estimated running time of a SSS
iteration.

III. ASYMMETRIC ACTION ABSTRACTIONS

Uniform abstractions are restrictive in the sense that all units
have their legal actions reduced to those specified by scripts.
We introduce an abstraction scheme we call asymmetric
action abstractions (or asymmetric abstractions for short) that
is not as restrictive as uniform abstractions but still uses the
guidance of the scripts for selecting a subset of promising
actions. The key idea behind asymmetric abstractions is to
reduce the number of legal actions of only a subset of the
units controlled by player i; the sets of legal actions of the
other units remain unchanged. We call the subset of units that
do not have their set of legal actions reduced the unrestricted
units; the complement of the unrestricted units are defined as
the restricted units.

Definition 3: An asymmetric abstraction Ω is a function
receiving as input a state s, a player i, a set of unrestricted
units U ′i ⊆ Us

i,r, and a set of scripts P . Ω returns a subset
of actions of Ai(s), denoted A′′i (s), defined by the Cartesian
product of the unit-actions inM(s, u,P) for all u in Us

i,r \U ′i
and of unit-actions M(s, u′) for all u′ in U ′i .

Algorithms using an asymmetric abstraction Ω search in a
game tree for which player i’s legal actions are limited to
A′′i (s) for all s. Asymmetric abstractions allow us to explore
action abstractions in the spectrum of possibilities between the
uniformly-abstracted and unabstracted game trees.

Asymmetric abstractions allow search algorithms to divide
its “attention” differently among the units at a given state of the
game. That is, depending on the game state, some units might



be more important than others (e.g., units with low hit points
trying to survive), and asymmetric abstractions allow one to
derive finer strategies to these units by accounting for a larger
set of unit-actions for them. Similarly, a robotic control system
might benefit from deriving finer plans to actuators that are
more important at given state of the world. For example, the
actuators controlling the arms of a robot trying to open a door
are more likely to benefit from a finer plan than the actuators
controlling the wheels of the robot. Uniform abstractions does
not allow the planning system to “pay more attention” to
specific parts of the system as they divide the search effort
equally amongst all parts.

In addition to the ability of unevenly dividing the search
effort amongst different parts of a system at a given state, the
optimal strategy derived from an asymmetrically-abstracted
tree is guaranteed to be no worse than the strategies derived
from a uniformly-abstracted tree for a game ∇, given that both
abstractions are induced by the same set of scripts.

Theorem 1: Let Φ be a uniform abstraction and Ω be an
asymmetric abstraction, both defined with the same set of
scripts P . For a zero-sum extensive-form game ∇ with start
state s, let V Φ

i (s) be the optimal value of the game computed
by considering the game tree induced by Φ; define V Ω

i (s)
analogously. We have that V Ω

i (s) ≥ V Φ
i (s).

The proof for Theorem 1 [1] hinges on the fact that a
player searching with Ω has access to more actions than a
player searching with Φ. This guarantee can also be achieved
by enlarging the set P used to induce Φ. The problem of
enlarging P is that new scripts might not be readily available
as they need to be either handcrafted or learned. By contrast,
one can easily create a wide range of asymmetric abstractions
by simply modifying the set of unrestricted units. Further, in
contrast with asymmetric abstractions, such an enlargement
scheme would not allow one to directly focus on important
parts of the system.

Although Theorem 1 guarantees that one is able to derive
strategies with asymmetric abstractions that are no worse than
those derived with uniform abstractions, our theory is not
necessarily a good predictor of what happens in practice. This
is because Theorem 1 assumes that optimal strategies can be
derived from the abstracted game trees and in practice we use
search algorithms to only approximate optimal solutions in
real time.

In the next section we introduce four novel algorithms that
search in real time in asymmetrically-abstracted game trees.

IV. SEARCHING IN ASYMMETRICALLY-ABSTRACTED
GAME TREES

We introduce Greedy Alpha-Beta Search (GAB) and Strat-
ified Alpha-Beta Search (SAB), two algorithms for searching
in asymmetrically-abstracted trees. GAB and SAB hinge on a
property of PGS and SSS that has hitherto been overlooked.
Namely, both PGS and SSS may come to an early termination
if they encounter a local maximum. PGS and SSS reach a
local maximum when they complete all iterations of the outer
for loops in Algorithms 4 and 5 without altering ai. Once a

local maximum is reached, PGS and SSS are unable to further
improve the unit-action assignments, even if the time limit e
was not reached.

GAB and SAB take advantage of PGS’s and SSS’s early
termination by operating in two steps. In the first step GAB
and SAB search for an action in the uniformly-abstracted tree
with PGS and SSS, respectively. The first step finishes either
when (i) the time limit is reached or (ii) a local maximum
is encountered. In the second step, which is run only if the
first step finishes by encountering a local maximum, GAB
and SAB fix the moves of all restricted units according to the
moves found in the first step, and search in the asymmetrically-
abstracted tree for moves for all unrestricted units.

A. Greedy and Stratified Alpha-Beta Searches (GAB and SAB)

In its first step GAB uses PGS to search in a uniformly
abstracted space induced by P for deriving an action a that is
used to fix the actions of the restricted units during the second
search. In its second step, GAB uses a variant of ABCD.
Although we use ABCD, one could also use other search
algorithms such as UCTCD [7]. ABCD is used to search in a
tree we call Move-Fixed Tree (MFT). The following example
illustrates how the MFT is defined; MFT’s definition follows
the example.

