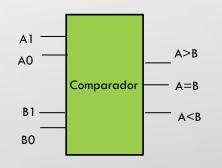


RESOLUÇÃO DE EXERCÍCIOS


COMPARADOR

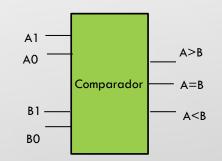
Exercício 1:Comparador de duas palavras de 2 bits com m saídas A = B, A > B e A < B

Resolução:

			30.03					
)	A1	Α0	B1	ВО	A=B	A>B	A <b< th=""><th>mint</th></b<>	mint
	0	0	0	0	1	0	0	0
	0	0	0	1	0	0	1	1
	0	0	1	0	0	0	1	2
	0	0	1	1	0	0	1	3
	0	1	0	0	0	1	0	4
	0	1	0	1	1	0	0	5
	0	1	1	0	0	0	1	6
	0	1	1	1	0	0	1	7
	1	0	0	0	0	1	0	8
	1	0	0	1	0	1	0	9
	1	0	1	0	1	0	0	10
	1	0	1	1	0	0	1	11
	1	1	0	0	0	1	0	12
)	1	1	0	1	0	1	0	13
	1	1	1	0	0	1	0	14
	1	1	1	1	1	0	0	15

S1 =
$$(A=B)=\Sigma(0,5,10,15)$$

S2 = $(A>B) = \Sigma$
 $(4,8,9,12,13,14)$
S3 = $(A$



Exercício $N^{\circ}1$ Comparador de duas palavras de 2 bits com m saídas A = B, A > B e A < B

Resolução:

)	A1	A0	B1	ВО	A=B	A>B	A <b< td=""><td>mint</td></b<>	mint
	0	0	0	0	1	0	0	0
	0	0	0	1	0	0	1	1
	0	0	1	0	0	0	1	2
	0	0	1	1	0	0	1	3
	0	1	0	0	0	1	0	4
	0	1	0	1	1	0	0	5
	0	1	1	0	0	0	1	6
	0	1	1	1	0	0	1	7
	1	0	0	0	0	1	0	8
	1	0	0	1	0	1	0	9
	1	0	1	0	1	0	0	10
	1	0	1	1	0	0	1	11
	1	1	0	0	0	1	0	12
)	1	1	0	1	0	1	0	13
	1	1	1	0	0	1	0	14
	/1	1	1	1	1	0	0	15

S1 =
$$(A=B)=\Sigma(0,5,10,15)$$

S2 = $(A>B) = \Sigma$
 $(4,8,9,12,13,14)$
S3 = $(A$

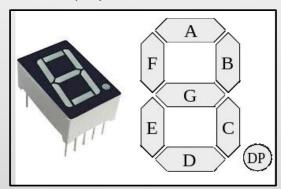
Simplificando por Karnaugh, obtém-se:

$$S1 = A1.\overline{B1} + A1.A0.\overline{B0} + A0.\overline{B1}.\overline{B0}$$

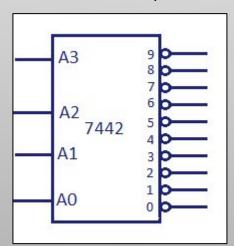
$$S2 = A1.\overline{B1} + A1.A0.\overline{B0} + A0.\overline{B1}.\overline{B0}$$

$$S1 = \overline{A1}.B1 + \overline{A1}.\overline{A0}.B0. + \overline{A1}.B1.B0$$

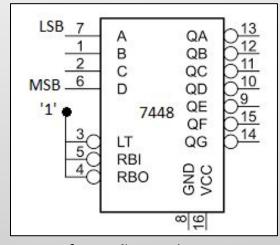
Exercício N°2: Implemente um circuito lógico com 4 variáveis de entrada (A B C D) e 4 saídas (S3 S2 S1 S0) tal que:

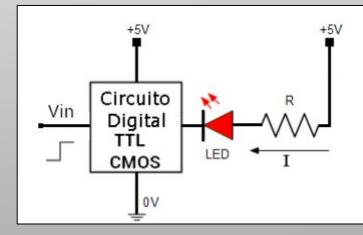

- quando a entrada for $\leq (1001)b$ a saída seja igual à entrada;
- quando a entrada for > (1001)b a saída seja igual à entrada somada ao valor (0110)b.

