Introduction – Optimization techniques applied to projects of mechanical parts

PMR - 5215 – Optimization applied to projects of mechanical systems

Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Thiago Martins Escola Politécnica da USP

Departamento de Engenharia Mecatrônica e Sistemas Mecânicos

Presentation outline

- Introduction
- Parametric optimization
- Shape optimization
- Topology optimization (OT)
- Industrial applications of topology optimization

Consider the following problem: to maximize the stiffness of an automobile car chassis?

Parameters that may be altered:

- width of reinforcers (b₁, b₂)
- moment of inertia of the reinforcers (I);
- distance between reinforcers (L₁ e L₂);
- position of the reinforcers (L₃ e L₄);
- sheet thickness at different points (h₁,h₂)
- chassis material (E);

Total: 10 parameters subject to modification Suppose that each parameter may adopt 10 fixed values.

Prof. Dr. Emilio C. Nelli Silva

4

What is optimization concerned with?

First approach to solve the problem:

- Analysis
- Execute analysis for each combination of parameters b1, b2, L1, L2, etc.;
- Plot the performance of each parameter;
- Find the combination of parameters that offers the best performance.

Consequences of the analysis-based approach:

Considering only 3 parameters → analysis of 10³ combinations of parameters. If the time spent for each analysis=0,1 s → Total time: 100s

Now considering only 10 parameters → analysis of 10¹⁰ Combinations of parameters. If the time spent for each analysis = 10s → Total time =

10¹¹s = 3200 anos!!

This approach is unfeasible for a large number of parameters!!

Prof. Dr. Emilio C. Nelli Silva

6

What is optimization concerned with?

Second approach:

Optimization (or Synthesis)

- Use of computational methods that search, in a rational way, an optimal solution;
- Renders the search for the optimal point automatic and systematic, i.e., independent of the experience of the designer;
- The time required for the solution of the previous problem/ would be shortened to a few hours, for example.

Basic definition of an optimization problem

Minimize (or Maximize)Objective Function (stiffness,
(project variables)resonance frequency, etc.)

Subject toRestrictions (maximum mass or volume,
displacement, mechanical tension, etc...)

Project variables (parameters subject to modification during the optimization):

- part dimensions;
- curve parameters representative of the part shape;
- material distribution of a part;

Prof. Dr. Emilio C. Nelli Silva

History of Optimization in Mechanical Engineering⁸

There was no evolution in studies of structural optimization. Only academic problems with no practical application were treated.MaxwellMichell		Development of FEM: Practical problems started to be studied with optimization.	
1872 1904		1	960 1970
1970	1	1980 19	990 up to now
 New algor emerge for optimization nonlinear Shape option introduced 	rithms on of problems; imization is l.	 Commercial software become available for structural optimization; The method of topology optimization is developed (TO). 	 TO is implemented in commercial software; TO is extended to multiple areas of engineering: electrical, fluids, etc

• "The limits of economy of material in frame structures", (1904)

History of Optimization in Mechanical Engineering ¹⁰

Design Optimization Impact

Available Optimization Techniques ¹²

Consider the following problem:

Find the structure that:

Minimizes Compliance (or maximizes stiffness) *subject to* Restriction on volume of material

Available Optimization Techniques

Parametric Optimization

13

Project variables: dimensions above

Prof. Dr. Emilio C. Nelli Silva

Parametric Optimization

Results obtained with an optimization software that uses finite elements:

Parameters	Initial value	Optimal value
Width <i>b</i>	0.08 m	0.08 m
angle θ_2	2.10 rad	1.92 rad
Ratio <i>a/r</i>	0.75	0.755
Drum's thickness t	0.010 m	0.020 m
Force F	2815 N	2086 N
Breaking time <i>tm</i>	7.04 s	7.00 s
Maximum temperature T	348.7°C	229.2°C
Drum's volume V	754 cm^3	1590 cm ³

Project of an automobile breaking system

Parametric optimization

Parametric optimization

Min Axis mass subject to Restrictions on buckling mechanical stress Restrictions on critical frequency respose

Results obtained with an optimization software used together with an analytical model of the axis:

	Steel	Composite
Radius r _i , cm	12.7	6.91
Thickness t_1 , cm	0.1258	0.3834
Thickness t, cm		0.0396
Thickness t cm		0.0396
The kness t_3 , em	· · ·	0.0
Thickness t_4 , cm	».	8.6
Layer angle θ , degrees	12.03	4.90
Mass, Kg		

18

Shape optimization

- Alters only the structure's shape, and does not allow to find new 'hole' in the domain;
- Project variables are coordinated by grid nodes of FEM or curve coefficients representative of the structure's shape (e.g., 'spline' curves);
- Requires techniques for FEM grid update, because it is distorted during optimization;

Prof. Dr. Emilio C. Nelli Silva

20

Shape optimization

Typical procedure:

Topology Optimization (TO)

Topology optimization (TO) combines:

- Finite Element Methods (FEM);
- Optimization algorithms (mathematical programming, etc....);

To find an optimal distribution of material for a **fixed** domain.

Example

Find the structure of the domain below that: *Minimizes* Compliance *Subject to* Volume restriction Symmetry (only half of the domain is considered) ? Prof. Dr. Emilio C. Nelli Silva

Prof. Dr. Emilio C. Nelli Silva

Prof. Dr. Emilio C. Nelli Silva

XXI century – Optimized projects

Project of a 3D bridge:

Prof. Dr. Emilio C. Nelli Silva

30

How it all started...

M. P. Bendsøe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method", Computer Methods in Applied Mechanics and Engineering 71, pp.197–224, 1988.

Noboru Kikuchi

In 2018 it was celebrated 30 years!!!

Example (First Industrial Applications)

"MBB Beam - Messerschmitt-Bolkow-Blohm" – Airbus 319 (1989)

Topology Optimization

Final Design

	Volume	Deflection	Max. Stress	Weight Reduction
Initial, unfeasible design	1.07	10.1	292	
Parametric optimization	1.02	10.1	248	4.7%
Shape optimization	0.95	10.1	372	11.2%
Topology optimization	0.65	10.1	227	39.2%
Final design	0.58	10.1	305	45.7%

Prof. Dr. Emilio C. Nelli Silva

32

Examples

"MBB - Messerschmitt-Bolkow-Blohm" beam

Examples

Check out: http://www.topopt.dtu.dk.

Prof. Dr. Emilio C. Nelli Silva

Example

Example

Aluno: James Edward Shooter Prof. Dr. Emilio C. Nelli Silva

Optimal sheet reinforcement with maximal ratio stiffness/volume

Loads

Optimized reinforcement

(Bendsoe&Kikuchi 1988)

Initial project

Optimized project

(Bendsoe&Kikuchi 1988)

Prof. Dr. Emilio C. Nelli Silva

Example results of OT application to trusses ⁴²

Industrial applications

Example 2: Truck front suspension arm.

Topography Optimization

Cortesia Altair Engineering, Inc., Michigan, EUA Prof. Dr. Emilio C. Nelli Silva

Topography optimization

Comparison of performance amongst the solutions

46

Solution	Max. Deflection	Max. Stress
Optimized	1.17	196
X-shaped	2.23	267
X-shaped with flange	4.41	644
X-shaped with rigid border	10.57	520
Corner-to-corner	6.47	434

Cortesia Altair Engineering, Inc., Michigan, EUA Prof. Dr. Emilio C. Nelli Silva

- The domain occupied by the weld is discretised by finite elements, in the case of continuous welding (ACM), as much as in the case of point by point (MIG)
- This domain is defined as project domain in topology optimization.

Prof. Dr. Emilio C. Nelli Silva

Example

- Model: fixed beam subject to flexion and torsion.
- Initial configuration: 34 MIG welds - weld domain was discretised by 260 solid elements.

Objective: Keep the same original stiffness, restricting the volume fraction of solid elements that comprise the weld in 30%.