Example 1: Let Us
i,r = {u1, u2, u3} be i’s ready units

in s, P = {σ̄1, σ̄2} be a set of scripts, and {u1, u3} be
the unrestricted units. Let a = (W,L,R) be the player
action returned by PGS, where W,L,R are the unit-actions
‘wait’ (W), ‘move left’ (L), and ‘move right’ (R). Also,
let ς = {σ̄1, σ̄2, σ̄1} be the script vector that defined the
unit-actions during PGS’s search. That is, σ̄1(s, u1) = W ,
σ̄2(s, u2) = L, and σ̄1(s, u3) = R. We use the notation ς[u1]
to denote the script in ς used to define the unit-action for unit
u1 in PGS’s search.

GAB’s second step searches in the MFT. The MFT is rooted
at s, and the set of abstracted legal player actions in s is
obtained by fixing a[u2] = L and considering all legal actions
for u1 and u3. That is, ifM(s, u1) = {W,U} andM(s, u3) =
{R,D}, then the set of abstracted legal player actions in s is:
{(W,L,R), (W,L,D), (U,L,R), (U,L,D)}.

For player i and for all descendants states s′ of s in the MFT,
if M(s′, u1) = {W,U}, M(s′, u3) = {R,D}, and ς[u2] =
σ̄2, then the set of abstracted legal actions in s′ is:

{(W, σ̄2(s′, u2), R), (W, σ̄2(s′, u2), D),

(U, σ̄2(s′, u2), R), (U, σ̄2(s′, u2), D)} .

That is, at states s′ we consider all legal unit-actions of the
unrestricted units and we fix the unit-actions of the restricted
units to what is returned by the units’ script in ς .

Also, for all descendants states s′ of s in the MFT, if player
−i’s ready units in s are Us

−i,r = {u1, u2, u3, u4}, the set of
abstracted legal player actions for −i in s′ is,

{(σ̄−i(s′, u1), σ̄−i(s
′, u2), σ̄−i(s

′, u3), σ̄−i(s
′, u4)} .

Here, σ̄−i ∈ P is the script computed in PGS’s seeding process
(see line 2 of Algorithm 4).



Definition 4 (Move-Fixed Tree): For a given state s, a subset
of unrestricted units of Ui in s, a set of scripts P , the script
σ̄−i ∈ P defined in the seeding process of the algorithm’s first
step, a player action a returned by the algorithm’s first step,
and the script vector ς with one script for each u in Us

i,r used
by the algorithm’s first step to define the unit-actions in a, a
Move-Fixed Tree (MFT) is a tree rooted at s with the following
properties.

1) The set of abstracted legal actions for player i at the
root s of the MFT is limited to actions a′ that have unit-
actions a′[u] fixed to a[u], for all restricted units u;

2) The set of abstracted legal actions for player i at states
s′ descendants of s is limited to actions a′ that have
unit-actions a′[u] fixed to σ̄(s′, u) with σ̄ = ς[u], for all
restricted units u;

3) The only abstracted legal action for player −i at any
state in the MFT is defined by fixing player −i’s unit-
actions to those returned by σ̄−i.

By searching in the MFT, ABCD searches for actions for the
unrestricted units while the actions of all other units, including
the opponent’s units, are fixed: player i’s restricted units act
according to the scripts in ς and player −i’s units act according
to σ̄−i. Our two-step search approximates a best response to
the strategy defined by the script σ̄−i. In theory, this approach
could make our player exploitable. However, in practice, due
to the real-time constraints, one tends to derive more effective
strategies by fixing the opponent strategy, as shown in previous
works [3].

Let a1 be the player action returned by PGS in GAB’s
first step and a2 be the player action returned by ABCD
in GAB’s second step. Also, let a′ be the opponent action
defined by using the script σ̄−i for all opponent’s units. Instead
of returning a2 directly, GAB returns the action with largest
Ψ value, i.e., arg maxa∈{a1,a2}Ψ(T (s, a, a′)). Note that one
cannot compare the evaluation value of actions a1 and a2

as computed by ABCD and PGS. This is because ABCD
performs a depth-first search and uses the Ψ function to
evaluate the leaf nodes of the tree expanded by ABCD; these
values are then propagated up the tree to evaluate the actions
available at the root. As a result, the evaluation values of the
actions at the root performed by ABCD are based on nodes
deeper into the tree than the evaluation performed by PGS.
Thus, once GAB has a1 and a2, it evaluates them again with
the same Ψ function, and only then it selects the best of the
two actions.

The difference between SAB and GAB is the algorithm used
in their first step: while GAB uses PGS, SAB uses SSS. The
second step of SAB follows exactly GAB’s second step.

1) Searching in Within-States: The transition function T
receives as input the current state, a set of joint player actions
and returns the next state in the game. Since the unit-actions
are durative, the state s′ returned by T might not be a decision-
point for either of the players (i.e., none of the players have
a ready unit). We call the states s that are not a decision-
point for player i a within-state for i. In RTS games, within-
states are those in which the game shows an animation of

the units performing their actions (e.g., a worker building
a structure) and the player cannot issue an action. More
generally, within-states occur when an agent is performing a
predefined sequence of actions—e.g., a macro-action [16]–[18]
or an option [19], [20]—and for that the agent is not ready to
perform another action.

GAB and SAB are implemented to take advantage of within-
states. This is achieved by performing the first step of GAB
and SAB in within-states and the second step in decision-
points. While the agent is performing a sequence of actions
(e.g., unit building a structure) at within-states s′ for player i,
GAB and SAB use the game model to fast forward from s′ to
a decision-point s for i. Since one might encounter decision-
points for player −i while fast forwarding, GAB and SAB
assume the opponent follows the strategy given by the script
selected to initialize the opponent’s action in PGS and SSS,
σ̄−i. GAB and SAB’s first step is then performed at s and its
result stored in memory. Later, if s is reached in the actual
game, then GAB and SAB performs only their second step,
searching for the unrestricted units with ABCD; the restricted
units perform the action stored in memory for s.

State s might not be reached in the actual game as the
opponent might choose actions that are different from those
returned by the opponent model defined in the first step of
search. If instead of reaching s, the players reach a game state
s′′ and the set of units at s and s′′ are identical for player
i, i.e., Us

i = Us′′

i , then GAB and SAB performs only the
second step, leaving the actions of the restricted units fixed,
as described above. However, if Us

i 6= Us′′

i , then GAB and
SAB perform both the first and second steps at s′′. We show
empirically in Section V-A the effectiveness of within-states
search in practice.

2) Baselines for GAB and SAB: GABP , SABP , GAS, and
SAS: In this subsection we introduce four baseline algorithms
for GAB and SAB. The goal of introducing these baselines
is to show empirically the advantages of (i) searching in
asymmetrically-abstracted trees and (ii) of searching with
a two-step scheme. Similarly to GAB and SAB, all four
baselines benefit from searching in within-states.

a) GABP and SABP : In contrast with GAB and SAB,
GABP and SABP only account for unit-actions inM(s, u,P)
for all s and u in their ABCD search. That is, GABP and
SABP only consider actions a′ for which the unit-actions a′[u]
for restricted units u are fixed (as in GAB’s and SAB’s MFT)
and the unit-actions a′[u′] for unrestricted units u′ that are in
M(s, u′,P). GABP and SABP focus their search on a subset
of units U ′ by searching deeper into the game tree with ABCD
for U ′. We analyze empirically, by comparing GABP to GAB
and SABP to SAB, which abstraction scheme allows one to
derive stronger strategies.

b) GAS and SAS: The difference between GAS and PGS
is that in the greedy search of the former, for a given state s,
instead of limiting the number of legal actions of all units u
to M(s, u,P), as PGS does, GAS considers all legal actions
M(s, u) for unrestricted units, and the actionsM(s, u,P) for
restricted units. While PGS searches in a uniformly-abstracted



tree, GAS searches in an asymmetrically-abstracted tree. The
difference between SAS and SAB is twofold. First, similarly
to the difference between GAS and PGS, SAS also accounts
for actionsM(s, u) for all unrestricted units u. Second, in the
type system T used by SAS, all unrestricted units u have their
own type, i.e., T (u) 6= T (u′) for all unrestricted units u and all
units u′. This second modification is needed to guarantee that
SAS is similar to SSS in that units of the same type execute
the action returned by the same script.

B. Asymmetrically Action-Abstracted Naı̈veMCTS (A3N)

We call Asymmetrically Action-Abstracted Naı̈veMCTS
(A3N) the version of Naı̈veMCTS that accounts during search
for all unit-actions of the unrestricted units and only for the
actions returned by the set of scripts P for the restricted units.2

The only different between Naı̈veMCTS and A3N is that in
the latter, the Naı̈veSampling procedure (see call to NS in
Algorithm 3) can only sample macro-arms that are in the
asymmetrically-abstracted tree.

Similarly to the search algorithms discussed above, A3N
can also benefit from searching within-states. This is achieved
by maintaining in memory the parts of the tree expanded by
A3N that are still reachable in the game. The time allowed for
planning using the within-states will serve to explore more
macro-arms and search deeper into the tree to obtain more
accurate estimates of the end-game values of the macro-arms.

1) Baselines for A3N: A1N and A2N: Similarly to the base-
lines introduced for GAB and SAB, we introduce two base-
lines for A3N: A1N and A2N. Both are based on Naı̈veMCTS,
with the former searching in uniformly-abstracted trees and
the latter searching in asymmetrically-abstracted trees. The
goal of introducing these baselines is to allow us to evaluate
empirically the effectiveness of the asymmetric abstractions in-
troduced above for A3N in comparison to uniform abstractions
induced by P and asymmetric abstractions induced by two sets
of scripts. A1N and A2N also use the A3N enhancement of
reusing the search tree expanded in previous states.

a) A1N: We call A1N a version of Naı̈veMCTS that uses
an action abstraction induced by P . The difference between
Naı̈veMCTS and A1N is in the unit-actions sampled by NS
while adding macro-arms to MABg . Instead of being able to
sample from all legal unit-actions, A1N’s is allowed to sample
only from M(s, u,P) for all units u. As a consequence, the
macro-arms added to MABg are restricted to the unit-actions
returned by the scripts.

b) A2N: We call A2N the version of Naı̈veMCTS that
uses an action abstraction defined by two sets of scripts: P ′
and P ′′. A2N divides the set of units into two subsets: the units
related to P ′ and the units related to P ′′. A2N can only sample
unit-actions m for the units u in the first group if m is returned
by one of the scripts in P ′ for u. The unit-actions A2N can
sample for the second group of units is defined analogously.
Note that the two subsets of units do not need to be disjoint as
some units can have actions sampled from both sets of scripts.

2The number ‘3’ in A3N is the version of the algorithm; versions 1 and 2
(A1N and A2N) are described in Section IV-B1.

TABLE I
MAPS USED IN OUR EXPERIMENTS. THE NAMES ARE AS THEY APPEAR IN
THE µRTS CODEBASE. WE ALSO SHOW THE SIZE OF THE MAPS AND THE

MAXIMUM NUMBER OF GAME CYCLES FOR MATCHES PLAYED IN EACH
MAP.

Map Name Size Number of Cycles

basesWorkers8x8A 8×8 3,000
FourBasesWorkers8x8 8×8 3,000
basesWorkers16x16A 16×16 4,000
TwoBasesBarracks16x16 16×16 4,000
basesWorkers24x24A 24×24 5,000
basesWorkers24x24ABarrack 24×24 5,000
basesWorkers32x32A 32×32 6,000
basesWorkersBarracks32x32 32×32 6,000
(4)BloodBathB 64×64 8,000
(4)BloodBathD 64×64 8,000

The action abstraction used by A2N is also asymmetric as the
number of scripts in each set can be different, allowing A2N
to derive finer plans to units in either group.

V. EMPIRICAL EVALUATION

We evaluate the algorithms proposed in this paper to search-
ing in asymmetrically-abstracted action spaces on µRTS [9].
Our empirical evaluation is divided into four parts. First,
we evaluate the effectiveness of searching in within-states
(Section V-A). Then, we evaluate different strategies for se-
lecting the set of unrestricted units (Section V-B). We then
evaluate GAB, SAB, and A3N against their baselines GAS,
GABP , SAS, SABP , A1N and A2N (Section V-C). Finally, we
compare GAB, SAB, and A3N against state-of-the-art search
algorithms for RTS games (Section V-D).

1) Empirical Setting for µRTS: In µRTS players need
to submit an action at every decision-point. Each player is
allowed 100 milliseconds for planning in each state of the
game (decision-point or within-state).

Every match in our experiments is limited by several game
cycles, and the match is considered a draw once the limit is
reached. The maximum number of game cycles is dependent
on the map. We use the limits defined by Barriga et al. [21].
Table I shows the name of the maps, their sizes, and the
maximum game cycles allowed. We use 10 maps of varied
sizes in our experiments, from small maps created for research,
to large maps used in commercial games (BloodBathB and
BloodBathD are copies of StarCraft’s BloodBath map).

Each tested algorithm plays against every other algorithm
ten times in each map. To ensure fairness, the players switch
their starting location on the map an even number of times.

The set of scripts used by PGS, SSS, GAB, SAB, and A1N
is worker rush (WR), light rush (LR), heavy rush (HR), and
ranged rush (RR) [4], [22]. A3N’s set of scripts is composed of
LR, HR, and RR. A3N uses a different set of scripts because
preliminary results showed that the algorithm tend to perform
better with LR, HR, and RR. We use LR as the default script
for PGS, SSS, GAB, and SAB. All these scripts train units
which are immediately sent to attack the enemy. The ABCD
algorithm used in GAB and SAB uses the technique called



TABLE II
WINNING RATE OF GABw, SABw, AND A3Nw AGAINST THEIR

BASELINES.

Algorithms Map Size
8×8 16×16 24×24 32×32 64×64

GABw × GAB 60.0 100.0 90.0 95.0 55.0
SABw × SAB 55.0 90.0 70.0 70.0 80.0
A3Nw × A3N 65.0 70.0 75.0 75.0 70.0

scripted move ordering to allow for more pruning during
search [13]. In our experiments, the ABCD search of GAB
and SAB first searches the actions returned by WR for maps
of size 8×8 and 16×16 and the actions returned by LR for
the other maps before considering other actions.

Our results will be reported in terms of winning rate. The
winning rate is computed by summing the total number of
victories and half of the number of draws of each algorithm
evaluated and then dividing this sum by the total number of
matches played; the result of the division is then multiplied
by 100.

A. Evaluating Within-State Search

In this section we evaluate empirically GABw, SABw,
and A3Nw against GAB, SAB, and A3N. When defining an
asymmetric action abstraction one needs to define a strategy
for selecting the set of unrestricted units at every state of
search. In this experiment we select player i’s unit that is
closest to an enemy unit as the only unrestricted unit. We
describe and evaluate several domain-specific strategies for
selecting unrestricted units in Section V-B. Table II shows the
winning rate of each within-state variant against their baseline.
The results are averaged by map size.

As expected, A3Nw defeats A3N on average on all map
sizes tested. The within-states versions of GAB and SAB
also defeat their baselines. Both GABw and SABw obtain
winning rates equal or larger than 70% against their baselines
in matches played on maps of size 16×16, 24×24, and 32×32.
The winning rates are lower for the smaller 8×8 map. This is
because the strategy encoded in the script WR is already very
strong in this map and both GAB and SAB play a strategy
that is similar to WR. GABw and SABw also play a strategy
similar to WR, but they are able to provide better control to
the units during combat, thus improving slightly the results.

Henceforth in this paper, all experiments with GAB, SAB,
A3N and their baselines are with the version of the algorithms
that search in within-states. We drop the ‘w’ from the algo-
rithms’ names to ease notation.

1) Within-State Version of Baselines: Given the strong
empirical results of the within-state version of GAB, SAB,
and A3N, we have also implemented the within-state versions
of all baselines, GAS, GABP , SAS, SABP A1N, and A2N.

B. Evaluating Strategies and Number of Unrestricted Units

Next, we describe and evaluate nine strategies for selecting
the unrestricted units. A selection strategy receives a state s

and a set size N and returns a subset of size N of the player’s
units. The selection of unrestricted units is dynamic as the
strategies can choose different unrestricted units at different
states. Ties are broken randomly in our strategies.

1) Farthest from Centroid (FC). FC selects the N units
that are farthest from the centroid of all player i’s units.

2) Closest to Centroid (CC). CC selects the N units that
are closest to the centroid of all player i’s units.

3) Closest to Enemy (CE). CE selects the N units that
are closest to an enemy unit at every decision-point.

4) Farthest from Enemy (FE). FE selects the N units that
are the farthest from an enemy unit.

5) Less life (HP-). HP- selects the N units with the lowest
hit points.

6) More life (HP+). HP+ selects the units with more hit
points at a given decision-point.

7) High Attack Value (AV+). Let av(u) = dpf(u)
hp(u) , where

dpf(u) is the amount of damage per game cycle a unit
can inflict to an enemy unit and hp(u) is u’s current
amount of hit points.

8) Low Attack Values (AV-). AV- selects the units with
the lowest av-values.

9) Random (R). R randomly selects N units. This strategy
serves as a baseline for the other strategies.

We evaluate GAB, SAB, and A3N with the nine strategies
described above for values of N ∈ {1, · · · , 10}. We compare
each algorithm with its baseline that searches in uniformly-
abstracted spaces, PGS, SSS, and A1N. Each algorithm plays
against its baseline ten times in each one of the ten maps.
Table III shows the average winning rate of the algorithms
for different strategies and values of N . The rows show the
strategies used for selecting the unrestricted set while the
columns show the size of the set.

We use a cell-coloring scheme in Table III to aid us
understand the results. In our color scheme, the lowest winning
rate in the table (17.5 for A3N with AV- and N = 8) has the
lightest color and the largest winning rate (82.0 for GAB with
AV- and HP- with N = 3) has the darkest color. The remaining
cell colors are chosen as a linear interpolation of the colors of
the two extremes.

All three algorithms tend to perform better with smaller
values of N (N ≤ 5). This is because for larger N the space
becomes too large to allow the algorithm to encounter strong
strategies under real-time constraints. Table III also shows that
the algorithms searching with asymmetric action abstractions
can outperform their baselines that search with uniform action
abstractions. The largest winning rate obtained by GAB, SAB,
and A3N are 82.0 (AV- or HP- with N = 3), 75.0 (FE with
N = 3), and 78.3 (FC with N = 4), respectively. GAB, SAB,
and A3N outperform their baselines even with the random
strategy with N = 1. Henceforth, we use GAB with HP- and
N = 3, SAB with with FE with N = 3 and A3N with FC
and N = 4. Next, we explain the results presented in Table III
using domain-dependent knowledge. The reader not interested
in the problem domain should skip to Section V-C.



TABLE III
WINNING RATE OF VARIANTS OF GAB AGAINST PGS IN 100 MATCHES
PLAYED IN 10 MAPS, 10 MATCHES FOR EACH MAP. THE ROWS DEPICT

DIFFERENT STRATEGIES (STR.) AND THE COLUMNS DIFFERENT
UNRESTRICTED SET SIZES (N ).

GAB vs. PGS

Strategy Unrestricted Set Size N
1 2 3 4 5 6 7 8 9 10

CC 59.0 59.5 47.0 57.0 43.0 46.0 43.0 44.0 45.5 45.5
FC 68.0 55.0 50.5 46.0 44.0 41.0 43.0 40.0 54.0 41.0
CE 67.5 68.0 62.0 60.5 59.0 53.0 50.0 43.5 49.0 56.5
FE 76.0 75.0 69.0 74.5 67.0 54.5 52.5 38.5 46.5 41.5
AV- 77.0 74.0 82.0 79.0 73.0 70.0 68.0 64.0 53.0 54.0
AV+ 69.0 71.0 76.0 74.0 70.0 77.0 74.5 57.5 55.5 67.0
HP- 68.0 72.0 82.0 76.0 66.0 73.0 65.5 63.0 67.0 61.0
HP+ 61.5 57.0 57.0 39.5 43.0 36.0 47.5 35.5 38.0 36.0
R 63.5 47.5 44.5 45.0 47.5 42.5 49.0 45.5 56.5 48.5

SAB vs. SSS

Strategy Unrestricted Set Size N
1 2 3 4 5 6 7 8 9 10

CC 65.0 66.5 54.0 57.0 50.0 60.0 59.0 58.0 61.0 57.0
FC 56.0 61.5 51.0 61.5 55.0 56.5 51.0 54.0 58.5 56.5
CE 72.0 60.0 56.0 60.5 54.0 56.0 55.0 51.5 55.0 48.0
FE 63.0 73.0 75.0 69.0 59.0 60.5 60.0 58.0 57.0 55.5
AV- 70.0 69.0 73.0 67.0 67.0 63.0 70.0 65.0 54.0 60.0
AV+ 66.0 74.0 72.0 71.0 71.0 68.0 65.5 66.0 61.5 61.5
HP- 71.5 71.0 72.0 67.0 61.0 67.5 59.0 69.0 66.0 68.0
HP+ 54.0 58.0 57.0 52.5 50.5 50.5 58.0 59.0 60.5 54.5
R 66.5 54.0 60.0 56.5 62.0 56.0 58.0 62.0 59.5 60.0

A3N vs. A1N

Strategy Unrestricted Set Size N
1 2 3 4 5 6 7 8 9 10

CC 69.6 59.2 57.1 57.5 59.2 54.2 51.3 41.3 37.5 40.0
FC 68.8 72.5 71.7 78.3 71.7 68.8 68.3 64.2 55.4 62.5
CE 72.5 69.2 75.4 71.7 77.9 75.0 72.1 63.3 57.1 57.1
FE 59.2 64.2 56.3 55.0 56.3 45.0 40.8 35.4 25.8 26.7
AV- 37.9 27.9 27.1 25.0 26.7 24.6 20.0 17.5 18.3 22.9
AV+ 21.7 40.4 48.8 65.0 60.8 56.7 62.1 60.8 57.1 56.7
HP- 24.2 38.3 55.4 58.3 59.2 57.9 60.8 64.6 61.7 51.7
HP+ 31.7 22.1 21.3 30.8 24.6 24.6 23.3 33.3 35.0 32.1
R 69.6 69.6 63.3 70.4 65.0 55.8 55.0 55.4 52.9 52.1

GAB performs best with AV- and HP-, two dissimilar
strategies. Strategy AV- allows GAB to provide a finer control
to bases and barracks, as these units minimize the AV-value
(they are unable to cause damage and have a large number
of hit points). Strategy HP- allows GAB to provide a finer
control to weaker units such as workers or combat units that
have suffered damage. SAB also obtains good results with
both AV- and HP-. These results are in contrast with A3N’s,
as A3N can be worse than A1N if using either AV- and HP-.

The discrepancy in results with the AV- strategy happens
because both GAB and SAB use scripts to sort the actions
explored in the ABCD search. For example, in maps of size
24×24, ABCD evaluates the action provided by the LR script
before any other action. The LR strategy builds a barracks
as soon as possible so that light units can be trained, and
a barracks can only be built if the player “saves” resources.
Due to the ABCD move ordering, both GAB and SAB are
able to evaluate the sequence of actions to successfully build

a barracks while using the AV- strategy. By contrast, A3N
does not employ a move ordering approach and the actions
needed to produce a barracks might not even be evaluated if
one considers all legal actions of bases and barracks (as it
happens with the AV- strategy). Moreover, A3N uses a play-
out function to evaluate actions that is shorter than the one
used by GAB and SAB. As a result, even if A3N evaluates the
action of building a barracks, the algorithm is shortsighted and
thus unable to perceive the value of building such a structure.
A3N also obtains poor results with strategy HP+ for exactly
same reasons just described.

The discrepancy of results of GAB/SAB and A3N with
strategy HP- can be explained by similar arguments. The
HP- strategy allows the algorithms to mostly control workers,
which are the units with the lowest hit point values. Workers
are usually either battling the opponent or collecting resources.
Due to its lack of move ordering, if providing a finer control
to workers collecting resources, A3N often mistakenly sends
such units to attack the opponent, thus interrupting their task.
The move ordering used by GAB and SAB’s ABCD search
allows the algorithms to not harm the player’s strategy for
resource gathering.

Strategies that are strong for GAB are also strong for SAB.
However, in contrast with GAB, SAB outperforms its baseline
with almost any strategy and value of N . This happens likely
because SAB has the weakest of the baselines. The SSS search
is more limited than PGS because it is constrained to a type
system. Thus, SAB’s ABCD search can more easily improve
upon the actions encountered by the algorithm’s first step.

A3N performs best with the CE and FC strategies. Both
strategies allow A3N to provide a finer control to units in
direct combat with the enemy. A3N performs better with these
strategies than GAB and SAB likely because A3N does not
assume a model of the opponent and is thus more robust
in combat scenarios. By contrast, GAB and SAB’s ABCD
search assume a model of the opponent and the algorithms
might perform poorly if the opponent follows a strategy that
is different than the one assumed during search.

C. Comparison with Baselines

In this section, we evaluate GAB, SAB and A3N against
their baselines PGS, GAS, GABP , SSS, SAS, SABP , A1N
and A2N. Table IV shows the results for GAB and SAB, while
Table V shows the results for A3N. The numbers in the tables
indicate the winning rate of the row player against the column
player.

All three algorithms, GAB, SAB, and A3N, outperform their
baselines. The results of GAB against GABP , SAB against
SABP , and A3N against A1N demonstrate that algorithms that
search with asymmetric action abstractions can substantially
outperform their counterparts that search with uniform ab-
stractions. The results of GAB against GAS and SAB against
SAS demonstrate that the two-step search scheme of GAB
and SAB can be effective as both GAS and SAS also search
in asymmetrically-abstracted action spaces—the algorithms
differ only in their search scheme. Finally, the superiority of



TABLE IV
WINNING RATE OF THE ROW PLAYER AGAINST THE COLUMN PLAYER.

COMPARISON OF GAB AND SAB WITH THEIR BASELINES.

PGS GAS GABP GAB Avg.

PGS - 78.5 84.0 19.0 60.5
GAS 21.5 - 52.0 8.0 27.2
GABP 16.0 48.0 - 20.0 28.0
GAB 81.0 92.0 80.0 - 84.3

SSS SAS SABP SAB Avg.

SSS - 85.0 73.0 26.0 61.3
SAS 15.0 - 27.5 8.0 16.8
SABp 27.0 72.5 - 26.0 41.8
SAB 74.0 92.0 74.0 - 80.0

TABLE V
WINNING RATE OF THE ROW PLAYER AGAINST THE COLUMN PLAYER.

COMPARISON OF A3N WITH ITS BASELINES.

A1N A2N A3N Avg.

A1N - 24.0 5.5 14.8
A2N 76.0 - 27.0 51.5
A3N 94.5 73.0 - 83.8

A3N against A2N demonstrates the effectiveness of generating
asymmetric action abstractions by having a set of unrestricted
units for which all unit-actions are considered during search.
A2N’s asymmetry relies on the strategies encoded in scripts as
all units are restricted to a set of scripts. By contrast, A3N’s
asymmetry allows the search procedure to discover strategies
different than those encoded in scripts by considering all unit-
actions for a small set of units.

D. Comparison with State-of-the-Art Algorithms

In this section we evaluate GAB, SAB, A3N against the
current state-of-the-art search-based methods for RTS games.
Namely, we test the following algorithms: Portfolio Greedy
Search (PGS) [7], Stratified Strategy Selection (SSS) [8],
Adversarial Hierarchical Task Network (AHT) [23], an algo-
rithm that uses Monte Carlo tree search and HTN planning;
Naı̈veMCTS [9] (henceforth referred as NS); the MCTS ver-
sion of Puppet Search (PS) [21], Strategy Tactics (STT) [24],
Strategy Creation via Voting (SCV) [4], and four hard-coded
scripts focused in rush, called Light rush (LR), Ranged rush
(RR), Heavy rush (HR), and Worker Rush (WR) [22].

Table VI shows the winning rate of the row player against
the column player. Overall, A3N wins more matches than
any approach tested, suggesting that if a large diversity of
maps and opponents are considered, then A3N is the current
state-of-the-art in µRTS. GAB is a close second place with
an average winning rate of 75.3. In terms of direct confronts
A3N obtains a winning lower than 50.0 only against STT;
GAB obtains a winning lower than 50.0 only against A3N.
SAB and STT obtain similar average winning rate, 65.4 and
67.1, respectively. Both A3N and STT are able to defeat the
weaker opponents by a large margin (e.g., both win almost
all matches against the script HR), but A3N is able to better

exploit stronger opponents such as PGS, SSS, SAB, and GAB.
A3N achieves a larger overall winning rate than STT because
of the results against these opponents.

The size of the search space of µRTS matches is mainly
defined by the structure and the size of the map in which
the matches take place. Matches played in smaller maps
tend to be quicker, with fewer units being controlled by the
players at any moment of the match. Matches played in larger
maps tend to take longer and the players control a larger
number of units, thus increasing size of the search space.
The distinction between small and large maps is important
because algorithms searching in unabstracted spaces tend to
perform better in smaller maps than algorithms that search
in uniformly-abstracted spaces. This is because the search
space is small enough for the algorithms to encounter strong
strategies while accounting for all legal actions. However, the
strategy of searching in unabstracted spaces does not scale
to large maps, where algorithms that search in uniformly-
abstracted spaces tend to perform better due to their search
being focused on the set of promising actions returned by
scripts. We hypothesize that asymmetric action abstractions
allow search algorithms to derive strong strategies in both
small and large maps.

VI. CONCLUSIONS

In this paper we introduced asymmetric action abstractions
for multi-unit zero-sum extensive-form games. We also intro-
duced A2N, A3N, GAB, and SAB, four search algorithms
for searching in asymmetrically-abstracted spaces. Similarly
to uniformly-abstracted spaces, asymmetric abstractions also
use domain-knowledge in the form of scripts. However, in
contrast with uniform abstractions, which restrict all units to
the unit-actions returned by the scripts, asymmetric action
abstractions restrict only a subset of the units—the restricted
units. Algorithms searching with asymmetric action abstrac-
tions account for all legal unit-actions of the remaining units—
the unrestricted units. As a result, the strategy derived by
search algorithms are focused on the unrestricted units, as
the algorithms are able to derive finer plans for such units.
Asymmetric action abstractions can be seen as an attention
scheme, where the search “pays more attention” to a subset
of units.

We evaluated our algorithms with an extensive set of exper-
iments on µRTS. Our results suggest that A3N is the current
state-of-the-art algorithm in this domain if one considers a
large diversity of maps and opponents, similarly to the setting
used in the µRTS annual competition [6]. If one considers
large maps such as those used in commercial games, then GAB
presented the strongest results. These algorithms were used to
develop a system that won the IEEE MicroRTS Competition
in 2018 in combination with techniques we developed for
inducing uniform action abstractions [5] .3

Although we performed our experiments on µRTS, the
ideas of this paper are general and could be applied to

3https://sites.google.com/site/micrortsaicompetition/competition-
results/2018-cig-results



TABLE VI
COMPARISON OF GAB, SAB, AND A3N WITH CURRENT STATE-OF-THE-ART SEARCH-BASED METHODS.

HR RAR AHT NS WR A1N SSS PGS PS SCV LR STT SAB GAB A3N Avg.

HR - 85.0 13.5 57.5 15.0 17.5 30.0 23.0 16.0 18.0 12.5 5.0 9.0 8.0 3.0 22.4
RAR 15.0 - 57.0 78.0 60.0 24.0 16.0 11.0 3.0 20.0 0.0 16.0 11.0 12.0 1.0 23.1
AHT 86.5 43.0 - 18.5 10.0 13.0 27.0 24.5 39.5 28.5 39.5 9.0 19.5 19.5 2.0 27.1
NS 42.5 22.0 81.5 - 41.0 35.0 22.0 20.0 28.0 26.5 20.0 20.0 27.0 23.0 6.5 29.6
WR 85.0 40.0 90.0 59.0 - 29.0 49.0 43.0 40.0 50.0 35.0 38.5 27.5 31.5 26.5 46.0
A1N 82.5 76.0 87.0 65.0 71.0 - 36.5 34.0 49.0 46.0 34.0 28.0 24.0 26.0 11.5 47.9
SSS 70.0 84.0 73.0 78.0 51.0 63.5 - 54.0 42.0 37.0 28.0 27.0 32.0 17.0 16.0 48.0
PGS 77.0 89.0 75.5 80.0 57.0 66.0 46.0 - 45.5 42.5 46.0 27.5 32.0 13.0 18.5 51.1
PS 84.0 97.0 60.5 72.0 60.0 51.0 58.0 54.5 - 42.5 47.0 30.0 29.0 26.0 28.5 52.9
SCV 82.0 80.0 71.5 73.5 50.0 54.0 63.0 57.5 57.5 - 61.0 40.5 44.0 34.5 23.5 56.6
LR 87.5 100.0 60.5 80.0 65.0 66.0 72.0 54.0 53.0 39.0 - 53.0 35.5 17.0 41.0 58.8
STT 95.0 84.0 91.0 80.0 61.5 72.0 73.0 72.5 70.0 59.5 47.0 - 53.0 29.0 52.5 67.1

SAB 91.0 89.0 80.5 73.0 72.5 76.0 68.0 68.0 71.0 56.0 64.5 47.0 - 36.5 23.0 65.4
GAB 92.0 88.0 80.5 77.0 68.5 74.0 83.0 87.0 74.0 65.5 83.0 71.0 63.5 - 47.5 75.3
A3N 97.0 99.0 98.0 93.5 73.5 88.5 84.0 81.5 71.5 76.5 59.0 47.5 77.0 52.5 - 78.5

other games. For example, in collectible card games such as
Hearthstone [25] and Magic: The Gathering [26] the player
has to decide on the action of several cards. Algorithms could
use asymmetric action abstractions to focus their search on
a subset of the cards. The ideas introduced in this paper
might also be applied in problems other than games. For
example, a robotic system that controls several actuators while
trying to accomplish a task can benefit from asymmetric action
abstractions. This is because some actuators might require a
finer control than the others.

REFERENCES

[1] R. O. Moraes and L. H. S. Lelis, “Asymmetric action abstractions for
multi-unit control in adversarial real-time scenarios,” in Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI,
2018, pp. 876–883.

[2] R. O. Moraes, J. R. H. Mariño, L. H. S. Lelis, and M. A. Nascimento,
“Action abstractions for combinatorial multi-armed bandit tree search,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. AAAI, 2018, pp. 74–80.

[3] R. O. Moraes, J. R. H. Mariño, and L. H. S. Lelis, “Nested-greedy search
for adversarial real-time games,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 2018,
pp. 67–73.

[4] C. R. Silva, R. O. Moraes, L. H. S. Lelis, and Y. Gal, “Strategy
generation for multi-unit real-time games via voting,” IEEE Transactions
on Games, 2018.

[5] J. R. Marino, R. O. Moraes, C. Toledo, and L. H. Lelis, “Evolving
action abstractions for real-time planning in extensive-form games,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 2330–2337.

[6] S. Ontañón, N. A. Barriga, C. R. Silva, R. O. Moraes, and L. H. Lelis,
“The first microrts artificial intelligence competition.” AI Magazine,
vol. 39, no. 1, 2018.

[7] D. Churchill and M. Buro, “Portfolio greedy search and simulation for
large-scale combat in StarCraft.” in Proceedings of the Conference on
Computational Intelligence in Games. IEEE, 2013, pp. 1–8.

[8] L. H. S. Lelis, “Stratified strategy selection for unit control in real-
time strategy games,” in International Joint Conference on Artificial
Intelligence, 2017, pp. 3735–3741.

[9] S. Ontañón, “Combinatorial multi-armed bandits for real-time strategy
games,” Journal of Artificial Intelligence Research, vol. 58, pp. 665–702,
2017.

[10] D. Churchill and M. Buro, “Hierarchical portfolio search: Prismata’s
robust AI architecture for games with large search spaces,” in AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, 2015, pp. 16–22.

[11] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[12] M. Campbell, A. Hoane, and F. hsiung Hsu, “Deep blue,” Artificial
Intelligence, vol. 134, no. 1, pp. 57 – 83, 2002.

[13] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for RTS
game combat scenarios.” in Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 2012.

[14] L. Atkin and D. Slate, “Computer chess compendium,” D. Levy,
Ed. Berlin, Heidelberg: Springer-Verlag, 1988, ch. Chess 4.5-
The Northwestern University Chess Program, pp. 80–103. [Online].
Available: http://dl.acm.org/citation.cfm?id=61701.67010

[15] A. L. Zobrist, “A new hashing method with application for game
playing,” 1990.

[16] R. E. Korf, “Macro-operators: A weak method for learning,” Artificial
Intelligence, vol. 26, no. 1, pp. 35–77, 1985.

[17] J. E. Laird, P. S. Rosenbloom, and A. Newell, “Chunking in soar: The
anatomy of a general learning mechanism,” Machine Learning, vol. 1,
no. 1, pp. 11–46, 1986.

[18] G. A. Iba, “A heuristic approach to the discovery of macro-operators,”
Machine Learning, vol. 3, no. 4, pp. 285–317, 1989.

[19] R. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
Intelligence, vol. 112, pp. 181–211, 1999.

[20] M. C. Machado, M. G. Bellemare, and M. Bowling, “A laplacian frame-
work for option discovery in reinforcement learning,” in Proceedings of
the International Conference on Machine Learning, 2017, pp. 2295–
2304.

[21] N. A. Barriga, M. Stanescu, and M. Buro, “Game tree search based
on non-deterministic action scripts in real-time strategy games,” IEEE
Transactions on Computational Intelligence and AI in Games, 2017.

[22] M. Stanescu, N. A. Barriga, A. Hess, and M. Buro, “Evaluating real-
time strategy game states using convolutional neural networks,” in
Computational Intelligence and Games (CIG), 2016 IEEE Conference
on. IEEE, 2016, pp. 1–7.

[23] S. Ontañón and M. Buro, “Adversarial hierarchical-task network plan-
ning for complex real-time games,” in Proceedings of the International
Joint Conference on Artificial Intelligence, 2015, pp. 1652–1658.

[24] N. A. Barriga, M. Stanescu, and M. Buro, “Combining strategic learning
and tactical search in real-time strategy games,” The AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 2017.

[25] A. Dockhorn and S. Mostaghim, “Introducing the hearthstone-ai com-
petition,” 2019.

[26] C. D. Ward and P. I. Cowling, “Monte carlo search applied to card
selection in magic: The gathering,” in Proceedings of the International
Conference on Computational Intelligence and Games. IEEE Press,
2009, pp. 9–16.

http://dl.acm.org/citation.cfm?id=61701.67010

	Introduction
	Background
	Search Algorithms for Unabstracted Trees
	Alpha-Beta Considering Durations (ABCD)
	Naïve Monte Carlo Tree Search (NaïveMCTS)

	Search Algorithms for Uniformly-Abstracted Trees
	Uniform Action Abstractions
	Portfolio Greedy Search
	Stratified Strategy Selection


	Asymmetric Action Abstractions
	Searching in Asymmetrically-Abstracted Game Trees
	Greedy and Stratified Alpha-Beta Searches (GAB and SAB)
	Searching in Within-States
	Baselines for GAB and SAB: GABP, SABP, GAS, and SAS

	Asymmetrically Action-Abstracted NaïveMCTS (A3N)
	Baselines for A3N: A1N and A2N


	Empirical Evaluation
	Empirical Setting for RTS
	Evaluating Within-State Search
	Within-State Version of Baselines

	Evaluating Strategies and Number of Unrestricted Units
	Comparison with Baselines
	Comparison with State-of-the-Art Algorithms

	Conclusions
	References

