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Autonomous Cars: Research Results,
Issues, and Future Challenges

Rasheed Hussain and Sherali Zeadally

Abstract—Throughout the last century, the automobile
industry achieved remarkable milestones in manufacturing
reliable, safe, and affordable vehicles. Because of significant
recent advances in computation and communication technologies,
autonomous cars are becoming a reality. Already autonomous
car prototype models have covered millions of miles in test driv-
ing. Leading technical companies and car manufacturers have
invested a staggering amount of resources in autonomous car
technology, as they prepare for autonomous cars’ full commer-
cialization in the coming years. However, to achieve this goal,
several technical and nontechnical issues remain: software com-
plexity, real-time data analytics, and testing and verification are
among the greater technical challenges; and consumer stimula-
tion, insurance management, and ethical/moral concerns rank
high among the nontechnical issues. Tackling these challenges
requires thoughtful solutions that satisfy consumers, indus-
try, and governmental requirements, regulations, and policies.
Thus, here we present a comprehensive review of state-of-the-
art results for autonomous car technology. We discuss current
issues that hinder autonomous cars’ development and deployment
on a large scale. We also highlight autonomous car appli-
cations that will benefit consumers and many other sectors.
Finally, to enable cost-effective, safe, and efficient autonomous
cars, we discuss several challenges that must be addressed
(and provide helpful suggestions for adoption) by designers,
implementers, policymakers, regulatory organizations, and car
manufacturers.

Index Terms—Autonomous cars, driverless cars, connected
cars, policy, privacy, security, simulation.

I. INTRODUCTION

VEHICLES were once considered the realm of mechanical
engineers. However, the unprecedented advancements in

automobiles and information technology have transformed the
traditional vehicle from an old-fashioned source of commute
into a full-scale, smart, and infotainment-rich computing and
commuting machine on the move. If we take a close look at
recent advances of the afore-mentioned technologies, we find
that the features and characteristics offered by both cutting-
edge communication and computing technologies along with
the emergence of high-end cars provide the foundation for the
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realization of smart vehicles. These smart cars are autonomous
in that they support features such as sensing the surrounding
environment, making quick and timely decisions, navigating
without human input on the road, maintaining safe mobil-
ity patterns, performing all kinds of maneuvers, and cruise
control, to name a few. Such cars have been referred to as
autonomous cars. An autonomous car refers to a computer-
controlled car that can guide itself, familiarize itself with
surroundings, make decisions, and fully operate without any
human interaction. The primary drivers behind the emergence
of autonomous cars include: the need for driver and driv-
ing safety, growth in population, expanding infrastructure,
increase in the number of vehicles, the need for efficient
time management, and resource utilization and optimization.
As the human population grows and the number of cars
increases, this creates a stressful impact on our transportation
infrastructure, ranging from roads and parking spaces to fuel
stations (for fuel engines vehicles) and charging stations (for
electric and hybrid vehicles). In the past few decades, gov-
ernments have taken serious measures for road safety, with
many introducing both static and dynamic technologies such
as Closed-Circuit Television (CCTV) cameras, road sensors,
and more [1]. However, despite these efforts, in the United
States alone, road accidents caused more than 32,000 fatali-
ties in 2014. The number of fatalities increased to more than
35,000 in 2015, demonstrating that despite the use of existing
technologies, human errors still occur [2]. To minimize human
errors and reduce life-threatening situations on the road, alter-
native technologies such as connected cars and autonomous
cars are being explored.

The evolution and emergence of autonomous cars are the
result of remarkable research results coming from the fields of
wireless communication, embedded systems, navigation, sen-
sor and ad hoc network technologies, data acquisition and
dissemination, and data analytics. The idea of autonomous
cars started with “phantom autos” in the 1920s, where the
car was controlled through a remote control device [3]. In
the 1980s, we witnessed the emergence of self-sufficient and
self-managed autonomous cars. A major contributor to the
autonomous car field was the NavLab at Carnegie Mellon
University, where researchers developed the Autonomous
Land Vehicle (ALV) [4]. In the same decade, the “Prometheus
project,” sponsored by Mercedes in 1987 [5], achieved a major
result with the design of their first robotic car to track lane
markings and other vehicles (nonetheless, for safety reasons,
human intervention was necessary). Although it was not fully
autonomous at that time, the ability to automatically change
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TABLE I
ACRONYMS AND THEIR EXPLANATION

lanes was a major breakthrough. In the 21st century, the
increasing interest in autonomous cars has been fueled pri-
marily by low-cost, high-performance technologies in various
areas. It is important to draw a clear line between two conflict-
ing terms: the automated car and the autonomous car. A bird’s
eye view of both terms offers a similar concept of enabling a
vehicle’s independence; however, the former refers to a vehicle
controlled through a machine that possibly might need human
intervention (for instance, an emergency brake, cruise control,
smart park, and so forth), whereas the latter focuses on the
actions performed by the vehicle independently without any
human intervention.

Autonomous cars leverage the concept of connected car
technology [1], [6]. It is worth mentioning that autonomous
cars and connected cars share some technologies. For instance,
the connected car uses a Vehicular Ad hoc NETwork (VANET)
technology where an on-board unit (OBU) is installed on the
vehicle; and through the dedicated short-range communication
(DSRC) standard protocol [7], [8], vehicles can communicate
with each other when they are within their communica-
tion range. VANET technology supports two broad categories
of applications: safety-related applications and information,
entertainment (collectively referred to as infotainment) appli-
cations. In the former category, security measures for commu-
nication are stringent whereas for the latter, security measures
are relatively relaxed.

The applications and services provided by the VANET
technology and its successor VANET-based clouds [9], [10]
include, but are not limited to, accident warning, crash notifica-
tion, road construction, traffic signals, ambulance approaching
notification, excessive speed, black ice on the pavement, fog
warning, traffic information, Internet-on-the-move, movies-on-
demand, location-based services, cooperative cruise control,
and maneuver control. Most of the afore-mentioned applica-
tions and services rely on cooperative communication among

vehicles and infrastructure. According to the IEEE 802.11p
standard, vehicles share their location information such as
position, speed, acceleration, and other control information
with their neighbors. Therefore, inter-vehicular communi-
cation requires fine-grained input from other technologies
such as an accurate positioning mechanism, vehicular sen-
sory information, and efficient and accurate navigation. In
this context, world-leading auto manufacturers (along with
academic research efforts) have been developing and incorpo-
rating a wide range of new features in their high-end cars.
The initiatives taken by leading car manufacturers such as
Audi, BMW, Toyota, Honda, Kia, Hyundai, Mercedes, Ford,
Nissan, Tesla, GM, Volvo, Bosch, and Volkswagen include
smart parking, incident warning, emergency braking, and
semi-automatic and fully automatic (limited) pilot-driving, all
of which have increased competition in the connected car
industry. Furthermore, lawmakers are working on legislating
vehicle-to-vehicle communication to allow normal consumers
to reap the technology’s benefits [11]. However, even with the
use of advanced technologies, human behavior and driving
patterns continue to play a pivotal role in safe driving.

Recent developments in VANET and connected car tech-
nologies have attracted the attention of companies such as
Google in the development of driverless cars. In addition
to Google, car manufacturers such as Tesla and Audi are
two leading stakeholders in driverless car technology. Today,
we see a strong synergy between technology companies and
car manufacturers to enable the design and development of
driverless cars. In contrast to Google, Microsoft has set up
an alliance with Volvo and Toyota for the development of
driverless cars. Similarly, NVidia has also shown a strong
interest in autonomous cars by introducing its flagship NVidia
Drive PX2, a powerful GPU-based computing platform for
autonomous cars [12]. Uber and Apple are also emerging
stakeholders in the autonomous car business. In the Asian
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market, TATA, Yutong, KIA, and Hyundai are major compa-
nies investing in the autonomous cars’ design, development,
and research. For the European auto market, the goal is
to achieve a successful realization of autonomous cars by
2020. For instance, Volkswagen recently revealed its V-charge
project that focuses on developing autonomous cars. The
French PSA group (Peugeot, Citroën and DS) also tested an
eyes-off drive from Paris to Amsterdam in April 2016 [13].
Mercedes and BMW are two other leading European com-
panies currently exploring the concept of driverless prototype
cars, and they plan to develop full-fledged commercial versions
in the near future.

Over the last few decades, the ownership of vehicles has
grown exponentially as their costs decrease; also, people find
vehicles more affordable as their incomes increase. However,
this rate of adoption of vehicles also increases environmental
pollution and traffic congestion [14]. In 2010, our planet was
host to 1 billion vehicles, and this number is expected to dou-
ble by 2030; this creates an urgent need for more resources and
infrastructure support to host this vast increase in the number
of vehicles [15]. According to the World Health Organization
(WHO), around 1.25 million people die every year due to
road accidents [16], and WHO has projected that the death
toll could rise to 1.8 million by 2030 [15]. Therefore, the
need for a technologically advanced, fully automated, reli-
able, and safe means of transportation is imperative, and the
autonomous car industry has been striving to meet these expec-
tations. However, because of some high-profile incidents in the
past, progress in the popularity of autonomous cars has been
impeded, although car manufacturers are still doing their best
to address the relevant issues. To be specific, in September
2016, a driverless car collided with a commercial van at a
traffic signal that almost hurt the passengers [17]; in another
incident, a driverless car’s crash cost a passenger’s life [18].
A detailed report recently published by the Victoria Transport
Policy Institute [19] pointed out that despite the claims and
promises made by the automobile industry, it would be diffi-
cult to commercialize the purchase of fully autonomous cars
before 2035-2040. The Victoria Transport Policy Institute pub-
lished the latest version of their report in February 2018 which
states that the commercialization of autonomous cars will be
difficult before 2050 [20].

As previously noted, several important issues remain, such
as governments’ regulation, consumer satisfaction, market sat-
uration projection, cost, reliability, and safety, that must be
fully addressed by relevant parties involved in the autonomous
car business. Furthermore, federal regulation also plays a vital
role in the success of any new technology, and autonomous
cars are no exception. For instance, airbags required a rel-
atively shorter time for full market penetration because of
federal regulation. In contrast, the automatic transmission
system in cars took a long span of five decades for market
penetration, because of its high cost. After almost five decades,
the automatic transmission system’s quality was improved and
the cost reduced to such an extent that it became viable to use
in most automobiles. The same arguments hold for electric and
hybrid vehicles [21]. In a nutshell, autonomous car technology
will take time before it becomes available and affordable to

consumers because of its initial high costs and low reliability.
Yet vehicle manufacturers must address these issues before
they can make autonomous cars a success and transform the
automotive industry.

A. Existing Surveys

To date, several surveys have been conducted that investi-
gate various aspects of autonomous car technology [22]–[32].
However, to the best of our knowledge, most of these
surveys focus on only one aspect of the autonomous car
and there is no survey that presents a holistic approach
toward autonomous car technology. Our survey spans over
last 8 years (2010-date). Campbell et al. [22] investigated
the real-world autonomous car tests in urban environments
and outlined the challenges faced during test drives in
detail. Okuda et al. [23] conducted a detailed survey on
the adaptation of Advanced Driving Assistance (ADAS) in
autonomous cars. Fagnant and Kockelman [24] surveyed the
policy recommendations and implementation for autonomous
cars. Similarly, Bagloee et al. [25] discussed some of the chal-
lenges related to different policies for the autonomous car.
Other function-specific surveys include planning and motion
control in autonomous cars [26], long-term maps’ construc-
tions for autonomous cars [29] and visual perception in
the autonomous car from both implementation and users’
perspectives [31], [32]. Furthermore, Abraham et al. [27] con-
ducted a survey on consumer trust and their preferences for
autonomous car technologies whereas Joy and Gerla [28]
reviewed communication and location privacy issues in
autonomous cars. Parkinson et al. [30] have comprehensively
reviewed cyberthreats in autonomous cars. We note that,
from the preceding discussion, most of the recent surveys on
autonomous cars have mostly focused on specific topics of the
autonomous car. Table II presents a summary of these surveys
and their differences with our survey.

B. Scope of This Survey

In this paper, we present a thorough comprehensive and
systematic review of state-of-the-art results for autonomous
car technology. We investigate the current existing solutions
for autonomous car technology, including its design, appli-
cations, testing, and verification. We also discuss in detail
the current issues and challenges that have, at least in part,
impeded the momentum of autonomous car development. We
focus on autonomous car technology’s design and implementa-
tion issues in detail. Additionally, we investigate both technical
and non-technical deployment issues for autonomous cars that
must be addressed by all stakeholders in the autonomous car
development chain. We summarize the main contributions of
this paper below:

1) We present an in-depth comprehensive and systematic
review of the autonomous car technology that covers
design and implementation issues.

2) We describe state-of-the-art results on autonomous cars
from both commercial and research perspectives.

3) We describe in detail design and implementation issues
in autonomous cars.
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TABLE II
EXISTING SURVEYS

4) We present an in-depth review of different research chal-
lenges (technical, non-technical, social, and policy) that
need to be addressed by the autonomous car industry.

5) In a nutshell, this paper provides an extensive literature
survey on recent research that has been conducted in
the area of autonomous car technology and bridges the
gap between the design, implementation, and research
challenges faced by autonomous cars.

The rest of the paper is organized as follows: Table I lists all
the acronyms used in the paper. Section II covers autonomous
car technology in detail, including its design, components, and
functionalities. In Section III, we discuss the major benefits of
autonomous cars, followed by current research results yielded
in autonomous car technology in Section IV. The design and
implementation issues for autonomous car are discussed in
Section V. Section VI outlines the deployment challenges
for autonomous car in detail, and we conclude the paper in
Section VII.

II. THE AUTONOMOUS CAR

The autonomous car has received a lot of attention during
the past decade and prototype versions have been developed
by different vendors. However, the commercial realization of
autonomous vehicles remains a significant challenge. At the
very basic level, the autonomous car is equipped with a myriad
of sensors and actuators that generate a lot of data in real time
that must be processed and analyzed for timely decisions to
be made. Therefore, the design of autonomous car must con-
sider the volume, speed, quality, heterogeneity, and real-time

Fig. 1. Autonomous car: functional architecture.

nature of data. It is worth noting that different auto manu-
facturers leverage on-board sensor and actuator technologies
for different types of optimized applications. However, at the
core of the autonomous car design is the major requirement
of being able to function autonomously. In other words, the
autonomous car requires features that will enable it to fore-
see, decide, and move safely and reliably according to some
plan. In this section, we outline some of the most fundamental
autonomous car design characteristics.