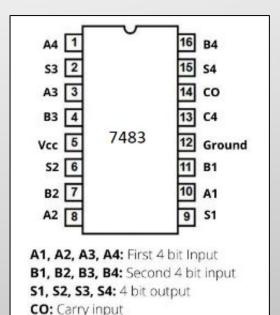
Mostre o resultado em um display de 7 segmentos catodo comum, e o overflow ligue em um LED na configuração anodo comum. Utilize portas lógicas básicas (se necessário) e Cls comerciais com aplicação específica.


Exercício N°2 :

- quando a entrada for $\leq (1001)b$ a saída seja igual à entrada;
- quando a entrada for > (1001)b a saída seja igual à entrada somada ao valor (0110)b.
 Cls comerciais a serem utilizados:


Display catodo comum


Decodificador BCD para Decimal



Decodificador BCD para display 7 segmentos catodo comum

LED configuração anodo ciomum

Somador completo

De 2 palavras de 4 bits

C4: Carry output

Exercício N°2 : (continuação)

Decodificador BCD para Decimal

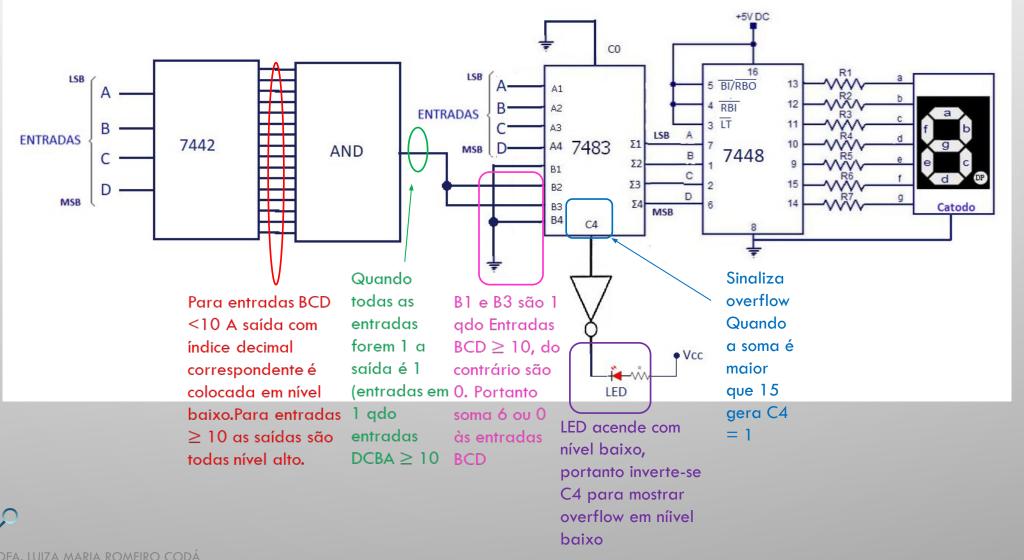
Connection Diagram Dual-In-Line Package 7442 OUTPUTS

Function Table

No.	BCD Inputs				Decimal Outputs									
	D	C	В	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	н	Н	Н	Н	Н	Н	н	н	Н
1	L	L	L	Н	H	L	Н	Н	H	Н	Н	H	Н	Н
2	L	L	H	L	Н	H	L	H	Н	Н	H	H	Н	H
3	L	L	Н	Н	Н	н	H	L	Н	Н	H	H	н	Н
4	L	H	L	L	Н	Н	Н	H	L	Н	Н	Н	Н	Н
5	L	Н	L	н	н	н	Н	н	Н	T	н	н	н	Н
6	L	H	H	L	н	н	H	H	H	H	L	H	Н	H
7	L	H	Н	Н	н	H	Н	Н	Н	Н	H	L	Н	Н
8	н	L	L	L	н	н	Н	Н	н	Н	Н	H	L	Н
9	Н	L	L	Н	н	н	Н	Н	н	Н	H	Н	H	L
1														
	Н	Ŀ	Н	L	H	Н	Н	н	н	н	Н	Н	Н	Н
N V	Н	L	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
A	Н	Н	L	L	н	н	н	н	Н	Н	Н	Н	Н	Н
Ĺ	н	Н	L	н	н	н	Н	н	Н	Н	Н	Н	н	Н
ī	н	H	Н	L	Н	H	H	Н	H	Н	H	Н	Н	Н
D	н	H	H	H	н	н	H	H	H	н	H	H	H	Н

