PSI3031 – Lab. Circuitos Elétricos. Prof. Hae Aula introdutória da exp. 6: Amplificadores Operacionais

Amplificador Operacional

Um amplificador operacional (abreviado AmpOp) está representada na Figura 1a. Ele possui 5 terminais:

- a) O terminal "V+" é a entrada "não inversora";
- b) O terminal "V-" é a entrada "inversora";
- c) Vo é a tensão de saída do AmpOp, medida em relação à referência 0 (terra);
- d) +Vcc e –Vcc são as tensões de alimentação em CC (normalmente simétricas).

 V_{id} é a tensão diferencial entre V+ e V-, isto é, V_{id} = $V_+ - V_-$.

Note que a terra (tensão nula) não está ligada ao AmpOp.

O circuito integrado 741 (figura 1) é um amplificador operacional muito popular. No caso de 741, a alimentação $\pm V_{CC}$ recomendada é de $\pm 5V$ a $\pm 15V$. "NC" significa "não conectado".

Figura 1: (a) Representação esquemática de um AmpOp. (b) A pinagem do circuito integrado 741. (c) Um chip 741 real – o semicírculo indica o pino 1.

Existem várias variações de 741, entre as quais:

- LM741: Fabricado por National Semiconductors (agora parte de Texas Instruments).
- UA741: Fabricado por Texas Instruments.
- LM741C: Versão de 741 com melhor resposta em frequência.
- LM741H: Versão de 741 para alta temperatura.
- LM358: CI com 2 AmpOps 741.
- LM348: CI com 4 AmpOps 741.
- etc, etc.

Além dos 5 terminais comuns a um AmpOp, 741 possui mais dois terminais para ajustar "offset". Isto é, fazer com que a saída seja zero quando a tensão diferencial de entrada for nula. Manteremos esses terminais desconectados. Se quisesse fazer ajuste de offset, deveria usar o circuito como na figura 2.

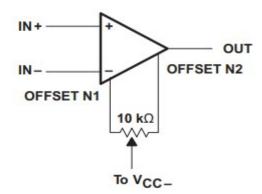


Figura 2: Circuito para zerar tensão offset.

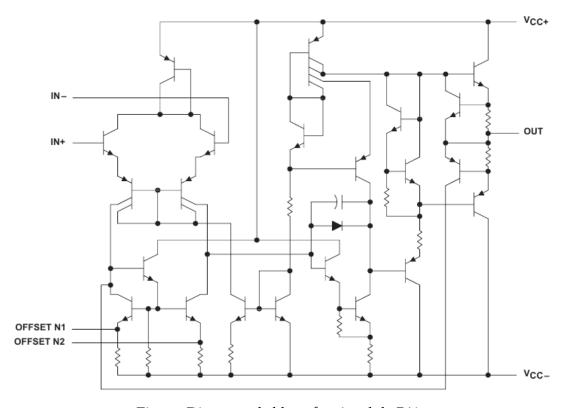


Figura: Diagrama de bloco funcional de 741.

Ganho de tensão em "malha aberta"

A tensão de saída V_o de um amplificador operacional é a tensão diferencial de entrada $V_+ - V_-$ multiplicada pelo ganho A, isto é:

$$V_o = A(V_+ - V_-)$$

Num AmpOp ideal, o ganho A é infinito. Na prática, o ganho A é um valor muito elevado, da ordem de 10^4 a 10^6 .

O ganho A pode ser convertido para decibéis A_{dB} pela fórmula: $A_{dB} = 20 \log A$. Inversamente, $A = 10^{(A_{dB}/20)}$.

Impedância de entrada e AmpOp ideal

Num AmpOp ideal, as correntes de entrada (entrada não-inversora V+ e entrada inversora V-) são nulas e portanto a impedância de entrada é infinita. Um AmpOp na prática tem correntes de entrada pequenas, mas não nulas.

AmpOp ideal e real

Um amplificador operacional *ideal* tem ganho infinito em malha aberta, impedância de entrada infinita, largura de banda infinita e impedância de saída nula.

Um AmpOp na prática se aproxima do AmpOp ideal, sob certas condições. Vamos considerar, por exemplo, o ganho. A figura 3 mostra que o ganho de 741 depende da frequência do sinal. O ganho é mais de 100dB (100.000×) em CC até 10Hz, mas é apenas 40dB (100×) em 10kHz. Assim, vemos que as suposições de ganho infinito e largura de banda infinita não são verdadeiras.