Cortesia Altair Engineering, Inc., Michigan, EUA Prof. Dr. Emilio C. Nelli Silva

Results

Industrial applications

Topology Optimization of Fluids

Impeller Optimization

Optimized Project in Engineering

Vehicle

Prof. Dr. Emilio C. Nelli Silva

70

Large Scale Structures

Qatar Convention Center (2008)

Optimized Project in Engineering

Soccer stadium

Prof. Dr. Emilio C. Nelli Silva

Optimized Project in Engineering

Optimization using Smartphones

TopOpt:

http://www.topopt.mek.dtu.dk

Optimization using Smartphones

TopOpt 3D:

http://www.topopt.mek.dtu.dk

• Classification of the Types of Structures in Optimization:

Prof. Dr. Emilio C. Nelli Silva

60

Basic definitions

• Project variables ("Design Variables"): parameters that might be altered in the optimization procedure.

* Continuous variables	$\int - \text{Distributed parameter:} \\ A(x) \Rightarrow \text{Area function}$		
(more usual)	- Discrete parameter:		
	A_1, A_2, \dots, A_n where A_i assume		
	any real value.		
* Discrete variables:	$A_i \in \{1 \ 1,5 \ 3,2 \ 5,7\}$ (isolated values)		
The solution employs methods based on the theory of			
Integer Programming \rightarrow Complex algorithms and			
	problems of difficult solution.		

Basic definitions

Objective function (OF): specifies what is desirable to be optimized.

Formulation of objective function We must be capable of expression what we want mathematically. Ex.: displacements, stiffness, resonance frequency, mechanical stress, etc... Beware: How can we express objective functions like drivability and safety of a vehicle??

Basic definitions

- Types:
- * Lateral: $x_{\min_i} \le x_i \le x_{\max_i}$ i=1..n* Inequality: $g_j(\mathbf{x}) \ge 0$ $j=1..n_g$ where: * Equality: $h_k(\mathbf{x}) = 0$ $k=1..n_e$ $\mathbf{x} = \{x_1, x_2, x_3, ..., x_n\}$

- With respect to $h_j(\mathbf{x}) = 0 \begin{cases} * \text{ Complex implementation in some nonlinear optimization algorithms;} \\ * \text{ In general, it may be transformed:} \\ h_k(\mathbf{x}) \le 0 \text{ and } h_k(\mathbf{x}) \ge 0 \end{cases}$

- Constraints must be normalized to avoid numerical issues:

$$g_j(\mathbf{x}) \le g_{\max_j} \Rightarrow \frac{g_j(\mathbf{x})}{g_{\max_j}} \le 1 \Rightarrow \overline{g}_j(\mathbf{x}) - 1 \le 0$$

- One must refrain from using large n_g and n_e

Prof. Dr. Emilio C. Nelli Silva

Basic definitions

Constraints classification:

Local: mechanical stress and displacements at a point;

* Global: material volume, stiffness and response frequency

State of an inequality constraint:

```
Active: g_i(\mathbf{x}) = 0
```

```
Inactive: g_i(\mathbf{x}) > 0
```

At the end of the optimization active constraints. Inactive constraints may be removed from the initial optimization problem.

Measure of importance of a constraint: Lagrange Multipliers (λ_i)

If: $\lambda_i = 0 \Rightarrow$ inactive constraint (unnecessary) $\lambda_i \neq 0 \Rightarrow$ active constraint (necessary)

Single out important constraints

Basic definitions

Formulation of the Optimization Problem:

Minimize	$f(\mathbf{x})$	
Subject to	$g_j(\mathbf{x}) \ge 0$	$j = 1n_g$
	$\mathbf{h}_{\mathbf{k}}(\mathbf{x}) = 0$	$k = 1n_{e}$

An optimization problem is linear if:

$$f(\mathbf{x}) = c_1 x_1 + c_2 x_2 + ... + c_n x_n;$$
 $g_j(\mathbf{x}) = d_1 x_1 + d_2 x_2 + ... + d_n x_n;$

and:
$$h_k(\mathbf{x}) = b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Otherwise it is nonlinear.

If linear, it may be solved with a linear programming method.

Prof. Dr. Emilio C. Nelli Silva

• Feasible and unfeasible domain:

