Brake jet calculation

Braking time measured at site ($\sim 29 \mathrm{~min}$)

Guaranteed value $=12 \mathrm{~min}$

Sketch

Motivation

Understand the assumptions of the following equation used to determine the diameter of the brake jet (d) in [m].
$d=\frac{10^{-2}}{\sqrt{z_{d}}} \sqrt{\frac{0.011 \times G D^{2} \times n \times 0.85}{\left(0.189 H+0.00109 \sqrt{H} D_{1} n\right) D_{1} t_{f}}}$
Where:
z_{d} is the number of brake jets [-], $G D^{2}$ is $4 \times$ the rotating parts moment of inertia (J) [kg. m^{2}],
n is the rotational speed which the brake jet is activated [rpm],
H is the head available for the brake jet [mWC],
D_{1} the runner bucket center diameter [m],
t_{f} is the time required to stop the rotating parts after the brake jet is activated [s].

Deceleration of rotating parts

If the moment of inertia of the rotating parts is constant.
$T=J \frac{d \omega}{d t}$
Where:
T is the total torque. For this mathematical model, just the torque due to the brake jet [N.m],
ω is the angular velocity [rad/s]
t is the time [s].
If ω is zero at the final instant $t_{f}, \quad \int_{0}^{t_{f}} T d t=J \omega_{i}$
Where ω_{i} is the initial angular velocity.

Torque due to the brake jet

$T=z_{d} \eta \rho Q D_{1}(V+u)$
η is the efficiency of the brake jet [-],
ρ is the water specific mass $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$,
Q is the flow through the brake jet [$\mathrm{m}^{3} / \mathrm{s}$],
V is the brake jet velocity [m / s],
u is the Pelton runner tangential speed at $D_{1}[\mathrm{~m} / \mathrm{s}]$.
And $u=\omega \frac{D_{1}}{2}$, therefore:
$z_{d} \eta \rho Q D_{1} \int_{0}^{t_{f}}\left(V+\omega \frac{D_{1}}{2}\right) d t=J \omega_{i}$

Torque due to the brake jet

$z_{d} \eta \rho Q D_{1} V \int_{0}^{t_{f}} d t+z_{d} \eta \rho Q D_{1} \frac{D_{1}}{2} \int_{0}^{t_{f}} \omega d t=J \omega_{i}$
The $\int_{0}^{t_{f}} \omega d t$ depends on how the rotating parts speed varies with the time (see two next slides). If a linear variation is assumed

$$
\int_{0}^{t_{f}} \omega d t=\frac{\omega_{i}}{2} t_{f}
$$

And
$z_{d} \eta \rho Q D_{1} V t_{f}+z_{d} \eta \rho Q D_{1} \frac{D_{1}}{2} \frac{\omega_{i}}{2} t_{f}=J \omega_{i}$
$\left(z_{d} \eta \rho Q V+z_{d} \eta \rho Q \frac{D_{1}}{2} \frac{\omega_{i}}{2}\right) D_{1} t_{f}=J \omega_{i}$

Deceleration curve

Example from Project A calculation - Rated speed

Obs. If the brake jet is not deactivated at 154 rpm and the mechanical brake is not used, braking time becomes $\sim 465 \mathrm{~s}$.

Using the formula on slide 12, calculated braking time is 643 s .

Difference is due to ventilation and bearing losses which are neglected on this mathematical model.

Formula on slide 4 yields 279 s.

Deceleration curve

Example from Project A calculation - Runaway speed

Obs. If the brake jet is not deactivated at 153 rpm and the mechanical brake is not used, braking time becomes $\sim 635 \mathrm{~s}$.

Using the formula on slide 12, calculated braking time is 995 s .

Difference is due to ventilation and bearing losses which are neglected on this mathematical model.

Formula on slide 4 yields 435 s .

Torque due to the brake jet

$V=\alpha \sqrt{2 g H}$, where:
α is the brake jet coefficient of velocity [-],
g is the acceleration of gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right]$.
$Q=\alpha \sqrt{2 g H} \frac{\pi d^{2}}{4}$
$\left(z_{d} \eta \rho \alpha^{2} 2 g H \frac{\pi d^{2}}{4}+z_{d} \eta \rho \alpha \sqrt{2 g H} \frac{\pi d^{2}}{4} \frac{D_{1}}{2} \frac{\omega_{i}}{2}\right) D_{1} t_{f}=J \omega_{i}$
$d^{2} z_{d}=\frac{J \omega_{i}}{\left[\left(\eta \rho \alpha^{2} 2 g \frac{\pi}{4}\right) H+\left(\eta \rho \alpha \sqrt{2 g} \frac{\pi}{4} \frac{1}{4}\right) \sqrt{H} D_{1} \omega_{i}\right] D_{1} t_{f}}$

Final formula for brake jet diameter

$$
\begin{array}{ll}
\omega_{i}=\frac{2 \pi n}{60}=\frac{\pi n}{30} & \begin{array}{l}
\text { Constants from } \\
\text { Project A calculation: }
\end{array} \\
& \eta=16 \% \\
d^{2} z_{d}=\frac{\pi}{\left[\left(\frac{\pi}{2} \eta \rho \alpha^{2} g\right) H+\left(\sqrt{2} \frac{\pi^{2}}{480} \eta \rho \alpha \sqrt{g}\right) \sqrt{H} D_{1} n\right] D_{1} t_{f}} & \alpha=0.96
\end{array}
$$

$$
d=\frac{1}{\sqrt{z_{d}}} \sqrt{\frac{\frac{\pi}{30} J n}{\left[\left(\frac{\pi}{2} \eta \rho \alpha^{2} g\right) H+\left(\sqrt{2} \frac{\pi^{2}}{480} \eta \rho \alpha \sqrt{g}\right) \sqrt{H} D_{1} n\right] D_{1} t_{f}}}
$$

Obs. This formula gives the same numerical results as the formula on slide 4 only if $\eta=37 \%$.

Final formula for braking time

For a given d, t_{f} can be calculated as:

$$
t_{f}=\frac{\frac{\pi}{30} J n}{\left[\left(\frac{\pi}{2} \eta \rho \alpha^{2} g\right) H+\left(\sqrt{2} \frac{\pi^{2}}{480} \eta \rho \alpha \sqrt{g}\right) \sqrt{H} D_{1} n\right] D_{1} d^{2} z_{d}}
$$

Dúvidas?

Obrigado.

ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO