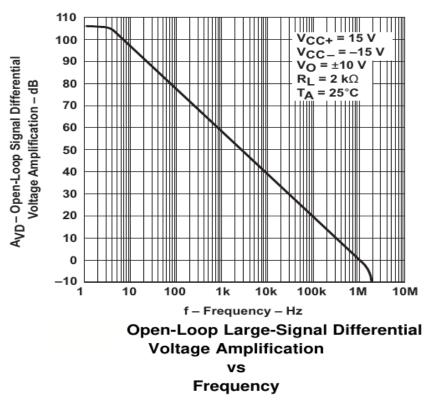


Figura 3: Fator de amplificação vs frequência de 741.

Circuito comparador com AmpOp ideal

Um AmpOp ideal em malha aberta (sem realimentação) funciona como um comparador, que compara as tensões V+ e V-.

Como num AmpOp ideal ganho A é infinito, se V+ > V- então teremos a saída $V_o = A(V_+ - V_-) = +\infty$. Na prática, neste caso, a saída estará limitada pela tensão de alimentação +V_{CC} e teremos tensão de saturação um pouco menor que +V_{CC}.

Se V+ < V- pela fórmula teremos a saída -∞. Na prática, a tensão de saturação é um pouco maior que -V_{CC}.

Assim, um circuito comparador construído com AmpOp executa a seguinte função:

O circuito da figura 4 compara a tensão de entrada V+ com 0V:

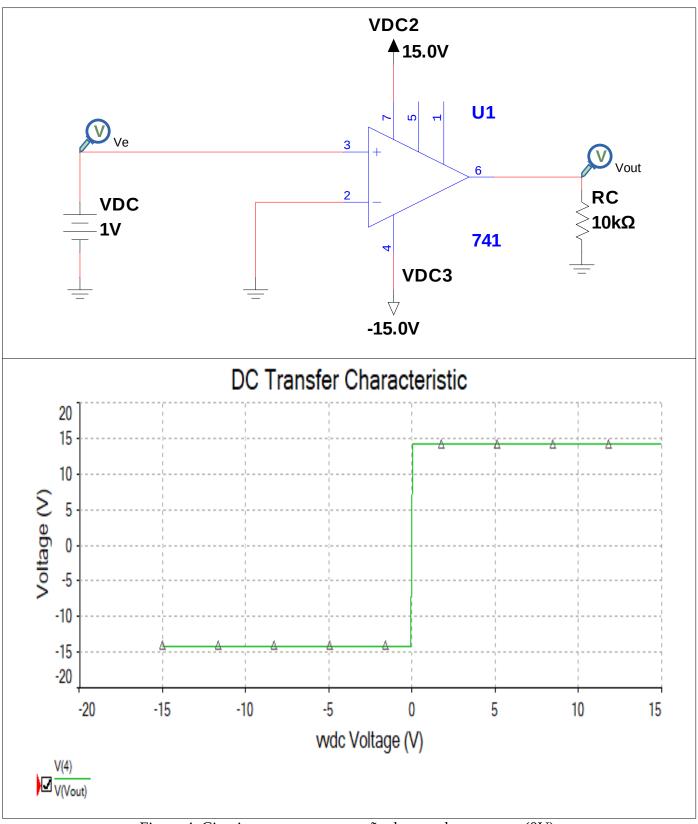


Figura 4: Circuito que compara tensão de entrada com terra (0V).

Para entender melhor este circuito, vamos fazer a seguinte consideração numérica. Vamos supor que um AmpOp 741 está sendo alimentado com ± 15 V. O ganho de 741 é aproximadamente $A=10^5$.

Digamos que tensão diferencial de entrada seja $V_+ - V_- = 1$ V. Neste caso, a saída Vo seria $V_o = A(V_+ - V_-) = 10^5 \times 1 = 10^5$ V. Como a alimentação é ±15V, AmpOp não consegue gerar 10000 V na saída, saturando em aproximadamente Vo ≈ 15V.

Vamos diminuindo a tensão de entrada diferencial $V_+ - V_-$ aos poucos. A saída do AmpOp será Vo = 15V até $V_+ - V_-$ atingir 15×10⁻⁵V. A partir deste ponto até -15×10⁻⁵V, a saída Vo vai diminuindo linearmente até chegar a Vo = -15V.

Para valores $V_{+}-V_{-}$ menores que -15×10⁻⁵V, a saída Vo será \approx -15V.