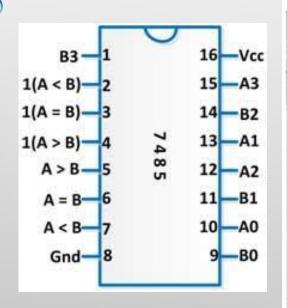
Sai zero nas saídas decimais

Exercício N°2 : Resolução


D	С	В	A	OV	S	3	S2	S1	S0
0	0	0	0	1)	0	0	0
0	0	0	1	1	()	0	0	1
0	0	1	0	1	()	0	1	0
0	0	1	1	1	()	0	1	1
0	1	0	0	1	()	1	0	0
0	1	0	1	1	()	1	0	1
0	1	1	0	1	()	1	1	0
0	1	1	1	1	()	1	1	1
1	0	0	0	1		1	0	0	0
1	0	0	1	1		1	0	0	1
1	0	1	0	0)	0	0	0
1	0	1	1	0	()	0	0	1
1	1	0	0	0)	0	1	0
1	1	0	1	0	()	0	1	1
1	1	1	0	0	()	1	0	0
1	1	1	1	0)	1	0	1

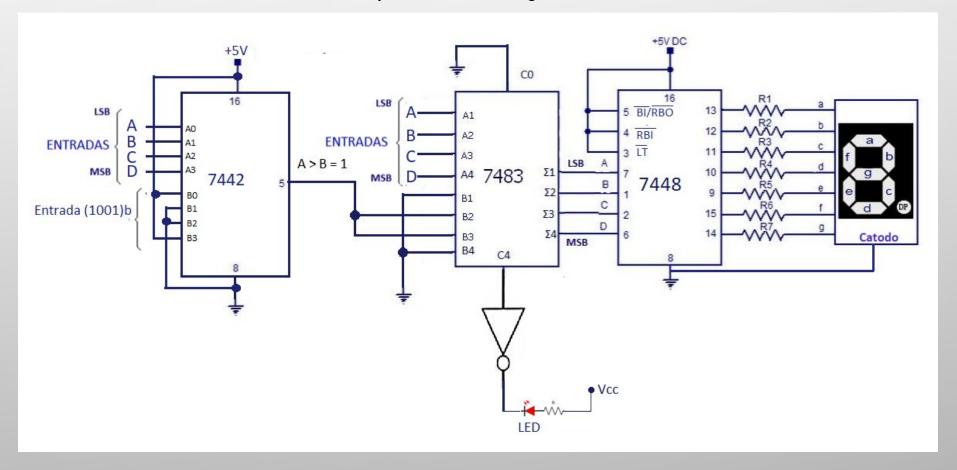
Entradas \geq (1001)b

Soma $(0110)b = 6_{10}$


Exercício N°2: Resolução

1^a Maneira:

Exercício N°2 : Resolução


2ª Maneira: utilizando um Comparador de magnitude

			FU	NCTION TAB	LE					
		ARING UTS			CASCADING INPUTS		OUTPUTS			
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = 8	
A3 > B3	X	X	×	Х	X	Х	н	L	L	
A3 < B3	×	×	×	x	X	X	L	н	L	
A3 = B3	A2 > B2	×	×	×	X	X	н	L	L	
A3 = B3	A2 < B2	×	×	х	×	×	L	н	L	
A3 = B2	A2 = B2	A1 > B1	×	x	×	×	н	L	L	
A3 = B3	A2 = B2	A1 < B1	×	×	×	×	L	н	L	
A2 = B3	A2 = B2	A1 = B1	A0 > B0	×	×	×	н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 < B0	×	×	×	L	н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	L	L	н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	×	x	н	L	L	н	
A3 = B3	A2 = B2	A1 = B1	AO = BO	н	н	L	L	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L_	L	н	н	L	

Exercício N°2 : Resolução

2ª Maneira: utilizando um Comparador de magnitude