Figure 1 shows the main high-level functional compo-
nents of a typical autonomous car system. The layered
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Fig. 2. Autonomous car: system architecture.

structure includes data acquisition performed by the hard-
ware components, such as on-board and in-car sensors;
short- and long-range radars; LIght Detection and Ranging
(LIDAR) tracking; and cameras and communication devices
(transceivers). The data collected through these components is
processed by the autonomous car’s central computer system,
which is then used by the decision-support system. The
decision-support system actuates the autonomous car. It is
worth noting that situational awareness is realized through
both short- and long-range imaging devices that include radar,
LIDAR, and cameras. Fig. 2 depicts the areas covered by these
components. Different ranges of situational awareness apply to
different applications, and they are achieved through different
components. For instance, front and rear bumper collision are
avoided through infrared devices, whereas lane-change warn-
ing, short-range object detection, and traffic view construction
are provided by short-range radars. The autonomous car is also
equipped with a series of cameras for the surrounding views
and LIDAR is used for collision avoidance and emergency
brakes. The cooperative cruise control and long-range traffic
view construction are achieved by long-range radars. All the
aforementioned components are networked and work closely
with each other, as shown in Fig. 1.

For an autonomous car to move from point A to point
B, it needs to perform a series of steps: the car needs to
perceive and make itself aware of the surrounding environ-
ment, plan the trip, navigate, and make controlled movements
on the road. The primary steps responsible for executing the
aforementioned tasks in an autonomous car include:

1) situational and environmental awareness;
2) navigation and path planning; and
3) maneuver control.
We note that the aforementioned steps are iterative from

the point when the car starts moving until it has reached the
destination. After perceiving the environment, the car needs
to get environmental awareness of surroundings, which aids
in developing the movement trajectory followed by naviga-
tion. In addition to environmental awareness, the autonomous

car communicates to several other entities that include road-
side infrastructure, neighbors (autonomous cars and contacted
vehicles), registration and management authorities, and ser-
vice providers. The communication paradigm for autonomous
car is shown in Fig. 3. It is worth noting that connected car
technology has yielded remarkable research results in architec-
ture, communication, applications, and services. Connected car
technology is realized through VANETs where vehicles on the
road communicate with each other, with the infrastructure and
with the environment through different underlying communi-
cation technologies such as, but not limited to, IEEE 802.11p,
WiFi, LTE, visible light communication (VLC), and so on.
Figure 3 shows that the autonomous car communicates with
both the infrastructure and its neighbors. It is envisioned that
the autonomous car will use the same communication standard
which is used for connected car technology today. This will not
only ease the integration of the autonomous car with existing
connected car technology, but it will also make the deploy-
ment of autonomous car communication easier. Finally, the
car moves based on the path on the map that it has generated.

A. Situational and Environmental Awareness

The first and foremost important step for autonomous cars is
neighborhood awareness, which includes object tracking, self-
positioning, and lane spotting. More specifically, the car must
be able to perceive what is in front of it, and without loss of
generality, it also needs 360-degree neighborhood awareness.
As we mentioned, several hardware components are used for
this purpose, ranging from on-board and on-car cameras to
medium- and short-range radars. However, these components
have their pros and cons. Cameras are useful for environmen-
tal and neighborhood awareness. But the volume and speed
of real-time data required for neighborhood awareness is too
compute-intensive for vehicular computing. Furthermore, the
granularity of data obtained from cameras is inversely propor-
tional to the speed and performance of the decision support
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Fig. 3. Autonomous car: different modes of communication and communication infrastructure entities.

system. Therefore, another alternative is needed to enable the
perception functionality for autonomous car.

In this context, radar technology has proven to be more
efficient in object tracking than cameras, making it a more
practical option for vehicles. For the autonomous car, LIDAR
tracking is used. The main characteristic of LIDAR includes
360-degree visualization and object tracking with a relatively
long range. Therefore, a LIDAR device can be mounted
atop the car to get a full view of the surrounding environ-
ment. However, it is worth noting that for intensive object
detection such as collision-resistance while parking, collision
avoidance, and bumper protection, LIDAR does not work effi-
ciently. Instead, optimized radars are installed at the front,
rear, and sides of the car for the aforementioned tasks. The
data obtained from these devices help the autonomous car’s
decision-support system maintain speed, apply brakes, change
lanes, and maneuver. The data obtained from these devices are
also used by sophisticated software to generate a 3D image of
the surrounding environment.

B. Navigation and Path Planning

Navigation or guidance is of paramount importance in an
autonomous car, because its primary function is to enable the
car to travel on the desired path. When the autonomous car is
aware of its environment then it needs to plan its path based
on the destination. With the help of navigation hardware such
as the well-known Global Positioning System (GPS) module,
the car generates a path between the current position and des-
tination as a function of time. GPS is the primary source of
navigation for the car because of its accuracy, optimized and
compact hardware, on-chip design, low cost, and wide range
use. Furthermore, the path is dynamically re-calculated in case
of certain events such as road block, diversion, and so forth.

The car’s navigation system must be robust to handle sudden
and subsequent changes in the path by adjusting the already
pre-computed route. Road networks are physically pre-defined
and the autonomous car’s guidance system regularly checks
the car’s movement against the calculated path. It is worth
pointing out that although a GPS-based solution provides a
rich set of functionalities in guidance and navigation, in cer-
tain scenarios, GPS on its own is not sufficient. Since GPS
is based on signals from in-orbit satellites, the signals may
sometimes get blocked or deteriorated due to natural or arti-
ficial phenomena, such as underground roads and tunnels. In
such cases, other means of inertial guidance and navigation
are needed.

To address this issue, the autonomous car must be equipped
with gyroscopes and accelerometers. The inertial method of
positioning (i.e., a gyroscope-based solution) does not pro-
vide information about the position of the vehicle, therefore
the initial position for the gyroscope must be provided either
through GPS or entered manually. In the case of autonomous
cars, both the gyroscope and GPS can work well together if
the context of movement is known. For autonomous cars, GPS
information is frequently used as an input to a special map-
generation algorithm that uses data acquisition and sensory
information acquired from the vehicle. Several research efforts
have been conducted and tested on real-world data to generate
a map for autonomous cars [14], [33]. The results are promis-
ing and will help in the initial commercial deployment phase
of autonomous cars.

C. Maneuver Control

After the autonomous car perceives its surroundings, and
using this information along with its destination informa-
tion, then it starts its journey. Different maneuvers should
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be carefully controlled for a smooth, safe (or at least fail-
safe) commute along the road. As we stated previously, the
autonomous car is equipped with a large number of dif-
ferent sensors and actuators. Most of the car components
are electronically controlled through Electronic Control Units
(ECUs). ECUs communicate with each other and with the
decision-support system through the Controller Area Network
(CAN) bus inside each car. During the course of its jour-
ney, the autonomous car must maintain different kinds of
maneuvers such as lane keeping, bumper-to-bumper distance,
sudden brakes, overtaking, and stopping at traffic lights.
These maneuvers need hardware/software support and exten-
sive coordination and real-time data sharing among the car’s
different control systems.

III. AUTONOMIC CARS’ MAJOR BENEFITS

The concept of the autonomous car, despite its complexity,
opens up new innovative applications and presents consumers
with safety, ease-of-use, comfort, and value-added services.
In this section, we discuss some of the major benefits of
autonomous cars and future autonomous car applications.

A. Improved Safety

Safety is a multidimensional feature in the automotive
domain, where human lives take the highest priority when
it comes to driving. In the case of autonomous cars, one of
the most important applications is safe driving for its occu-
pants. Every year road accidents claim 1.3 million lives and
50 million serious injuries around the globe. According to
the National Highway Traffic Safety Administration (NHTSA)
of the United States’ Department of Transportation (DoT),
93% of traffic accidents are caused by human errors. The
updated report on these numbers was published in February
2015 [34] and stated that 94% of accidents are caused by
human errors. Human errors are caused by various factors,
including distraction, aggressiveness, carelessness, intoxica-
tion, and disabilities. Furthermore, such errors also cost about
U.S.$190 billion in health costs and damages caused by these
accidents [35]. Based on these alarming statistics, an alterna-
tive driving mechanism is essential to save lives. In light of the
aforementioned fatalities’ statistics with human-driven cars, an
autonomous car can be a safer alternative with a lower number
of human drivers behind the wheel. Autonomous cars will at
least eliminate the likelihood of human errors that account for
94% of traffic accidents.

Another dimension of safety is the car itself. The
autonomous car will be equipped with sophisticated
technology to authenticate its legitimate users, thereby
preventing thieves from stealing the car. With high-tech sen-
sors on-board, the autonomous car can successfully recognize
its rightful owner and in case of any unwanted situation, it
sends the owner an alert. Although these features, at least in
part, are still available in current middle- and high-end cars,
nonetheless, the degree of intelligence will improve signifi-
cantly in future autonomous cars. Furthermore, an autonomous
car might not need a key to start like traditional cars.

Autonomous cars could operate with biometrics such as fin-
gerprints, a retina scan, voice recognition software, and/or
synthetic telepathy. It is worth mentioning that current cars
have a fingerprint-enabled door-lock system, but these car
operations have not matured enough yet to a level where
biometrics can be used.

B. Business Opportunities and Increasing Revenue

Mobility-as-a-Service (MaaS) and car sharing are two of
the promising applications made possible through autonomous
cars without redundant human interactions. The MaaS
paradigm [36] will save many consumer resources, includ-
ing money, time, space, and even human resources (such as
drivers). Autonomous cars can be used as a resource instead of
owning a car, which will require not only a large sum of money
upfront but also a driver and a space to park it. Furthermore,
car sharing is a popular application among consumers today.
However, with the emergence of autonomous cars, carpool-
ing can become more efficient by utilizing autonomous car
resources more effectively. In the last couple of years, car-
pooling services have garnered much attention among daily
commuters for various reasons, such as saving money and time
in addition to the hassle of driving that would otherwise make
the commute stressful. With traditional carpooling, there are
still time constraints when picking up fellow commuters on
the way. Furthermore, the cost shared by the commuters may
also consider the driver’s costs. By using autonomous cars for
carpooling services, we can eliminate such costs. This change
in perspective will not only create economic advantages, but
also decrease air pollution caused by traffic situations in global
metropolitan cities. It also creates enormous business oppor-
tunities and transforms the mindset of both consumers and
service providers.

Autonomous cars will also revolutionize taxi and rent-a-
car businesses. Taxi service providers will no longer need
drivers, thereby reducing costs and increasing their revenue.
Similarly, rental car companies will be able to streamline their
business operations with a reduced workforce. Furthermore,
such a paradigm shift will also benefit the software indus-
try because of smart applications (such as car sharing, taxi
services, and rent-a-car services) that are accessible through
personal devices. In short, autonomous cars can help increase
revenue and reduce labor costs.

C. Ease of Use and Convenience

Another benefit of autonomous cars is ease of use and con-
venience. Sometimes people are unable to drive a car because
of medical/disability conditions or intoxication. Furthermore,
the autonomous car can also be a suitable mode of transporta-
tion for elderly people, young adults without a driver’s license,
and people who cannot afford to own a car. In such cases,
the autonomous car can provide a safe, cost-effective way to
increase citizens’ mobility.

D. Improving Traffic Conditions

Improving traffic conditions is another major benefit of
autonomous cars. Autonomous cars will increase per-vehicle

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 22,2021 at 14:44:35 UTC from IEEE Xplore.  Restrictions apply. 



1282 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 2, SECOND QUARTER 2019

occupancy and decrease the number of vehicles on the road,
thereby improving traffic conditions. Furthermore, with human
drivers, inter-vehicle distance is a strict parameter to maintain
for safe driving. However, with autonomous cars, this distance
will potentially decrease, thereby providing more space on
the road. By carefully communicating with their counterparts,
autonomous cars could perform intelligent fleet management,
leading to reduced traffic jams on the roads. Additionally,
autonomous cars can also help in adhering to traffic laws more
accurately, thereby reducing the need for traffic police officers
on the road.

From a different perspective, autonomous cars will also
improve fuel efficiency by selecting the best routes [37], which
will also decrease air pollution. Fuel efficiency is directly pro-
portional to the way people drive. Different drivers behave
differently behind the wheel. Some common driving behaviors
include over-speeding, irregular driving, starting and stopping,
and sudden braking that decrease fuel efficiency. In this case,
the autonomous car can be programmed to use a fuel-efficient
mode and avoid erratic driving behaviors that cause fuel ineffi-
ciency. Coordination and communication among autonomous
and connected cars will also help eliminate tailgating on the
road and unnecessary braking situations.

E. Autonomous Parking

Today, parking is one of the major challenges in metropoli-
tan cities because of the increasing number of vehicles, dense
population, inter-vehicle distance in parking lots (for passen-
gers and drivers to open the doors without hitting the cars
parked nearby), and mismanagement of free parking lots. With
the emergence of autonomous cars, autonomous parking will
alleviate parking issues. For instance, after dropping off pas-
sengers, an autonomous car could park itself even in narrow
available parking spaces (whereas humans would otherwise
require wider parking spaces for each car). The advantage of
this parking approach would save a staggering 6.8 billion yards
in United States parking lots alone.

F. Consumer-Centric Experience

Autonomous cars will enable drivers to relax, sit back, and
enjoy the ride. In one scenario, the occupants of the car could
work while commuting to their workplace or use the car’s
entertainment system. This gives autonomous cars’ designers
the opportunity to create immersive passenger-centric experi-
ences that otherwise would not be possible [38]. In another
scenario, if the autonomous car is paired with the occupant’s
mobile phone, a person could ask the autonomous car to pick
up kids from school, pick up someone at the airport, and so
on. It is worth noting that progress in these areas has already
been made by the electric car giant Tesla, which introduced
“summon” [39] applications in its high-end models. Summon
lets the owner of the Tesla car call it through a mobile applica-
tion. In other words, the car can go to the designated parking
place by itself, such as the basement of a building, and when
it is needed, the owner can request the car to be at any des-
ignated location. This feature also lets the car owner park
it in tight places where it is difficult to exit the car after

it has been parked. Furthermore, recent research has been
undertaken to better understand different driving patterns, by
analyzing drivers’ characteristics and behaviors that include
gender, age, driving experience, way of driving, personality,
emotion, history of accidents, and so on [40].

The aforementioned characteristics collectively mimic
the individuals’ driving behaviors. Customization of the
autonomous car will rely on the knowledge of human behav-
ior. For instance, speed and overtaking during driving on the
road depends on human characteristics such as, but not lim-
ited to, gender, age, emotion, and preferences. Young drivers
tend to drive faster than elderly people, whereas female drivers
and elderly people often drive more carefully. People driving
with infants and family also tend to be cautious drivers. Some
people like to travel on less-busy roads, even if it takes them
longer to reach the destination. Therefore, for autonomous car
customization, we should take such attributes into consider-
ation. It is also important to consider what the autonomous
car does when it is left alone. More specifically, it should
park itself in a designated parking lot and it should know
when to pick up and/or drop off the owner. The autonomous
car’s owner should be able to customize it for the various
aforementioned scenarios. Autonomous cars will pave the way
for a whole range of passenger-centric applications, where
passengers can customize their commute experience based
on preferences such as speed, level of risk, in-car entertain-
ment, and so on. To be more precise, human characteristics
and dynamics will play an important role in determining the
ultimate driving experience.

IV. AUTONOMOUS CARS: RESEARCH RESULTS

In this section, we present current research results achieved
in the area of autonomous car technology. We focus on
the technological side of the autonomous car and cover key
software components and algorithms that include computer
vision, deep learning, communication, and control. Before
presenting the aforementioned topics, we outline some real-
world experiments to assess the feasibility of autonomous
cars. Broggi et al. [41] described different tests performed
(both as individual projects and competitions) on driverless
cars between 1990 and 2013. These tests were performed in
different scenarios ranging from free road with no traffic to
public roads. Furthermore, the results from these tests pro-
vide a close insight to the behavior of the driverless cars in
different environments. Broggi et al. [41] also performed a
series of tests on a fully autonomous car on public roads
of Parma, Italy in 2013. The authors tested different driving
scenarios including traffic lights, pedestrian crossing, freeway
junctions, and roundabouts. This test is called the Public Road
Urban Driverless (PROUD) car test and was intended to have
close insights into the homegrown autonomous car technology.
This experiment yielded some very important observations
such as the need for extremely detailed and precise maps,
efficient learning and perception mechanism. Furthermore,
another comprehensive effort was made by Jo et al. [42], [43]
where the authors applied a distributed system architecture
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with a focus on the generality of the autonomous car devel-
opment process without any dependence on any particular
development environment. The authors used FlexRay as a
communication protocol and software platform to increase
the system performance. We note that traditional cars use
the CAN bus technology for communication among different
ECUs. However, the CAN bus technology has been contro-
versial because of its slow speed and vulnerability to different
attacks [44]. Although efforts have been made to enhance the
security of CAN bus [45], [46], nevertheless, the speed and
difficulty of modifications to the CAN bus continues to hinder
its deployment. In contrast, FlexRay is faster and more effi-
cient but expensive. Then, Jo et al. tested their implementation
of the autonomous car namely, A1, which won the autonomous
car competition in South Korea in 2012 [43].

We would like to point out that most of the autonomous car
technology is proprietary and therefore inevitably, we focus
only on the current research results from both academia and
small-scale industry. Next we discuss some research areas
which are being explored in autonomous cars.

A. Computer Vision in Autonomous Cars

Object detection and vision are two of the most critical and
essential features of autonomous cars. To mimic the human
driver behavior, autonomous cars must “see” the road and
detect any obstacle in front of and around it, be it another car,
pedestrian, vegetation, or any other type of obstacle. These two
key features along with other modules enable the autonomous
car to drive along the road and respond to any unwanted situa-
tion in a safe, or at least fail-safe way, for instance stopping at
a traffic signal, slowing down if the preceding car reduces the
speed, avoiding running into pedestrians, and so on. To date,
many research results have been achieved in both computer
vision and object detection for autonomous car. Here, we suc-
cinctly outline the current state of these algorithms. However,
it is important to mention that most of the currently available
pilot versions of autonomous cars use proprietary components
and their details are not publicly available. Therefore, we could
only report research results that are publicly available.

Janai et al. [47] carried out a detailed and systematic sur-
vey on the computer vision algorithms and mechanisms used
in autonomous cars. They specifically covered the perception,
object detection and tracking, motion planning, and end-to-
end learning aspects of the computer vision in autonomous
cars. Despite significant advances in computer vision algo-
rithms, the errors produced by the latest computer vision
algorithms in unpredictable scenarios challenge their effec-
tiveness in the autonomous car [47]. Therefore, the maturity
of computer vision in autonomous cars will likely take more
time. Furthermore, the complex environments and scenarios
faced by autonomous cars during its travel also need behavior
analysis and learning mechanisms where the decision support
system of the autonomous car can learn and decide in unpre-
dictable circumstances. Therefore, artificial intelligence plays
a vital role in the prediction and perception of the autonomous
car system. Shi et al. [31] also surveyed the current state-of-
the-art computer vision algorithms in autonomous cars. They

focused on lane detection, pedestrian and object detection, and
drivable surface detection. Additionally, they also discussed
the currently used hardware such as Graphics Processing
Unit (GPU), Field-Programmable Gate Array (FPGA), and
Application-Specific Integrated Circuits (ASIC), for the afore-
mentioned functions in the autonomous car. The results from
this research revealed that FPGA accelerators enables FPGA to
outperform CPU and GPU in terms of energy efficiency, and
throughput. However, FPGA incurs slow speed and it takes
larger chip areas, therefore ASIC are employed for compute-
intensive operations like computer vision. ASICs perform
better than FPGAs.

Although computer vision is a vast field that covers many
aspects ranging from image acquisition to segmentation and
categorization; however, in this work we only focus on
object detection, calibration, and motion estimation with some
relevance to autonomous cars. Objection detection is a fun-
damental requirement for autonomous car. The autonomous
car must detect both static and dynamic objects to maintain
different maneuvers. However, object detection is challeng-
ing in autonomous car because of several reasons such as
shadows, identical objects, lighting conditions, and so forth.
Therefore, the underlying algorithms should take these factors
into account. Object detection is carried out with the aid of
different sensors ranging from cheap cameras to sophisticated
LIDAR and radar. Furthermore, the autonomous car needs sen-
sors for different purposes and types of environment. These
include visible light (daytime), infrared sensors (night time
or in dim light), and thermal infrared to detect living organ-
isms. A mechanism that combines different sensors to have a
detailed, unified, and comprehensive view of the sensed data
is called sensor fusion which combines data from an array of
different sensors. Recent developments in sensor fusion [48],
[49] are encouraging and could be incorporated into the
commercial autonomous car technology. More precisely, sen-
sor fusion-based object detection methods offer improved
accuracy as compared to the traditional object detection
methods.

In another work, Chen et al. [50] proposed a deep learning
approach to take LIDAR generated data and other RGB images
as input and predict a three-dimensional (3D) representation of
that data. Chen et al. [51] also proposed a convolutional neural
networks (CNN)-based mechanism to detect 3D objects with a
single monocular camera. They first generate object proposals
based on distinct features and then refine them for the iden-
tification of true objects. Once the sensory data is available,
it is important to classify the object into distinct categories
such as vegetation, pedestrian, vehicle, and so on. This pro-
cess is called semantic segmentation at a pixel level [52]. To
address this issue, both machine learning (supervised learn-
ing and unsupervised learning), and deep learning approaches
have been used for classification. Depending on the avail-
able sensory data (whether it is labeled1 or not), supervised
learning model such as Support Vector Machine (SVM) can

1Labels are the tags associated with data to provide information about the
data. For instance, a label could be a tag that indicates whether the animal is
a cat or dog. Labeled data makes data more expressive for the learning.
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be used and if the data is not labeled, unsupervised learning
can be used [53]–[55]. The aforementioned object detection,
semantic segmentation, and classification approaches perform
relatively better in terms of accuracy. However, their effi-
ciency is questionable because of the algorithm complexity,
incurred computational overhead, delay, and lack of suitable
features, and the complexity of designing features manually
mandates for other automatic mechanisms. Therefore, deep
learning mechanisms are essential for object detection and
classification. To this end, deep learning methods such as CNN
and auto-encoders are used to increase the performance of the
learning and classification process and automate the features
design process [56], [57]. In essence, low-level features (such
as color and gradient orientation) can be hand-crafted with
success whereas mid-level features require some learning and
are hard to design by hand [56]. Therefore, it is imperative
to automate the process of both low- and mid-level features
design.

Construction of a 3D image from 2D image is also an impor-
tant feature of computer vision that must be incorporated into
the autonomous car for motion planning and actuation. The
aim of such construction is to have depth in the acquired infor-
mation in terms of details, particularly in 3D map construction.
The most popular and efficient approaches for such construc-
tion are deep learning-based approaches [58], [59]. A more
comprehensive study of computer vision in autonomous cars
is presented in [47].

B. Machine and Deep Learning in Autonomous Cars

Machine learning, deep learning, and artificial intelligence-
based techniques are indispensable for autonomous cars. The
main reason for the significance of these technologies is the
unpredictable environment and behavior of the surrounding
objects. As we have mentioned before, most of the com-
puter vision related algorithms and mechanisms such as object
detection, perception, scene identification, reconstruction, and
estimation use both machine learning and deep learning mech-
anisms. In this section, we present recent advances in machine
learning and deep learning optimized for the autonomous
car technology. In addition to the previous contributions of
machine learning, software testing is also aided by machine
learning techniques in autonomous cars. In traditional soft-
ware, the operational logic is written manually and tested over
a series of test cases whereas in Deep Neural Network (DNN)-
based software, the software learns and adapts with the help
of large data sets.

Next, we review some of the current popular deep learning
models used in autonomous cars. One of the crucial aspects
of autonomous cars is perception and it is a good candi-
date for applying deep learning models. The actuation of the
autonomous car heavily depends on perception and therefore,
it is important for autonomous cars to mimic the human-like
perception capability. Deep learning models also contribute
to the processing of massive sensory data in order to make
informed decisions. In addition to perception, other functional
requirements of the autonomous car that are supported by
deep learning include, but not limited to, scene recognition,

object (obstacle, car, pedestrian, and vegetation) detection and
recognition, human activity recognition, environment recogni-
tion, road signs detection, traffic lights detection, and blind
spot detection. The popular deep learning models used in
autonomous car technology to achieve the aforementioned
goals include end-to-end learning, CNN, deep CNN, Fully
Convolutional Network (FCN), DNN, belief networks, Deep
Reinforcement Learning (DRL), Deep Boltzmann Machines
(DBM), and deep autoencoders. Next, we describe the cur-
rent research results that use the aforementioned deep learning
models for different functional components in autonomous
cars. Tian et al. [60] proposed a DNN-based framework to test
the behavior of DNN-driven autonomous cars. The DeepTest
implementation in [60] found erroneous behaviors many times
while testing the vehicles under different traffic and envi-
ronmental conditions. This demonstrates the immaturity of
the current solutions and the need for more rigorous mea-
sures for autonomous cars to be able to function completely
independently. Current tests of autonomous cars are relatively
controlled.

In principle, computer vision is complementary to machine
and deep learning. Most of the computer vision algorithms
use machine and deep learning techniques that are used to aid
different functional components of the autonomous car such
as object detection, scene recognition, obstacle detection, and
so on. Chen et al. [61] proposed a learning mechanism that
automatically learns different features of an image to estimate
the proper affordance in autonomous cars. In the proposed
mechanism, affordance is estimated for driving actions instead
of parsing the individual scenes. This affordance is based on
factors such as static or dynamic object on the road, pedes-
trian, and vegetation. The perception in autonomous cars can
be divided into two categories. In mediated perception, the
current environment is unknown and the perception-related
components are used to recognize important driving-related
features such as lane, road, crossing points, pedestrians, and
so forth. In the other category called, behavior reflex mode,
the neural network is used to train the system based on human
behavior which is closely observed and learnt to take deci-
sions for autonomous driving [61], [62]. In addition to these
two methods, Chen et al. [61] proposed another direct percep-
tion method that uses CNNs where they define key perception
indicators. The system learns mapping from an acquired image
to several affordances related to driving actions such as cur-
rent steering angle, adjustment with the lane, and staying
within the lane. The authors tested their system with TORCS,
an open source car racing simulator.2 Laddha et al. [63]
proposed a hybrid algorithm based on both supervised and
unsupervised learning to detect road features necessary for
autonomous driving. A major benefit of this algorithm is
that the authors reduced human effort to label the training
dataset thereby making it automatic and more scalable. The
algorithm takes different types of input data from sources
that include OpenStreetMap,3 different sensors mounted on

2http://www.cse.chalmers.se/ chrdimi/papers/torcs.pdf
3https://www.openstreetmap.org
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vehicle including localization and camera sensors. The algo-
rithm employs CNN to use the generated annotations in the
previous steps with the KITTI dataset [64]. Obstacle detection
is another important feature for autonomous car. As mentioned
before, deep learning can be effectively used to detect obsta-
cles on the road with acceptable accuracy. Dairi et al. [65]
proposed a deep learning mechanism to detect obstacles on
the road based on deep autoencoders and stereovision. In this
obstacle detection mechanism, the authors employed a hybrid
deep autoencoder that combines the features of DBM and
auto-encoders. The results obtained in this work show that
the hybrid autoencoder-based solution yields 98+% accuracy
(on average) on different datasets, and clearly outperforms
the Deep Belief Network (DBN) and Stacked Auto-encoders
(SDA).

Another Deep Learning algorithm based on affordance
parameters is proposed by Al-Qizwini et al. [62] where they
take five affordance parameters into account to train the
system and perform simulations by using realistic assump-
tions. According to their results, the direct perception model
outperforms the existing mediated and behavior flux models.
Xu et al. [66] formulated autonomous driving as a future
ego-motion prediction problem where multi-modal driving
behaviors are trained through an end-to-end Long Short Term
Memory Fully Convolutional Network (LSTM-FCN). The
proposed architecture is trained by using large-scale video data
from vehicular actions provided by an available dataset by the
authors. This scheme, in contrast to previous schemes that per-
form the learning based on mapping from pixels to actuation,
employs an end-to-end learning mechanism for improving
the learning performance. Furthermore, this algorithm also
addresses the limitation of traditional end-to-end learning that
is possible only on a specific dataset as in [67]. Xu et al.
addressed the aforementioned problem by using very large
datasets from uncalibrated sources and crowd-sourced datasets
and performed learning on those datasets. According to the
authors, the learning results were promising because of the
deep learning algorithm developed. Although current deep
learning models perform well in autonomous cars for different
core components, however, it will take time for these models to
mature and mimic the actual driving behavior of humans. As a
result of recent advances in the popular deep learning architec-
tures such as AlexNet, VGG-16, GoogLeNet, and ResNet, the
accuracy of scene understanding and semantic segmentation
in autonomous cars [68] have improved. To be more precise,
AlexNet is a deep CNN that achieved 84.6% accuracy, whereas
another deep CNN architecture called Visual Geometry Group
(VGG) achieved 92.7% accuracy. In contrast, GoogleLeNet
is a CNN-based architecture and it achieved 93.3% accu-
racy during the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)-2013. ResNet is a Microsoft architecture
that won the ILSVRC-2016 competition with 96.4% accuracy
with depth of 152 layers. In the context of these remarkable
results from an accuracy perspective, it can be argued that
deep learning will play a fundamental role in the future evo-
lution of various aspects of autonomous cars. However, the
unpredictability of the driving environment is one of the many
factors that is impeding the maturity of these models.

C. Sensors, Communications, and Control

The heart of an autonomous car is its computing unit that
implements the logic of the autonomous car in a holistic way.
Sensors and actuators play a pivotal role in the realization of
an autonomous car system. The autonomy of an autonomous
car means handling of both known and unknown environments
without any human intervention and needs machine learning,
deep learning, and artificial intelligence algorithm techniques
as discussed in the previous subsections. These algorithms
are data-intensive, and the data is acquired through arrays
of different sensors which collectively form a massive sensor
network within the car. Therefore, data acquisition, collection,
storage, processing, communication among different entities
within the car and with the environment, and the control of
autonomous car are key aspects that need proper mechanisms.
On the other hand, with the removal of human involvement,
autonomous cars have to make autonomous decisions based on
what is best in a particular circumstance. This characteristic
also requires the autonomous car to be more connected to the
surrounding environment and draw as much data as it can from
neighbors, infrastructure, and the Internet to make the best
decision. Therefore, communication is of pivotal importance
for the autonomous car. In this context, this subsection consid-
ers communication within the autonomous car among different
modules, communication between the autonomous car and
the environment (including pedestrians and infrastructure) and
in-car sensor data analytics.

Autonomous car uses a myriad of sensors that generate a
sheer amount of data. The collected data is processed in special
ways to get maximum utility. The most common technique is
called sensor fusion where data is collected from multiple sen-
sors in an intelligent way to aid the decision support system.
To date, different algorithms have been proposed in the lit-
erature to deal with various kinds of data in the autonomous
car. For instance, Oliveira et al. [69] proposed a mechanism
to accurately visualize the scene from the 3D data collected
through range sensor by using large scale polygonal primi-
tives. The scene visualization is of paramount importance for
both perception and learning of the autonomous car. On the
other hand, since the scene may change constantly, it is imper-
ative to incorporate a steady mechanism that deals with new
unforeseen environments such as obstacles on the road. In this
context, the continuous reconstruction of a scene is calibrated
with the currently constructed scene and by doing so, the effi-
ciency is increased because only newly obtained data from
sensors is processed. The performance parameters for polygo-
nal primitives-based scene reconstruction algorithms consider
successful scene reconstruction, and the time taken by poly-
gon detection. Since this method is incremental, and previous
data is used in the detection of polygon and reconstruction
of the new scene, therefore, when the number of polygons
(similar geometrical structures) increases, the time required for
polygon detection decreases which in turn increases the effi-
ciency. The incremental scenario representation mechanism is
more efficient than other counterparts such as Ball Pivoting
Algorithm (BPA), Greedy Triangulation, and Poisson Surface
Reconstruction (POIS) where the incremental approach exe-
cution time is about 2 to 23 times (on average) less than
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BPA, GT, and POIS mechanisms. However, the accuracy of
the incremental mechanism is slightly lower than GT since GT
produces 0.14 m error (on average) and the incremental mech-
anism produces between 0.83 and 0.98 m error. Therefore, the
designers of the autonomous car’s object detection modules
must take these results into account.

Similarly, road detection is one of the key requirement of the
autonomous car and is usually realized through different sen-
sors such as on-board camera and LIDAR. Since these sensors
exhibit different requirements, sensor fusion techniques are
used to harness the features of both. Xiao et al. [70] proposed
sensor fusion techniques using LIDAR data for road detec-
tion. The authors used a variant of Conditional Random Field
(CRF), known as Hybrid CRF (HCRF), to harness the advan-
tages of both LIDAR and camera sensors. This model uses a
binary labeling mechanism where ’road’ or ’background’ are
labeled. In using such multi-modal approaches, it is necessary
to align the pixels from the camera with LIDAR point cloud.
The proposed HCRF was evaluated on different datasets and
the authors showed that the maximum F1 score (F1 score or
F-score refers to the degree of accuracy in terms of precision
and recall) for HCRF is roughly 3% higher than the point
classifier and point-wise CRF. It can also be argued that the
combination of camera and LIDAR sensors provide efficient
detection with maximum utility if the features of both of them
are fully utilized. Similarly, vehicle localization is also one of
the important functional parameters for the autonomous car
and is therefore achieved through data from multiple sensors
that include GPS, gyro, speed sensors, accelerometer and so
on. Additionally, data fusion techniques are also used to cor-
rect the errors of the traditional GPS systems [71]. During
the development of the autonomous car, Jo et al. [42], [43]
used the Interacting Multiple-Model (IMM) fusion algorithm
for localization. The algorithm is based on adaptive filters in
order to deal with different road conditions [72]. Jo et al. [43]
used existing algorithms for different functional components
of the autonomous car including perception, localization, plan-
ning, communication, and actuation. To this end, we described
sensor fusion algorithms that deal with in-car sensors and com-
munication systems. In addition to the communication inside
the autonomous car, communication of the autonomous car
with the outside world is also crucial for its operation. Next,
we describe different algorithms and schemes that discuss
communication among autonomous cars and other entities.

Connected vehicles and autonomous car technologies are
often considered as separate technologies but in fact they are
orthogonal to each other. Efficient coupling between these two
technologies reinforce their synergies towards better realiza-
tion of the intelligent transportation system. Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communications
enable cars to cooperatively communicate with each other
and with infrastructure hardware devices such as RSUs to
support a plethora of applications [73]–[75]. The cooperation
among vehicles and infrastructure can be extended to different
applications such as cooperative platooning applications [76]
where cars exchange their mobility data to enable platoon-
ing, and cooperative traffic information system where cars
share their scheduled beacons to construct traffic views [77].

Similarly, autonomous cars can cooperate with each other as
well in different capacities. For instance, sharing sensors’ data
with the neighbors will not only help neighbors in differ-
ent situations such as maneuvers, but will also make driving
safer. More precisely, cooperation among autonomous cars
can have many other benefits that are critical as well. For
instance, cooperative state estimation with trajectory infor-
mation sharing among autonomous cars can make navigation
more effective and smoother as well as help autonomous cars
if one of its subsystems fails. Other applications of cooperative
communication among autonomous cars include coopera-
tive localization through optimized sensor configuration and
motion coordination [78].

Hobert et al. investigated cooperative autonomous car appli-
cations and discussed the protocols that are used for coop-
erative communications. Furthermore, they also suggested
amendments to the existing standards such as IEEE 802.11p so
that it meets the additional communication requirements of the
cooperative autonomous car such as additional vehicle status
data, convoy management, maneuver negotiation, intersection
management, cooperative sensing, high message rate, low
end-to-end delay, and enhanced reliability [79]. Cooperative
autonomous driving also aids in platooning where autonomous
cars coordinate, share information about surrounding envi-
ronment, and maneuvers to operate safely. Efficient, timely,
and effective communication is needed in platooning applica-
tions of the autonomous car because platoon members must
be in constant contact to adjust and maintain their maneuvers.
Peng et al. [74] analyzed the performance of IEEE 802.11p
protocol used for communication among platoon members.
Furthermore, multi-platoon communication is also important
for platooning. Peng et al. [74] considered inter-platoon com-
munications and found out that first and last vehicles of pla-
toons affect the communication among different platoons. The
authors also concluded that IEEE 802.11p effectively supports
platooning applications in autonomous vehicles. Numerical
results revealed that fine-tuning of parameters such as con-
tention window size and maximum back-off time contribute
to the overall performance of IEEE 802.11p in terms of
retransmission probability, network throughput, packet loss,
and end-to-end delay. Since the communication is carried
out among the platoon leaders, therefore sharing cooperative
awareness information is effective and the end-to-end delay is
reduced (in the experiments, it ranged from 1 ms to 2.5 ms),
which is an acceptable range for vehicular networks applica-
tions. In short, IEEE 802.11p standard, after necessary tweaks,
has the capability to be used as communication mechanism for
cooperative autonomous driving. However, currently there are
other available choices for autonomous car platooning applica-
tions. For instance, cellular-based communication mechanism
is also used for platooning applications in autonomous cars.
However, resource allocation in cellular networks is a chal-
lenge and must be carefully handled. Peng et al. [75] proposed
a LTE-driven, subchannel-based resource allocation mecha-
nism for inter-vehicle communication within a platoon and
among platoons.

In autonomous car platoon communication, the required
information is not limited to cooperative awareness, but also
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platoon management, such as joining and leaving the platoon,
and so on. This work considered LTE instead of other exist-
ing technologies to reduce the communication delay among
vehicles. The experimental results of the proposed scheme
demonstrate its effectiveness in terms of end-to-end transmis-
sion delay, power control, and the average transmission power
required for communication. The results show that for pla-
toon sizes between 3 and 20, the end-to-end transmission delay
incurred by the proposed scheme is about 1 ms which is about
half the delay incurred by Device-to-Device (D2D) unicast
algorithm. It shows that the proposed solution can effectively
manage different platoon sizes. Apart from afore-mentioned
communication technologies, Visible Light Communication
(VLC) is also used in connected car environment with per-
fect line of sight where transmitters and receivers are installed
in the headlights and tail lights of the cars [80]. VLC uses
visible light for both illumination and transmission of data
in wireless networks. However, VLC is still in its infancy
and efficient channel modeling is essential for it to meet the
requirements of connected car and autonomous car applica-
tions. The massive amount of data produced and processed by
the autonomous car also affects the current available network
bandwidth. Therefore, researchers are investigating novel tech-
niques to meet the demands of bandwidth for autonomous cars.
Kong et al. [81] discussed the feasibility of using mmWave
in autonomous car communications to share different types of
data about the surroundings and the environment in real time.

Autonomous cars also communicate with pedestrians for
cooperative motion planning. Chang et al. [82] proposed
a communication mechanism between pedestrians and
autonomous cars called Eyes on a car. The autonomous car
makes an eye contact with the pedestrian while he/she crosses
the road and assesses the intention of the pedestrian. Based on
the perceived intention, the autonomous car takes the decision
whether to stop or cross the road. In this project, real-world
users were tested with the prototype and their decisions about
crossing a road were observed. According to the results, 86.6%
of the users made a correct decision whether to cross the
road or stop. Furthermore, it was also observed that the users
made street-crossing decision 0.287 seconds faster than in
the case where there was no “eyes on the car”. This differ-
ence in decision making is significant for both passengers’
and pedestrians’ safety. Although the research is still pre-
liminary, it is a good starting point to address the issue of
consensus among pedestrians and autonomous cars on the
roads without traffic lights. It is also important to know how
humans react to autonomous cars while crossing the road.
Rothenbücher et al. [83] designed a social experiment where
they hid the driver with a costume and installed fake LIDAR
and other necessary equipment on the car to look like a real
autonomous car. The experiment revealed that about 80% of
the participants in the experiment believed that the car was
driving itself. The goal of the study was to obtain data on
user reaction to autonomous car which will eventually help
autonomous car designers to design better interaction systems
for users.

Control is another distinctive feature of the autonomous
car that provides guidance along the planned path. In other

words, autonomous vehicle control is a module that controls
the behavior of the autonomous car in different situations and
environments and guide its execution [84]. Moreover, con-
trol also refers to a hardware level component that converts
the intentions generated by different software modules into
actions performed by the hardware. For instance, when tra-
jectory is planned for autonomous car, the control module
must make sure that the autonomous car takes that trajec-
tory during motion and handles both predicted and unforeseen
circumstances. Jo et al. [43] developed a two-level control
system for the autonomous car, lateral control and longitu-
dinal control. Lateral control is related to the steering wheel
where the control algorithm calculates the steering angle for
the next action based on the generated path. It is worth not-
ing that preview points and lateral error of those preview
points from the generated path determine the accuracy of the
steering wheel angle. The worst case results show that the exe-
cution time of the vehicle control module is 3.14 msec on an
industrial computer. This execution time is calculated based
on the home-grown implementation of the software modules
described in [43]. In contrast, the longitudinal control algo-
rithm is related to the acceleration level of the vehicle and the
brakes status. This control module takes care of the speed, dis-
tance, and emergency brakes. The control generates discrete
velocity based on any two or given points. In addition to these
two types of control, autonomous cars also use a model for
predictive control. This model aims to optimize the predicted
motion of an autonomous car [84]. It is also worth mentioning
that some authors consider control in terms of communication
delays and render it as aiding mechanism for inter-vehicular
communications [85].

To this end, since the autonomous car deals with massive
amounts of real-time data and in the case of platooning appli-
cations, autonomous cars must communicate with neighbors
and with the surroundings in real-time; therefore, we need
to make the control mechanism of the car efficient enough
to stabilize the operation of the platoon. The communication
delay plays a pivotal role in communicating among vehicles
of a platoon or among different platoons. On the other hand,
wireless communication is prone to communication errors and
unexpected delays. Thus, autonomous cars must have a robust
control mechanism to deal with the transmission delays of
the wireless communications among vehicles. Zeng et al. [85]
proposed an integrated control mechanism for autonomous
vehicle platoons. In this control mechanism, the authors ana-
lyzed the communication delay boundaries to determine the
stability of the platoon. The authors also determined the upper
bounds of the transmission delay that is acceptable for the pla-
toon operation. With the modeled adaptive control mechanism,
Zeng et al. enhanced the reliability of the communication
mechanism of the platoon-based autonomous cars. Another
aim of this work was to analyze the stability of the platoon
system in different environments. In particular, plant stabil-
ity (when the leader decides the moving speed and distance
between the cars and these parameters are maintained by the
platoon members) and string stability (when any disturbances
in the movement of preceding vehicles will not increase)
are analyzed by the authors. Based on these stabilities, the
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authors derived the maximum delay that can be tolerated by
the platoon in order to function normally.

Control in autonomous car is different from conventional
control system. In case of autonomous car, different con-
trol systems must interact in autonomous car to deal with
the unpredictable environment and thus-forth reaction of
autonomous car to the environment [86]. In other words, the
central control system of autonomous car depends on the con-
text which advocates for an adaptive control system. However,
knowledge of the context is essential for the control system
to act accordingly. To this end, there are various methods to
learn the context from the environment, for instance cooper-
ative communication. Liu et al. [87] leveraged beacon-based
communications among vehicles in a platoon and with the
vehicles that are part of the platoon. Although this work only
focuses on connected cars, such joint control-communication
mechanism can enable the autonomous cars to react and adapt
to different road environments in both platoons and individual
autonomous cars.

D. Decision Making

Decision making in increasingly complex and uncertain
environments is the pinnacle of autonomous cars. Cars that
usually focus only on their local environment and do not
take into account, what is going on around them, are referred
to as “ego-vehicles” as they consider only their current sta-
tus, speed, direction, and destination and so on [88]. It is
also worth noting that with the advancements in vehicular
networks and autonomous cars, the concept of ego-vehicle
is slowly fading away because of the need of communica-
tion among autonomous cars and the environment. In the
previous sections, we discussed different prediction algorithms
and techniques that are essential for the computer vision part
of the autonomous car. These algorithms and techniques pro-
duce predictions with a high probability. However, the final
decision is taken after considering the predictions based on the
sensory data and input from other modules. Another challenge
for decision making is the occlusive and uncertain environ-
ment that affects the prediction, and ultimately the decision
making process. Such occlusions are caused by noise in sen-
sory data, unpredictable behavior, limitations of sensors, and
most importantly the hidden state of the neighbors [89]. In
order to make prediction with the highest probability, the
autonomous car system must have fine-grained information
about the neighbors. However, in some cases, such informa-
tion about the neighbors may not be public or may not be
shared. This constraint poses serious problems for autonomous
car prediction and perception modules that directly affect
decisions. The fact that human behavior impersonation in
autonomous cars is extremely difficult, and as result, the deci-
sion making process becomes even more challenging. To this
end, the decision-making problem is multi-dimensional and
depends on various other elements such as autonomous car’s
behavior, perception and prediction, neighbors, sensor data
processing, components’ calibration, and so on.