Isto é, AmpOp se comporta como um comparador, exceto no estreito intervalo de tensão diferencial de entrada de -15×10^{-5} V a $+15 \times 10^{-5}$ V, onde tem comportamento linear.

Se o ganho *A* fosse infinito, o intervalo onde o circuito tem comportamento linear seria nula.

Realimentação negativa

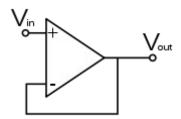


Figura 5: Buffer de tensão.

Amplificadores operacionais normalmente trabalham com realimentação negativa. Para entender este conceito, vamos considerar o circuito da figura 5, "voltage buffer" ou seguidor de tensão ou amplificador unitário. Um buffer de tensão é um circuito eletrônico que possui ganho um e é usado para isolar uma carga de uma fonte, mantendo o mesmo nível de tensão. Em outras palavras, a tensão de saída de um buffer é a mesma que a tensão de entrada, mas com uma impedância de saída baixa que pode fornecer uma corrente alta para uma carga.

Nota: Alguns de vocês estão enfrentando este problema no projeto. A resistência interna de 50Ω do gerador de funções está alterando o funcionamento dos filtros. Seria interessante "eliminá-la". Numa situação ideal, buffer de tensão (figura 5) poderia fazer este serviço. Porém, amplificador operacional possui impedância de saída bem maior que 50Ω , o que faria com que o problema piore. De qualquer forma, este exemplo serve para ilustrar o conceito.

Este circuito gera tensão de saída V_{out} igual à tensão de entrada V_{in} . Se V_{out} for diferente da V_{in} , o circuito força V_{out} a ser V_{in} . Vamos tentar descobrir o por quê com um exemplo numérico.

a) Suponha que $V_{\text{out}} \le V_{\text{in}}$, por exemplo, $V_{\text{out}} = 0V$ mas $V_{\text{in}} = +1V$ (figura 6a).

Nesta situação, o circuito fica "instável", pois a saída é realimentada na entrada negativa V-, o que faz a tensão diferencial de entrada seja $V_+-V_-=1$ V. Assim, AmpOp tenta gerar a saída $V_{out}=A(V_+-V_-)=\infty\times 1$, ou $+\infty$. Isto faz com que com que a saída V_{out} comece a aumentar e consequentemente V- aumenta (figura 6b), até chegar à $V_{out}=1$ V quando o circuito fica "estável" (figura 6c).

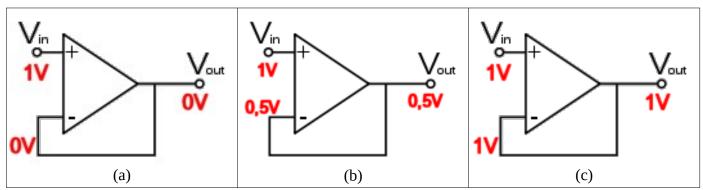


Figura 6: Quando $V_{out} < V_{in}$, o circuito faz V_{out} aumentar até chegar a $V_{out} = V_{in}$.

b) Suponha que $V_{\text{out}} > V_{\text{in}}$, por exemplo, V_{out} = 2V mas V_{in} = 1V (figura 7a).

Nesta situação também o circuito está "instável", pois saída é realimentada na entrada negativa V.. Assim, AmpOp tenta gerar a saída $V_{out} = A(V_+ - V_-) = \infty \times (-1)$ ou $-\infty$. Isto faz com que a saída V_{out} comece a diminuir (figura 7b) e consequentemente V_- diminui (figura 7b), até chegar à $V_{out} = 1V$ quando o circuito fica "estável" (figura 7c).

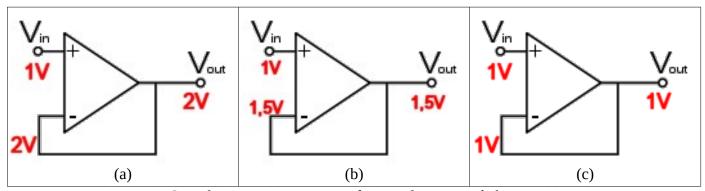


Figura 7: Quando $V_{out} > V_{in}$, o circuito faz V_{out} diminuir até chegar a $V_{out} = V_{in}$.

c) Se $V_{out} < V_{in}$, o circuito aumenta a tensão de saída até chegar a $V_{out} = V_{in}$. Se $V_{out} > V_{in}$, o circuito diminui a tensão de saída até chegar a $V_{out} = V_{in}$. Em resumo, o circuito fará com que a tensão de saída V_{out} seja igual à de entrada V_{in} .

Pode parecer que um circuito que faz tensão de saída ser igual à tensão de entrada seja inútil. A principal utilidade de um buffer de tensão é aumentar a capacidade de corrente de uma fonte sem afetar seu nível de tensão.

Amplificador inversor com AmpOp ideal

De forma semelhante, o circuito inversor com AmpOp (figura 2) só fica "estável" quando tensão de saída satisfizer:

$$V_o = \frac{-R_2}{R_1} V_i$$

Se a tensão de saída V_o for menor do que o valor acima, AmpOp procura aumentar a tensão de saída. Se a tensão de saída V_o for maior do que o valor acima, AmpOp procura diminuir a tensão de saída. Assim, o circuito acaba atingindo V_o dada pela equação acima.

Para chegar à equação acima, podemos fazer o seguinte raciocínio. Num circuito com AmpOp ideal, se $V_+ \neq V_-$ então a saída V_0 estará obrigatoriamente saturada (isto é, a saída será +Vcc ou –Vcc), pois o ganho A é infinito. Assim, se a saída não está saturada, podemos concluir que $V_+ = V_-$. Chamamos esta condição de "curto-circuito virtual".

No caso do circuito inversor da figura 2, se a saída não estiver saturada, como $V_+ = 0$ e $V_+ = V_-$, devemos ter obrigatoriamente $V_- = 0$. Assim, teremos uma "terra virtual" no terminal V_- , isto é, o terminal V_- deve ter obrigatoriamente tensão nula. Como a tensão V_- deve ser zero e a corrente de entrada i_- é nula (pela suposição de AmpOp ideal e consequentemente $i_1 = i_2$), a única tensão de saída possível é dada por:

$$V_o = \frac{-R_2}{R_1} V_i$$

O ganho de tensão A_v deste circuito é:

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-R_{2}}{R_{1}}$$

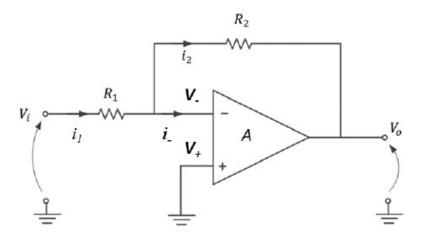


Figura 7: Circuito inversor com AmpOp.

Circuito Amplificador Somador Inversor

Conectando mais uma tensão de entrada, temos:

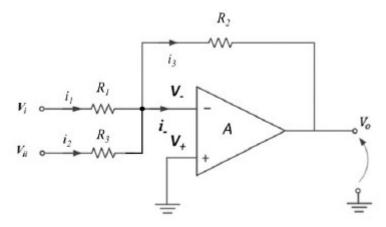


Figura 8: Circuito amplificador somador inversor,

Neste caso, fazendo raciocínio semelhante ($i_3 = i_1+i_2$), temos:

$$V_{o} = -\frac{R_{2}}{R_{1}}V_{i} - \frac{R_{2}}{R_{3}}V_{ii}$$

Este circuito calcula uma soma ponderada das tensões de entrada v_i e v_{ii}.

Algumas outras aplicações comuns de AmpOp

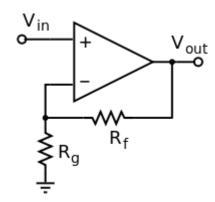


Figura 9: Amplificador não-inversor. A saída será tensão de entrada multiplicada por um ganho positivo.

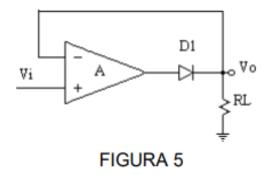


Figura 10: Super diodo ou retificador de precisão. Funciona praticamente como um diodo ideal. Pense por quê.

Observações para a execução da experiência:

- 1) É muito fácil queimar AmpOp. Para diminuir um pouco a possibilidade de queimar AmpOp:
- a) Alimente AmpOp com ±12V em vez de ±15V. Note que ±15V é a tensão de alimentação máxima é melhor não usar a tensão máxima.
- b) Limite a corrente da fonte de alimentação em toda a experiência. A apostila fala em limitar em 0,1A no meio do experimento. Limite a corrente desde o início.
- 2) No item 2.3, não precisa medir tudo que está na apostila.