Existing decision-making mechanisms in autonomous cars
can be categorized into machine learning, deep learning,

artificial intelligence, multi-policy decision making, and
Markov decision process [89]–[92]. Although efforts have
been made to make the decision-making process of
autonomous cars reliable but there are too many external
factors to address all the issues. Therefore, decision mak-
ing needs to be addressed in a holistic way by the research
community by taking into consideration the potential of inter-
vehicular communication. As mentioned before, ego-motion
of autonomous cars will hinder the growth of autonomous car
technology. Therefore, inter-vehicle communication can play
a crucial role for cooperative crowdsensing, crowd-perception,
and neighbors’ behavior. In this context, the communicat-
ing nodes (autonomous cars, ordinary cars, and other entities
such as pedestrians) will not only share information with each
other, but also the perception and driving decision which will
strengthen the capabilities of the decision-making process.
The decisions made in such a cooperative manner will have
global impact on the surrounding traffic rather than making
the individual trip of an autonomous car secure.

Connected car technology [1] will play an important role
in the commercialization of autonomous cars in the future.
Connected car technology has been extensively researched and
the applications of connected car technology can already be
seen in today high-end cars. In essence, connected cars lever-
age both cars and infrastructure as communication entities.
Furthermore, recently the integration of connected car with
cloud infrastructures has also resulted in new applications that
use cloud services [9]. It is imperative that the autonomous
car leverages the benefits of cloud in different ways such as
the execution of sensor fusion algorithms, generating detailed
map, system diagnostics, history catalog, and other resource-
hungry machine and deep learning algorithms [14], [93].
However, the communication delay incurred by the communi-
cation between the autonomous car and the RSU and/or cloud
infrastructure make this approach less attractive for critical
functions of the autonomous car. In this context, the decision-
making module of the autonomous car cannot tolerate any
delay from the RSU or the cloud infrastructure. Therefore,
the role of the cloud infrastructure, at least at the moment, is
limited to value-added services and long-term behavior analy-
sis of the autonomous car whereas decision-making is carried
out locally at autonomous car in real time. In addition to cloud
computing, fog computing that extends the cloud paradigm to
the edges of the network, may be leveraged to provide real-
time services requiring low delays [94]. Some researches have
already envisioned fog-based vehicular networks and vehicu-
lar clouds [95], [96] that can be extended to autonomous cars
in connected environments.

E. Real-World Tests of Autonomous Cars

To date, many real-world tests have been conducted to
assess the operation and performance of autonomous cars.
Here, we outline some real-world tests about the autonomous
car next.

Campbell et al. [22] participated in the DARPA Grand
Challenge (DGC) for autonomous cars. DGC was announced
to collect the results of real world autonomous car tests
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and it consisted of 3 rounds. The authors documented their
experience and lessons learnt from the tests. In essence,
Campbell et al. implemented the autonomous car technology
in an ordinary car consisting of the necessary equipment to
enable the car to drive itself without any human interven-
tion. The competition was mission-based and a Route Network
Definition File (RNDF) was provided to the autonomous car
to drive itself through the provided map and through the road
structure. The home-grown autonomous car system consisted
of traditional components such as sensing, perception, plan-
ning, and control. These real-world tests gave more insights
to Campbell et al. [22] regarding the issues that need to
be resolved, should the autonomous car technology become
commercial. Some other researchers also described their expe-
riences with the autonomous car and documented important
insights to the problems that still need to be solved for
the fully autonomous car. For instance, Endsley et al. [97]
studied the Tesla Model S autonomous car for 6 months
from different perspectives such as assessing the situation
awareness, adaptation with the autonomous car, reaction to
unforeseen circumstances on the road and so on. The study
concluded that some of the pressing challenges faced by
the autonomous car industry include consumer mental model
development, trust in autonomous cars, environmental com-
plexity and interfaces/design for the occupants. Although this
study is based on a personal and individual experience, it does
provide important feedback from a real consumer perspective.

Broggi et al. [98] developed and tested BRAin driVE
(BRAiVE) at Artificial Vision and Intelligent Systems Lab
(VisLab).4 A series of tests were conducted on a locally
designed autonomous car that traveled 13000 kilometers
from Italy to Shanghai. During this expedition, the VisLab’s
prototype came across many unknown environments and
the developers of the project had a chance to analyze
the effectiveness and performance of the prototype model.
This expedition was referred to as VisLab’s Intercontinental
Autonomous Challenge (VIAC). This test provided a large
amount of real-time data that is currently being used to
upgrade the autonomous cars with new functionality and
improved their performance. However, VIAC worked on the
leader-follower principle due to the unavailability of fine-
grained maps. Therefore, one of the serious limitations of
VIAC was its dependency on a leader to let the followers
know the coordinates for the entire itinerary. Later on, in 2013,
Broggi et al. [41] took the VIAC experience to another level
by testing the autonomous cars on streets. The project called
PROUD not only addressed the issues with VIAC, but also
traveled faster than VIAC. Although the PROUD test achieved
its targeted results, it also revealed that the driving efficiency,
speed of the autonomous cars and perception in many-lane
roads must be further investigated.

Jo et al. [42], [43] developed an autonomous car from
scratch and carried out extensive experiments on the proto-
type model of the car. The results are based on the outcome
of an autonomous car competition held in South Korea
in 2012. Jo et al. designed the architectural framework of

4 http://vislab.it/

the autonomous car and tested it through different environ-
ments. The software architecture for automotive products is
an important component that is responsible for the normal
functioning of the ordinary car and for the maneuverabil-
ity of the autonomous car. Among other software architec-
tures, AUTOSTAR [99] is an open standard architecture used
by many automotive manufacturers. However, for research
projects, AUTOSTAR is too expensive and too complex to
implement. Therefore, a lighter version, namely, AUTOSTAR-
lite, was proposed in [100]. Jo et al. used the lighter version
of AUTOSTAR for their autonomous car software. With
extensive experiments on the autonomous car developed, the
authors favor a distributed approach for the autonomous car
architecture over the centralized approach where functional
components of the autonomous car are grouped together into
several local computing units. The rationale behind distributed
architecture is to deal with the complexity of autonomous car
algorithms. Distributing the computational load into multiple
local computation units not only increase the efficiency, but
also improves the performance and enables parallel computa-
tions.

Apart from academia, the automotive industry has also taken
initiatives to involve potential consumers in autonomous cars
tests in the real-world scenario. For instance, “Drive Me”5 is a
unique project started by Volvo where the company planned to
distribute about 100 vehicles among consumers in Sweden to
collect the data from consumer about their daily routines [101].
Furthermore, the goal of this project was to investigate the
driving behavior, consumers’ preferences, and other impor-
tant dynamics of driving. The project’s goal was to get the
consumer perspective of the technology and obtain as much
data as it could for research purposes. It also planned to use
this data for improving the quality of life when commercial
autonomous cars will hit the road in the near future.

V. AUTONOMOUS CARS’ DESIGN AND

IMPLEMENTATION ISSUES

The future of autonomous cars will be decided by their
safety, robustness, graceful degradation, fail-safe nature, hard-
ware/software designs, and consumer satisfaction. However,
to achieve these goals, the design and implementation of
autonomous cars need to provide extreme precision, safety, and
reliability, because human lives directly depend on them. The
autonomous car relies on major technologies such as LIDAR,
radar, positioning, sonar, sophisticated sensors, and optimized
software. In this section, we outline the design and implemen-
tation issues faced by the autonomous car industry. We also
present current validation tools (including simulators) used to
simulate and test various aspects of the autonomous car.

A. Cost

One of the major hurdles in the mass production of
autonomous cars is the cost of hardware and software. From
a hardware perspective, LIDAR costs around U.S.$75,000,
which is far more expensive than the car itself. Therefore, it

5https://www.volvocars.com/intl/about/our-innovation-
brands/intellisafe/autonomous-driving/drive-me
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is reasonable to assume that hardware costs will play a crucial
role in autonomous cars’ design and deployment.

B. Maps

The maps used by autonomous cars are different from
the maps generated by traditional GPS systems. These maps
use a lot of road details such as lane dimensions, distance
from pedestrians, and curb height. To store all these details,
an autonomous car needs enormous memory and processing
power (the memory and power needed also are directly pro-
portional to the length of the road). It is also worth pointing
out that the autonomous car logs every mile of the road it
travels. A detailed survey about localization and mapping in
autonomous cars is carried out by Bresson et al. [29]. The
authors both focus on building maps in different weather con-
ditions and environments and reusing the built maps. However,
as afore-mentioned, building such maps require enormous
computational and storage power. To handle such large vol-
umes of data in real time, we need advanced storage and
processing capabilities in the autonomous vehicle. Leveraging
big data solutions to address this challenge might be one option
to explore in the future [14] According to statistics [102],
in California alone, the road network spreads about 170,000
miles, and in the United States, there are 4 million miles of
public roads. Logging the data for the whole country, and
then inter-country, would be an immense challenge. Some
efforts have already been made to draw precise maps based
on the data acquired by different sensors such as 3D LIDAR,
odometry sensor, and low cost GPS; however, the chang-
ing environments and road structures are still challenging for
efficient mapping [103].

C. Software Complexity

The final decision of whether to get the car moving, stop,
perform a lane change, overtake, and so on is taken based on
the output of a software program that runs the autonomous
car. Therefore, the accuracy of the results delivered by such a
software program must be highly reliable. As we mentioned
previously, a huge amount of data, collected from the envi-
ronment and surroundings through different sensors, is used
as input to the software. The real-time processing and analy-
sis of such data remains a challenge for the autonomous car. To
date, test drives of autonomous cars have shown, by far, good
results in terms of reduced dangers per mile and the reduced
number of disengages [104]. It is worth mentioning that at
the moment, most autonomous car companies include a “dis-
engage” functionality into their driverless cars during the test
drive, which enables the reserve driver to disengage in case of
any incident. However, autonomous cars have still to be tested
in more hostile environments such as fog, heavy storms, at
night, and massively crowded cities. To date, autonomous cars
have been tested on highways and urban scenarios. The data
also are logged for further processing and behavior learning.
On the back end, autonomous car software implements learn-
ing algorithms to record the driving patterns and behaviors of
the car, such as response to obstacles on the road, pedestrians
crossing the road, overtaking, giving way, and so on, and later

on the autonomous car uses the learning experience in future
situations. Obviously, timely updates, tweaks, and integration
of this software with other in-car software will be critical to
the autonomous car’s performance and security.

D. Simulation

One of the cheapest means of validation of a technology
and/or design is simulation. Autonomous car designers are
particularly interested in improving self-driving technology
because after rolling out the technology, there is no margin
for errors. Today, Google is leading the autonomous car mar-
ket with hundreds of prototype cars 6 that are logging the
driving experience using specialized software running inside
the cars’ computers. These prototype autonomous cars have
already completed millions of miles and have been re-driven to
make sure everything runs well. Furthermore, there have been
experiments conducted on real-world cars to check the dynam-
ics of the autonomous car systems [105]. The idea behind
such a large-scale simulation is to make sure that the software
functions works reliably and safely. Most simulation tests of
autonomous cars are performed on real hardware (i.e., pro-
totype cars) with all the built-in functionalities essential for
autonomous cars, with test drivers behind the wheel. However,
reasonable efforts have been made to test autonomous cars’
functionality through existing simulator tools that simulate
different aspects of the autonomous cars, including mobility
dynamics, path testing, fuel economy, path planning, and so
forth [89], [106]–[113].

In essence, traffic simulators are used to test various
aspects of driving including mobility, behavior, traffic sce-
narios, and lane keeping. Traffic simulations can be divided
mainly into two classes: macroscopic and microscopic sim-
ulations [114], [115]. Macroscopic simulation models cover
the abstract level of details about the traffic situation derived
from most of the vehicles in use. In contrast, microscopic
traffic simulators model the individual vehicles’ behaviors.
Both models have their pros and cons. For instance, macro-
scopic models are fast and require fewer resources, whereas
microscopic simulation models require more resources but pro-
vide better granularity in terms of understanding the behavior
of individual vehicles. Furthermore, because microscopic sim-
ulation deals with individual vehicles, the simulation must
be run many times to obtain the required accuracy. There
are many traffic simulation tools that provide either one
(METANET – a macroscopic simulator [116], VISSIM [117],
PARAMICS [118], CORSIM [119], and Transportation
Analysis and SIMulation System (TRANSIMS) [120]
– microscopic simulators) or both simulation models
(Simulation of Urban Mobility (SUMO) [121] incorporates
both macroscopic and microscopic mobility). In the case of
autonomous cars, the vehicle’s behavior is tested with these
simulators. We note that in the simulation environment, real-
world scenarios are oversimplified to cope with computers’
resource constraints. It is difficult for the simulators to cap-
ture all the details of actual, large, complex road networks.
Simulating kinematic behavior, sensors’ data processing, and

6https://waymo.com/
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motion behavior of the autonomous car is still a challenge for
current state-of-the-art simulation tools. Next, we present the
simulation tools used for validating and testing autonomous
cars’ behaviors.

Figueiredo et al. proposed an architecture to incorpo-
rate the autonomous car behavior analysis into an existing
microscopic traffic simulator such as MAS-T 2er Lab’s sim-
ulator [106], [122]. They included data fusion from sensors
as well as realistic kinetics of the vehicle while on the
move, visualization of simulation models, inter-vehicle com-
munication for different purposes, and so on. The authors
used MAS-T 2er Lab’s microscopic traffic simulator and built
a system on top of the existing simulator to incorporate
different functions of autonomous cars. MATLAB is a pow-
erful tool used for simulating scenarios in different fields
of computer science, including networks. Autonomous car
uses different data acquisition systems, including vision, radar,
ultrasound, and a variety of different sensors, to assist different
tasks such as steering, braking, acceleration, and deceleration.
Engineers at MathWorks designed a simulation environment
in MATLAB and Simulink for an ADAS [123]. The strength
of MATLAB and Simulink is that they provide engineers
in industry and academia with a rich set of functionali-
ties such as design and test vision, radar, and a LIDAR
reception algorithm, data acquisition and sensor fusion algo-
rithms, simulation of a driving environment, vehicle model,
and driver models. In a nutshell, MATLAB provides a compre-
hensive suite of algorithms used for testing autonomous cars.
Furthermore, the simulation environment meets ISO 26262,7

requirements.
There are different platforms for simulating the various

aspects of autonomous cars. For the physical car itself,
classical engineering tools could be used that would incor-
porate testing of the sensors, vehicular dynamics, controller
design, actuators, and so on. These tools include CarMaker,8

PreScan,9 Simulink,10 and many more. Many application-
specific tools also can be used to simulate traffic management,
car-following, lane changing, and cruise control and to cre-
ate a realistic environment for autonomous cars. Additionally,
these tools are used to determine the effect of overall traf-
fic scenarios on autonomous cars. Another such simulation
tool is MATSim,11 an open source tool that provides a
framework to simulate large-scale, agent-based transportation
networks [125], [126]. MATSim simulates the road network
scenario for one day with different agents. In the context of
traffic simulations, agents are the nodes classified into dif-
ferent categories such as public transport, private transport,
taxis, pedestrians, and so forth. These agents have specific
attributes assigned to them and they share data according to
these attributes during simulations.

7https://www.iso.org/standard/43464.html KAFKA20122
8https://ipg-automotive.com/products-services/simulation-

software/carmaker/
9https://www.tassinternational.com/prescan
10https://www.mathworks.com/products/simulink/?requestedDomain=www.

mathworks.com
11http://matsim.org/

Other well-known microscopic simulation tools that address
the traffic dynamics such as road conditions, driving behavior,
traffic conditions, and inter-vehicular communication from a
single vehicle perspective have also been used. TRANSIMS
is an integrated simulation system used for transportation
analysis.12 It supports traffic modeling, scenarios generation,
activity generation, and estimation of emissions based on sim-
ulation results. TRANSIMS is based on cellular automata,
where the underlying models are discretized based on time
and space. Furthermore, each link in the simulation is divided
into fixed-size cells and the cell could be occupied by a car or
empty. Usually the cell’s length is a function of the car’s aver-
age size. Due to the fact that cellular automata-based models
are relatively simple to implement, they are computationally
effective and can simulate large-scale networks.

Simulation of urban mobility (SUMO) is a microscopic
simulation tool that simulates behaviors on a per-vehicle
basis. SUMO is free, and it was developed by the German
Aerospace Center (DLR). SUMO is based on two mobil-
ity models: Krauss and Gipps models [115], [127]. The
functional architecture of SUMO is based on a continuous
time-discrete approach and it also allows the modeling of
the intermodal traffic system, including vehicles, public trans-
port, and pedestrians. SUMO is a rich tool that supports
route finding, network import, and emission calculation in
addition to the possibility of enhancement with custom mod-
els. SUMO also provides various application programming
interfaces (APIs) to integrate with different systems, and it
can import road networks in different formats from map
databases such as OpenStreetMap13 and other simulators such
as Visum,14 Vissim,15 and NavTeq.16

For simulations concerning the vehicle and its mechani-
cal dynamics, classical simulation tools such as (veDYNA,
CarSim, NS2, NS3, OMNET++, OPNET, NcTUNs) are used
for simulating sensors, vehicular dynamics, controller design,
data acquisition, and dissemination techniques. Specific
application-based solutions such as traffic-management appli-
cations that surround vehicles also exist to enhance simulation
tools. Such tools are used to create a near-realistic environment
for autonomous cars’ testing and to evaluate the impact of the
surrounding environment on autonomous cars and vice versa.
Vissim is a commercial traffic simulation tool developed by
PTV.17 Vissim has a rich set of features that includes graph-
based structures for representing nodes that include vehicles
(both private and public transport vehicles and trucks), cycles,
pedestrians, rickshaws, traffic lights’ management, and so on.
The signatory features of Vissim include simulation of pedes-
trians, motorcycles, and bicycles that are rarely implemented
in microscopic simulators. Additionally, Vissim also provides
a high level of visual details through 2D and even 3G graphi-
cal user interfaces. To date, Vissim has been used to evaluate
many traffic scenarios, such as analysis of mixed traffic flow

12https://sourceforge.net/projects/transimsstudio/
13https://www.openstreetmap.org/#map=3/69.62/-74.90
14http://vision-traffic.ptvgroup.com/en-uk/products/ptv-visum/functions/
15http://vision-traffic.ptvgroup.com/en-uk/products/ptv-vissim/
16https://here.com/en/navteq
17http://company.ptvgroup.com/en/home/
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for speed control [128], speed control and cruise-control [129],
and to check the constraints of connected vehicles [130], to
name a few.

The growing interest in autonomous cars has also led to
the development of several testing platforms such as SimLab,
ProspectSV’s Intelligent Transportation Systems (ITS) Lab,
and MIT Media lab’s Moral Machine.18 One such lead-
ing testing platform is called the Driving Simulation and
Vehicle Systems Lab (SimLab). SimLab was developed at
fkaSV (a subsidiary of German company fka) and provides
access to new startups for autonomous car technologies to
test their solutions that include algorithms for autonomous
cars, behavioral testing, application testing, and communica-
tion testing. SimLab offers advanced features for simulating
autonomous cars. Unlike other driving simulators, SimLab
offers paid autonomous car simulation services to clients
at the testing site in Silicon Valley. Clients can test their
applications in the autonomous car environment and SimLab
provides the integration environment. SV SimLab is one of
several other driving simulators owned by the company fka
(ForschungsgesellschaftKraftfahrwesen mbH Aachen). 19 It is
worth noting that fkaSV is a collaboration between the startup
incubator ProspectSV and fka at Silicon Valley, a spin-off of
the Institute for Automotive Engineering at RWTH Aachen
University in Germany. SimLab allows new algorithms and
schemes to be included in the control loop, and therefore, dif-
ferent technology developers can test their solutions before
production. Another joint effort is the collaboration between
the Center for Automotive Research at Stanford (CARS) and
Toyota Collaborative Safety Research Center (CSRC Toyota).
This collaboration has designed an interactive simulator that
simulates not only vehicular dynamics, but also couples it with
driver behavior and monitors human brain activities through
interfaces.20

veDYNA21 is another real-time simulation tool for
autonomous vehicles. veDYNA lets individual consumers
and/or corporations carry out comprehensive tests that range
from conceptual autonomous car development to functional-
level testing of the whole vehicle. veDYNA comes with
comprehensive flavors that can meet both the individual user’s
and corporate needs. Based on the requirements, veDYNA
offers standard, light, and entry-level functionality. Each prod-
uct level contains features such as MATLAB support, whereas
Simulink support is only available for the light and standard
versions. veDYNA also supports various vehicle models that
meet major test requirements for autonomous car dynamics.

The Aimsun simulator22 is a hybrid simulator that combines
the characteristics of macroscopic and microscopic simulation
with mesoscopic simulation; this increases the granularity of
the simulation environment [131], [132]. Mescoscopic simula-
tion model simulates the traffic dynamics in the form of small
groups rather than individual elements/nodes (microscopic) or
high-level representation of the whole network (macroscopic).

18http://moralmachine.mit.edu/
19http://www.fka.de/fka-sv/fka-sv-e.php
20http://revs.stanford.edu/
21https://www.tesis-dynaware.com/en/products/vedyna/overview.html
22https://www.aimsun.com/aimsun/top-features/

In other words, mesoscopic models fall between microscopic
and macroscopic models. An example of a mesoscopic model
is platooning in vehicular networks, where a group of vehicles
are traveling together; this is taken into account and simulated
for the required behavior. Aimsun is a commercial software
solution for traffic simulations. This combination enables test-
ing for many traffic scenarios on available road networks.
Aimsun also provides users with the choice of stochastic
route selection and the generation of subnetworks within the
network. Simulation speed is another distinguishing feature of
Aimsun, because of its multithreaded software architecture.
Aimsun is used mainly for operational traffic modeling that
enables the modeling of any network size (from a single lane
to an entire region). In addition to other features such as user
friendliness, hybrid simulation (microscopic, macroscopic, and
mesoscopic), fast execution with multithreaded software archi-
tecture, openness and integration with other software, and
multiplatform architecture, Aimsun provides users, govern-
ment agencies, researchers, consultants, and corporations with
additional features such as safety analysis, and evaluation of
policies for intelligent transportation systems and autonomous
driving.

Table IV presents a summary of the simulation tools that are
currently available for simulation testing of autonomous cars.
The simulation tools listed in Table IV are either open-source
or proprietary. The proprietary simulators usually have more
optimized functionality but come with subscription or purchase
cost whereas the open source tools can be optimized according
to the scenarios to be simulated. Furthermore, with open-
source tools, the community of developers is available for
support when needed. Nevertheless, the choice of a simulation
tool depends on the needs and the budget. Among the simula-
tor tools mentioned, SUMO, NS2, and NS3, and OMNET++
are the most popular simulation tools used by the academic
community working on smart cars, connected vehicles, and
vehicular networks because of their ease-of-use and function-
alities [8]. However, these tools simulate only few aspects
of the autonomous car and do not support the simulation
environment required for autonomous car in a holistic way.
Table III presents a summary of the design and implementation
challenges for autonomous cars.

VI. AUTONOMOUS CARS’ CHALLENGES

FOR DEPLOYMENT

In this section, we discuss some of the current and future
challenges that must be addressed by various stakeholders
(automobile manufacturers, academia, software developers,
policymakers, hardware engineers, and others) in the future to
enable the ubiquitous deployment and full commercialization
of autonomous cars. We classify the challenges into several
categories: namely, technical, non-technical, social, and policy.

Fig. 4 presents the detailed taxonomy of future deploy-
ment challenges for autonomous cars and we summarize the
deployment challenges in Table V.

A. Technical Challenges

In this section, we discuss autonomous cars’ technical
challenges. These challenges include validation and testing,

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 22,2021 at 14:44:35 UTC from IEEE Xplore.  Restrictions apply. 



HUSSAIN AND ZEADALLY: AUTONOMOUS CARS: RESEARCH RESULTS, ISSUES, AND FUTURE CHALLENGES 1293

TABLE III
SUMMARY OF DESIGN AND IMPLEMENTATION CHALLENGES FOR AUTONOMOUS CARS

trust, software quality, computational resources, safety and
reliability, and privacy and security.

1) Validation and Testing: Validation and testing are two of
the most important phases of system development. Depending
on the degree of sophistication, the time and efforts required
for validation and testing vary. There are several techniques
for validation and testing, ranging from a simple bug hunt
to a full-scale quality testing. However, mission-critical and
safety-critical systems require fine-tuned exhaustive validation
and testing to make sure that all the stringent requirements
are met. An autonomous car is a safety-critical and complex
system because any decision made by the system software
will directly affect human lives. Koopman et al. carried out
a comprehensive overview of the testing and validation chal-
lenges for autonomous cars [133]. According to this study, the
system V model, if applied correctly, could achieve promising
results through three approaches: phased deployment, moni-
tor/actuator architecture, and fault injection (we will describe
more on the system V model momentarily). Phased deploy-
ment refers to the fact that autonomous car cannot be built
as one unit, it has to be incremental. The monitor/actuator
architecture, on the other hand, will help with requirements
complexity and enable fail-safe mechanism in autonomous
vehicles. The third approach is fault injection, which can
help in autonomous vehicles’ validation process. Here, we
discuss some of the main issues concerning testing and val-
idation of autonomous cars that have impeded their rate of
deployment.

The International Standardization Organization (ISO) has
defined a standard for the functional safety of electrical and/or
electronic systems in automobiles (ISO 26262,)23 which

23http://www.iso.org/iso/catalogue_detail?csnumber=43464

defines the functional safety features of a generic automobile
in production. This standard could serve as an abstract tem-
plate for the complex autonomous systems. However, it does
not cover the wide range of different possible scenarios and
test cases that an autonomous car will be subject to. The ISO
26262 standard mandates a particular development framework
referred to as the V model (as shown in Fig. 5).

The V model of testing and validation has been used in
the automotive industry for a long time and has become the
de facto ISO 26262 standard. Fig. 5 shows that the model
V is composed of subsystems, and each one is validated
and tested independently. For the generic automotive system,
model V works well because the specific requirements of gen-
eral automotive vehicles are well-defined and cover all the
system’s expected functionalities. However, autonomous cars
have unique challenges and a complex set of requirements. In
particular, the autonomous car’s unique feature is that there is
no driver, and this affects the traditional validation and test-
ing techniques for autonomous cars. When a driver is behind
the wheel, no matter how complex the situation is, the human
mind can still think of, at least in most of the circumstances,
better alternative or guarantee fail-safeness. In contrast, with
autonomous cars, there is a higher degree of uncertainty of
the scenarios and the system’s response to it. Such circum-
stances may include simple scenarios such as, but not limited
to, bad weather, fog, traffic lights violation by other cars,
pedestrians, and more complex driving rules or conditions
at intersections and traffic lights. The bottom line is that a
complete set of requirements is not feasible and possible for
the autonomous car. Therefore, an alternative is needed. To
this end, Koopman et al. suggested that the complex require-
ments challenges, at least in part, could be reduced by limiting
the autonomous car’s operational concepts [133]. This would
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Fig. 4. Current and future challenges for autonomous cars.

indeed reduce the combinatorial explosion of the requirements
complexity, which would limit the full potential of the com-
mercial autonomous car from being achieved. But limiting the
operational concepts could serve as a bootstrap for the full-
scale testing and validation of autonomous cars [134], [135]. It
is also worth noting that mission-critical and/or safety-critical
systems require more extensive testing due to their interdepen-
dence on numerous domains other than the primary application
itself [136], [137]. Therefore, it is well-understood that current
testing strategies for autonomous cars, although extensive and
concrete, cannot cover the full spectrum of safety and func-
tional requirements, and the uncertain behavior exhibited by
autonomous cars [98], [138], [139].

To address the aforementioned complex requirements, sub-
systems in autonomous cars can be abstractly divided into
safety and non-safety-related subsystems, whereas in the
bootstrapping phase, only strict safety-related systems are con-
sidered for full-scale testing [140]. The main challenge with
this approach is the high unpredictability caused by the envi-
ronment, human, hardware, and software factors that make this
approach less effective.

Moreover, an autonomous car’s operation is not strictly
static and therefore deterministic approaches will not be effi-
cient. Autonomous cars use a comprehensive and sophisticated
decision-support system that needs concrete knowledge of the
context and situation awareness. Therefore, inductive referenc-
ing and machine learning techniques and algorithms are likely
to be more effective in autonomous cars. These approaches
require a fine-tuned calibration of the sensors, actuators, and
other units that provide data to the central decision-support
system of the autonomous car [133], [141]–[143]. Machine
learning itself brings about other challenges to the already
challenging testing and validation process of autonomous
cars. At its core, machine learning employs many techniques,
such as active learning, inductive learning, supervised learn-
ing, semi-supervised learning, unsupervised learning, deep
learning, and so on [144]. To understand the level of complex-
ity, consider both images and videos taken/recorded through

monocular means of the autonomous car to detect certain
objects and/or patterns such as pedestrians, other cars, and
humans. For this purpose, the classifiers for the machine learn-
ing algorithms must be trained on sufficient data to detect
objects with high certainty [139]. These aforementioned learn-
ing and training issues make the validation of algorithms
and software for autonomous cars during the training phase
more challenging. But the new and improved behavior of the
autonomous car system in the production phase will be differ-
ent from what was observed during the testing phase [145].
This evolutionary nature of the dynamic behavior and learning-
based approach for the autonomous car system also poses new
challenges for safety validation and certification. To date, val-
idation tools such as formal methods are inadequate for the
autonomous car environment. Therefore, Kianfar et al. [146]
and Koopman and Wagner [147] argued for novel methods for
safety validation for the autonomous car system.

Finally, fail-safe and fail-stop approaches have been effec-
tive for decades in mission-critical systems in the aeronautical
field. However, many of these systems use redundancy so
that in case of a failure, the redundant module can replace
the faulty one. This approach reduces the chances of com-
plete and unsafe failure at the expense of extra cost and other
resources. According to the literature, fail-operation systems
require 3 redundant modules, whereas Byzantine fault-tolerant
systems require 4 redundant modules [148]. In the case of an
airplane, such redundancy helps because of stringent aviation
rules and safety concerns. However, for the car industry this
would be excessive from a consumer’s point of view. It will not
only increase the cost of the car but also introduce additional
hardware and software complexity. The fail-safe approach in
autonomous cars refer to degradation and/or the decrease in
functionalities of the autonomous car. In other words, in case
of any kind of failure in the autonomous car system (based
on the type of failure), the fail-safe module will be triggered
to minimize the damage that could otherwise be serious, for
instance failure of the communication module could endanger
the autonomous car’s whole operation and the car could either
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Fig. 5. ISO26262 Model V testing and validation architecture.24

move very slowly on the road or stop. On the other hand, the
fail-stop mechanism refers to the fact that in case of a fail-
ure, the component that the caused failure stops operating and
the component is identified. Depending on the type of com-
ponent, the operation of the autonomous car is then decided.
Fail-safe approaches work more efficiently and effectively in
autonomous cars than in airplanes. In the autonomous car, to
achieve fail-safeness, the car can quickly pull over to avoid any
damages. In contrast, an airplane could take hours to land at
the nearest airport. Fail-safeness easily can be achieved more
effectively in autonomous cars if there is a slight compromise
on the length of the operational duration [147]. When the oper-
ational durations are short, the system can trigger the fail-safe
option when a system or any other failure occurs.

So far, we have outlined the traditional testing techniques for
complex software validation. Wagner at and Koopman [149]
argued that non-traditional approaches such as falsification are
better for validating complex software systems, such as those
found in autonomous cars. This type of validation and veri-
fication theory is based on the theories of Karl Popper, who
advocated for science to be an adversarial process of falsifying
existing theories instead of a constructive process of building
theories [150]. In other words, this theory is related to the
famous concept of “denying the consequent” (also referred to
as Modus Tollens). This method of verification can be quite
useful because of its space and process efficiency. In the falsi-
fication method, a single counterexample is enough to falsify
a theory, and Popper inferred that for a theory to be mean-
ingful, it must be falsifiable. This way, the testers do not have
to go through the hectic process of collecting verification data
and derive proofs. It is worth noting that the method of falsi-
fication helps in articulating complex requirements for cases
where they are often ambiguous. Furthermore, this method
also helps in software testing and verification where the exis-
tence of the counterexamples enable testers and developers of

24http://users.ece.cmu.edu/∼koopman/lectures/ece649/03_requirements.pdf

the software to detect and remove software bugs. Therefore,
such a method could be useful for testing and validating soft-
ware systems for autonomous cars. In other words, through
the aforementioned theory of falsification, the autonomous car
software testers look for negative test results that will also help
in the reiteration and improvement of the software.

To summarize the validation and testing challenges of
autonomous cars, we found that a definitive solution has
not yet been developed, at least during the first stage of
autonomous car development. Fault injection is considered to
be one of the successful mechanisms to evaluate the robustness
and performance of complex systems [151]. Fault injection
works by introducing faults to the testing environment and it
is used to attempt the falsification of safety claims, which indi-
rectly helps to improve safety. Koopman and Wagner believe
that fault injection will outperform current techniques, such
as traditional testing and validation and model V testing that
are used in autonomous cars’ performance analysis [133]. It is
worth pointing out that fault injection-based techniques have
already been used in autonomous car development [152], but
this has not quite matured yet. Furthermore, risk assessment is
also another important factor in autonomous car and has been
considered by Dominic et al. [153]. The authors proposed a
reference framework that describes new attack surfaces for the
autonomous cars. This architecture considers existing threats
to develop a customizable threat model that can assess the
risks of current and new threats to autonomous cars.

2) Safety and Reliability: A critical issue to address for
autonomous cars is their safety and reliability. We may
argue that autonomous cars must conduct test drives equal to
hundreds of millions of miles before this technology is com-
mercialized. In general, to some extent, non-critical statistical
analysis may help in determining the degree of reliability of
a system, but the amount of data required to perform such
analysis is huge. In the case of autonomous cars, such data is
the distance traveled by the car. Based on this assumption, the
amount of time required for the autonomous car technology to
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TABLE V
RESEARCH AND DEPLOYMENT CHALLENGES IN AUTONOMOUS CARS

(Continued)

25

drive its way to safety, is tens and sometimes even hundreds
of years [154]. An autonomous car must drive itself around

25https://www.eugdpr.org/

291 million miles without fatality to guarantee 95% confi-
dence in resemblance to a human driver. This is a giant test
drive for a driverless car [155]. Even if the confidence level
is relaxed to 50% instead of 95%, autonomous cars still must
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TABLE V
CONTINUED

travel 67 million miles without fatality. This critical require-
ment impedes the success of this emerging technology. These
reports, and the fact that safety must be the primary con-
cern for driverless cars, require new methods of measuring
the reliability of autonomous cars.

Legislation is another challenge for autonomous car tech-
nology (at least at the moment). According to California
state law, during the test drives of automated cars, a human
driver must be present behind the wheel to take control in
case of any system failure or any other malfunction that
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jeopardizes the safety of the driver, other cars, and pedestri-
ans. This requirement clearly violates the essence of Level 4
and Level 526 [156] that the automated car must be capable
of operating itself without human intervention, even during
the testing phase. Safety and reliability of the automated car
is still in its infancy and it will take time to meet the safety
and reliability standards. A more in-depth discussion of the
challenges and features of autonomous cars’ safety can be
found in the survey conducted by Koopman and Wagner [147].
The safety of the automated car system is an interdisci-
plinary issue, and therefore a large portion of the autonomous
car’s development lifecycle is likely to be spent on safety
certification [157].

To achieve an acceptable degree of reliability, one solu-
tion could be to define a short-term safe mission time for
an autonomous car [147]. Such a safe mission could be a
few seconds instead of minutes and hours in case of a criti-
cal failure. The fact that vehicles can perform a safe mission
in seconds (for instance pulling over to the roadside) gives
them an edge over other complex systems such as airplanes.
Therefore, such a safe mission could be triggered in case of
any serious component failure and thereby increase the relia-
bility. In this case, if a failure occurs, the fail-safe system could
intervene (for instance, to reduce speed, change lanes, and
stop the car) and avoid potential damages [147]. In contrast,
in automated cars, such fail-safeness could be more effec-
tive because a human driver can take control in unwanted
circumstances and drive the car manually. The designers of
the autonomous car system have the choice to define short-
term missions for the autonomous car and relax some of the
complex requirements for it. In 2016, a Google driverless
car underwent only 124 ‘interventions’ while testing on the
road [158]. Of those 124 disengagements, 8% were caused by
the reckless behavior of other drivers on the road, whereas the
rest were caused by software issues and unwanted behavior
from the vehicle. Although the results are promising as com-
pared to previous years, such results demonstrate that we are
still far from achieving full disengagement. The test results
also showed that automated cars are not yet mature enough
to handle the full spectrum of unforeseen circumstances on
the road.

To guarantee safety and reliability in autonomous cars, there
is still much research work that must be undertaken prior to
their commercial deployment. As we mentioned previously,
safety and reliability are multidimensional aspects of the
autonomous car. Therefore, more research is needed to exam-
ine the test and validation cycle of autonomous cars before
rolling them out on the market. To summarize, the main
factors that play a fundamental role in the reliability and
safety of the autonomous car include flexible, intelligent, effi-
cient, and secure software systems with high-end sophisticated
algorithms, artificial intelligence support, and a highly effi-
cient decision-support system. Although extensive research has
already been undertaken in most of these areas, nonetheless,
the unique set of requirements of the autonomous car calls for
more fine tuning and accuracy in these areas. The reason is

26https://www.nhtsa.gov/

straightforward: if the autonomous car is not reliable and safe,
this technology is doomed to fail.

3) Software Quality: At the very basic level, the
autonomous car is operated by complex and sophisticated soft-
ware. The degree of complexity that goes into the software of
the autonomous car must be able to mimic the human brain
and/or behavior. The seriousness of a situation can be, at least
in part, compared with airplane manufacturers that build a safe
or at least fail-safe software for the airplane, although airplanes
are still somehow operated by human pilots. Furthermore, a
major portion of software development budget is spent on test-
ing and validation. In mission-critical and complex systems
such as airplanes and autonomous cars, testing and valida-
tion is even more important, because it directly affects human
lives. This demonstrates the critical importance and role of
mission-critical software used in these systems. Besides, in
autonomous cars, the driver is absent, which means we need
even more stringent methods to ensure the highest software
quality. It is true that vehicular movement is restricted by
the road topology, but even within these restrictions, vehi-
cles have many possibilities to maneuver, making it quite a
complex system. In order for the autonomous car to function
reliably, its system software should be able to handle most
unforeseen events in a safe manner. Therefore, it is important
for autonomous car software designers to make sure that the
software responds to a wide range of unforeseen scenarios.
The most important feature must be fail-safeness. During an
uncertain event where the outcome of the possible maneuver
jeopardizes occupants’ safety, the system software should try
to minimize the damage. The best action for the autonomous
car in such a scenario could be the degradation of func-
tionality to the safest level, which in some cases could be
stopping the car altogether. Unless and until the autonomous
car technology is mature enough, system designers should
focus on fail-safeness rather than choosing an uncertain out-
come. Such situations would, at least during the pilot stages
of the autonomous car deployment, provide valuable feedback
to the designers and will identify potential vulnerabilities and
deficiencies.

4) Computational Resources: Today’s high-end cars come
with a fair amount of computation and storage capacity. The
autonomous car is equipped with several high-resolution cam-
eras to enable accurate vision and monitoring. Current luxury
cars have between 7-9 imaging sensors for object recognition,
while autonomous cars typically have three classes of sen-
sors: cameras, LIDAR, and radar [159]. The autonomous
car requires more high-resolution images (and video) from
cameras for more accurate driving behavior implementation,
optimization, and so forth. The autonomous car will need more
general-purpose and special-purpose processors, GPUs, an
FPGA, and a system on a chip (SoC) to support its functional
and operational needs. Another challenge for the autonomous
car’s computation system is the various computation-greedy
subsystems such as LIDAR, geopositioning, radar, infotain-
ment, and image processing. Traditionally, embedded compu-
tational resources such as GPUs are kept near the sensors as
much as possible to decrease the possibility of signal loss,
degradation, and interference. However, such an approach
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requires more processors and a more complex networked
system for autonomous cars. Furthermore, the system architec-
ture and design for autonomous and connected cars, currently
being heavily discussed in the research community, needs to
be able to handle issues such as a dashboard design, geome-
try, and space distribution for the hardware [84], [160]–[162].
To date, no clearly defined approach for the autonomous
car’s underlying system architecture is openly available from
original equipment manufacturers (OEMs).

The high real-time data processing rate and use of sophis-
ticated algorithms will increase the need for efficient, reli-
able, and cost-effective hardware for the autonomous car.
Furthermore, any redundancy approach will increase costs
further. It is also worth noting that for image process-
ing and digital signal processing, GPUs have proved to be
more efficient than general-purpose processors. Therefore,
we can foresee that more research on embedded processors
will be needed in the future to increase speed, reliabil-
ity, and efficiency. The current hardware systems used in
autonomous cars are usually proprietary, which make their
scalability and interoperability difficult. If the auto makers
and autonomous car designers agree on common standards
and the type of hardware in their products, it would sim-
plify the upgrade of existing technologies for autonomous car
technology.

5) Security and Hacking Threats: Traditionally, security
has been one of the most important issues of autonomous cars.
The concept of autonomous car is one of the important compo-
nents of intelligent transportation systems, and a lot of research
has been undertaken recently on different aspects of connected
cars that include applications, services, security, privacy, info-
tainment, and business models [1], [6], [163]–[169]. Security
and privacy are major factors impeding the deployment of con-
nected car technology, despite noteworthy research outcomes.
In connected car technology, the data are shared among vehi-
cles and with the infrastructure for various purposes, ranging
from value-added services to safety applications. Therefore, it
is important to ensure the quality of the data. Furthermore,
the data must not be accessible to unauthorized entities. User
and location information must be secure during all communi-
cations. A tremendous amount of research has already been
conducted to mitigate different types of threats in the con-
nected car environment [168], [170]–[175]. These existing
threat mitigation techniques leverage both traditional cryp-
tographic mechanisms and non-cryptographic mechanisms to
provide security and privacy. The internal system architecture
of the car is itself a complex network of different compo-
nents including, but not limited to, sensors, actuators, handheld
devices, and ECUs, all of which often connect through the
CAN bus [176], [177]. The possibility of remote operations
of a car for diagnostics and maintenance purposes poses risks
to the overall security of the car as well. Although some
solutions have already been proposed to address CAN bus-
related security concerns [45], [178], [179], these solutions do
not fully mitigate the risks involved with CAN bus technol-
ogy used in current cars. Recently, it has been shown that
connected cars can be successfully hacked through various
methods by exploiting the CAN bus. Woo et al. demonstrated

a practical wireless attack on a connected car through the CAN
bus [44]. The attack leveraged a diagnostic channel of the
connected car through a rogue android application, which cir-
cumvented the CAN bus’s security mechanism. There are sev-
eral other attacks that can be launched on high-end connected
cars [30], [180].

At its core, the autonomous car hosts a network of sensors
and other communication devices that provide data as input
to the decision support system, which drives the autonomous
car in a designated way. The security of these devices must
be protected. The traditional security threats these devices can
encounter include hacking into an in-car network, injection of
malicious code into different sensors and into other units such
as the telematics unit, external signal spoofing during com-
munication, packet sniffing, packet fuzzing, jamming, and so
on [181]–[184]. For instance, because the autonomous car uses
both radar and LIDAR technologies, jammers would jeopar-
dize the autonomous car’s security and its occupants [185].
Furthermore, the data generated by different components of
the car (such as radar, sensors, GPS, and other modules) are
also used by auto manufacturers for diagnostic and mainte-
nance operations, as well as by service providers to offer
accurate and efficient location-based services [186], [187].
Information fusion based on data from various sources in con-
nected cars and the autonomous car environment will have
significant security challenges that must be resolved [188].
Anomaly detection, data quality, data integrity, and availabil-
ity are of prime importance to harness the full functionalities
of the automated car as well as connected cars. In the case
of the latter, the data are not only generated locally, but can
also be received from neighbor vehicles. For instance, the
evolution of the Future Internet Architecture (FIA) opens up
new opportunities in the content-centric networking paradigm.
Content-centric networks [189] have been used for connected
car technology to enable cars to share contents [190]–[192].
CarSpeak is a platform through which a car can request sen-
sory information from a neighboring car [193]. This platform
enables data sharing among vehicles on the road, but also
requires stringent security measures to protect the shared data
on a large scale.

The distinguishing characteristic between the connected car
and the automated car is that the driver is always behind the
wheel and ready to intervene if there is a need for a connected
car. In contrast to the automated car, there is no driver to take
control even if one or more systems of the automated car are
compromised. Therefore, the automated car requires preven-
tive measures in addition to the detection of unwanted events.
The automated car will inherit all the inherent security issues
that are associated with sensors, communication networks, and
short-range communications. Therefore, security is going to be
critical in the development of autonomous cars in the future. A
fully automated system such as an autonomous car would be a
favorite target for selfish users, hackers, disgruntled employ-
ees, or terrorist organizations. In worst cases, such vehicles
could be used for terrorist activities without needing a driver
behind the wheel. Furthermore, keeping in mind the degree
of sophistication of current malware types, one such vari-
ant could quickly bring down the whole fleet of autonomous
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cars through distributed and coordinated attacks. Petit et al.
conducted a thorough survey pertaining to cyberthreats in
autonomous car systems [194]. The authors discussed pos-
sible cyberthreats and attack surfaces for both the standalone
autonomous car and connected autonomous cars according to
the SAE J3016_201609 standard [195].

Connected vehicle technology has considered secure devel-
opment during every step of the process, starting from require-
ments specifications, design, and software development all the
way to prior to its deployment. This could be a starting point
for autonomous cars, too. For example, separating mission-
critical and communication systems in complex systems such
as autonomous cars might help mitigate cyberattacks or at least
make it more difficult for the attackers. Artificial intelligence
(AI)-based security mechanisms have also been adapted for
connected cars [196]. The authors employed AI approaches to
mitigate DoS attacks in connected cars by learning the behav-
ior of the neighbors through the authenticity of the safety
messages. Current solutions check the authenticity of every
safety message which make them prone to DoS attack. When
AI is used, it is not necessary to authenticate every message
but to learn the behavior of messages. However, the enormous
amount of data generated in the connected car environment is
still a major issue and AI-based techniques are not yet mature
enough to be used in autonomous cars [196].

It is well-known that security is usually considered to
be an afterthought in most systems. However, it is one of
the key components that must be considered at the design
phase. From physical security to communication security, the
autonomous car must be foolproof and tamper-resistant. To
achieve these goals, more research is needed in security.
Traditionally, security includes cryptographic primitives that
consume a lot of resources and adversely affect performance.
For the autonomous car, given that computation resources
are expensive assets, security mechanisms that are in use
must therefore be highly resource-efficient and at the same
time maintain high performance. Further research insights are
needed to identify real-world threats such as malware, com-
munication and physical security, and covert communication
in addition to the traditional existing security challenges for
autonomous cars. It is also worth mentioning that connected
vehicle technology has undergone a lot of research from both
security and functional perspectives. More research is needed
to investigate if the security research results for the connected
car can be applied to the autonomous car as well.

6) Privacy: The idea of self-driving cars is appealing but
equally alarming from security and privacy perspectives. In
September 2014, a consumer advocacy organization in the
United States warned that the legislation of the “robot car”
in California does not guarantee user privacy. The data col-
lected from autonomous cars contains personal data that may
be shared intentionally or unintentionally with others, putting
the user’s privacy at stake. When it comes to privacy, the
following five important questions should be answered with
regard to consumer satisfaction [24] in mind.

1) Who should control the data?
2) What type of data must be stored?
3) With whom will the collected data be shared?

4) In what form will the data be available?
5) For how long will the data be stored?
Some of the aforementioned questions are quite easy to

answer. For instance, in the case of accidents that will require
investigation, post-crash data can be shared with insurance
agencies and law enforcement agencies. In current transporta-
tion systems, government transportation agencies and/or other
service providers collect traffic data from different sources
such as traffic cameras, road sensors, and so on, whereas in
the case of connected vehicles and autonomous cars the same
data also will be collected from the vehicles and then used in
traffic planning, management, and information dissemination.
This data might contain personal information such as travel
routes, time of travel, and location information that might seri-
ously jeopardize users’ privacy. Therefore, in the autonomous
car paradigm, the sharing of such data might not be acceptable
for consumers at the cost of their privacy. It is also worth not-
ing that the data generated by an autonomous car is far more
than a connected vehicle, and could reveal not only infor-
mation such as location and time, but also behavioral data
that contains traffic patterns, personal interests, or community
formation information. At the same time, this data, if han-
dled with care, could provide quality of service to consumers
in terms of advanced traffic information systems, improving
dynamic traffic lights, urban planning, and much more. One
challenge that autonomous car designers might face is the con-
sumers’ lack of motivation to share the AC’s data even when
privacy is ensured. The issue of privacy in autonomous cars is
more complex than in normal connected cars. Usually in con-
nected cars, shared information is in the form of a Cooperative
Awareness Message (CAM) along with other safety-related
messages. On the other hand, for an autonomous vehicle, the
shared data are not only related to the CAM but also data from
in-vehicle sensors, actuators, and other in-car communication
systems. Therefore, the autonomous car data is rich in features,
and hence, more prone to privacy abuse. One possible solu-
tion could be the use of incentives. For instance, by sharing the
data consumers could be offered certain rewards in addition
to the privacy guarantee. In a nutshell, sharing of such data
is a tradeoff between the quality of services received by con-
sumers and the level of required privacy for consumers. These
two factors should be well-considered when autonomous cars
are deployed on a massive scale.

Privacy is a conflicting and complex requirement for ser-
vice providers and the government to guarantee. Therefore,
conditional privacy [197] is considered to be more practical.
With conditional privacy, the identities are subject to revoca-
tion in case of an emergency event, with agreement from the
competent authorities (such as judiciary, law enforcement, and
insurance agencies). To this end, data obfuscation and aggre-
gation mechanisms could be used to preserve user privacy,
although the granularity of the information should be within
the threshold for the underlying application. Furthermore,
identity-less information dissemination schemes [198] have
also been used in some research efforts and could be useful for
preserving privacy with autonomous cars. In short, privacy-
preservation mechanisms should be an acceptable tradeoff
between the quality of information and level of anonymity
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required by users. Furthermore, preserving location privacy is
more challenging than user privacy, because of the adverse
effect it can have on location-based services. For location pri-
vacy, various privacy solutions exist, such as location-based
encryption and obfuscation [174], [199]–[202] that could ben-
efit the autonomous car environment. More research is needed
to develop efficient, scalable, and privacy-preserving solutions
that can protect location privacy for autonomous cars.

7) Accuracy and Efficiency of Object Detection in
Autonomous Car: LIDAR is used for short-range object detec-
tion (through distance measurement) in autonomous cars. The
coverage range is the main limitation of LIDAR which means
that it is not suitable for long distances. From motion and
trajectory planning perspectives, it is important for the con-
trol of autonomous car to execute the plan incrementally
because the planned trajectory may be obstructed by unfore-
seen objects or unpredictable behavior of the neighbors on the
road. Furthermore, it also suffers from reflectivity issues. In
contrast, radar uses radio waves for measuring the distance
from the target object. However, radars have their own lim-
itations despite their advantage of long range as compared
to LIDAR. The reflectivity issue is even worst in radar and
it can only detect metallic objects such as vehicles on the
road. Radar cannot detect other objects such as pedestrians.
Therefore, only LIDAR and radar will not work on their own.
To address the issue of dynamic and runtime motion planning,
some researchers have used finite-state machines to gener-
ate sub-goals as a re-planning incremental strategy. However,
cooperation among different components including LIDAR,
radar, ultrasonic, infrared, GPS, and inertial position system
is essential. Another drawback with LIDAR is its high cost
although has been decreasing recently and current LIDARs
are more efficient [203]. The limitations of radars have also
been extensively investigated which have yielded significant
results in the form of optimized radars for autonomous vehi-
cles [204]. Infrared sensors and ultrasonic sensors are used for
short-range and adequately contribute to the overall functional-
ity of autonomous vehicle. However, intelligent calibration of
each sensor and collaboration among the sensors are needed.

8) Sensor Management in Autonomous Car: Autonomous
cars have many sensors that generate a huge amount of
data in real time. This data is used by different compo-
nents of the car to function properly. However, the volume
of data generated by sensors is too much to be handled
by the computation-intensive deep learning- and computer
vision-based algorithms. Therefore, this data poses signifi-
cant challenges to the efficiency of the autonomous car. Other
challenges from sensors’ data include redundancy, outliers,
granularity, and so on. To this end, efficient, and real-time
data management system is essential for the autonomous car.
To date, existing pilot versions by different automotive com-
panies and startup companies use as many sensors as they
could to make sure that all the systems work properly. This
is achieved by maximizing computation and communication
resources together, to make sure that the system operates
according to the specifications. Currently, efficiency is not
the primary concern for autonomous cars. However, in addi-
tion to functionality, efficiency needs to be considered along

with data processing in commercial autonomous cars. Current
data processing algorithms in autonomous cars - to be more
precise - incur high computation and communication over-
heads. Therefore, crowdsourcing and crowdsensing will play
a pivotal role in the future autonomous cars. In other words,
instead of having a large array of sensors, having an optimum
number of sensors and sharing sensors data among the neigh-
bors are likely to produce better results. This approach seems
promising but the mobility of autonomous vehicles and their
interactions with each other and with the environment will
pose many other challenges (such as - short interconnection
time and authenticity of data) that have to be addressed.
Furthermore, trade-off solution to this problem can be a con-
sensus among cost of these sensors, the number of sensors, and
the overhead that they incur on the data processing systems,
and decision-making systems.

9) Decision-Making Procedures: It is well-known that the
autonomous car will adjust its behavior according to the sur-
rounding environment. However, the unpredictability of the
environment poses serious challenges to the designers and
developers of the autonomous car system. As we mentioned
earlier, an ideal autonomous car would mimic the actual
human behavior which would enable it to decide for the best
possible outcome in a particular scenario. Recent advances in
artificial intelligence, machine and deep learning techniques
have led to interesting research results that can be leveraged
by autonomous car technologies. However, there are still many
challenges that need to be addressed when it comes to mak-
ing optimum, real-time decisions. For instance, it is still very
challenging to detect faults and malfunctions of the various
systems (such as sensors and actuators) of the autonomous car.
Therefore, the decision-making procedure of the autonomous
car (according to the data available) may be sound but may
not be optimal at the time. To this end, context-awareness
is needed at the object detection and perception levels. Object
detection and perception are two of the primary components of
the autonomous car used to model situation awareness around
the autonomous car. Additionally, context is equally impor-
tant as an input parameter for the decision-making module.
Context-awareness for autonomous cars has been investigated
by only few researchers in autonomous car [205] and in related
fields such as vehicular networks [206]. Further research is
needed on context-awareness for autonomous cars. Therefore,
a holistic approach is still needed to calibrate the real envi-
ronment, the context, and the perception of the environment
by the autonomous car.

10) Actuation: Actuators are responsible for regulating
the input to a device or component in order to have the
correct output. These devices are electrically operated. For
instance, the fuel injector is an actuator which regulates the
fuel injection into the engine. Actuation is an essential part
of the control where the actual action is taken by a par-
ticular component of an autonomous car. Since autonomous
cars must adapt to unknown environments and road condi-
tions (both physical roads and the neighborhood), actuation
becomes even more critical especially in the case of actu-
ator saturation. Actuator saturation refers to a phenomenon
where the actuator does not receive the input within the
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limits (both minimum and maximum). Such cases may lead
to unwanted results which might cause dire consequences
in mission-critical systems such as the autonomous car. To
date, some researchers have investigated solutions to address
the problem of actuator saturations through fuzzy system and
Takagi-Sugeno Model [207], [208] but further research is still
needed to address the issue of actuator saturation.

B. Non-Technical Challenges

In this section, we outline some non-technical challenges
faced by autonomous cars. In addition to technical chal-
lenges, non-technical challenges must also be addressed before
autonomous cars are fully commercialized. Next, we discuss
some of these non-technical challenges.

1) Consumer Trust: One of the many obstacles of
autonomous car technology is the lack of trust from a con-
sumer perspective. It is also true that the challenges faced by
autonomous cars cannot be mitigated by mechanical interlocks
and tried-and-true technologies due to their limitations [149].
Autonomous cars are poised to reduce traffic accidents that
may occur due to inattentive drivers. However, an attentive
human driver will have strong capabilities of driving safely
in unforeseen environments as compared to a “machine.”
Therefore, consumers may seem reluctant to put their faith in
a “machine” when deciding on circumstances where their lives
are at stake. Historically, testing is used as a viable approach to
measure the level of trust in a new technology. In the realm of
driving, the testing approach takes into account driving safety,
crash avoidance, and so on. However, testing alone cannot
answer all the questions raised by the consumers such as soft-
ware failure, bugs, and unusual behavior. Furthermore, there is
a huge difference between the risks posed by human drivers
and those arising from the software in the autonomous car
environment. For instance, a human driver can become drowsy
during a long drive, whereas software does not. On the other
hand, complex software has its own traditional shortcomings
such as code defects, and non-traditional shortcomings such as
vulnerabilities and/or exploits. It was recently reported in [27]
that despite great opportunities and services provided by
autonomous cars, the consumers’ level of trust is still not that
high. People are still hesitant and do not feel fully comfortable
in the autonomous car and it will take more time before trust
in such cars reaches a maturity level [27]. This trust factor is
also related to regulation and legal issues, which we discuss
in the following subsections. However, it is worth mention-
ing that a real breakthrough in the process of autonomous
car legislation took place in February 2016 when the U.S.
NHTSA announced that Google’s artificial intelligence system
is deemed to be considered a driver [209]. Consumer
trust is of paramount importance, and it could be used in
the commercial production and subsequent proliferation of
autonomous cars.

Recently, efforts have been made to increase the consumers’
or occupants’ trust in autonomous car technology. A New York
city-based startup called Braiq27 aims to improve consumer
trust in autonomous cars through emotional intelligence. The

27https://braiq.ai/

project is based on the sensory data available from different
sensors monitoring occupants. In its essence, human facial
expressions are captured through camera sensors, and sophis-
ticated artificial intelligence algorithms deduce whether the
autonomous car’s occupants get nervous during the course
of different maneuvers such as acceleration and decelera-
tion. Based on the observed human behavior, autonomous
cars can adjust their maneuvers accordingly. This approach
helps autonomous cars’ occupants feel relaxed and ultimately
increases their trust level.

To increase consumer trust in the autonomous car system,
we need strong involvement from both governments and
auto makers. Some useful steps to increase consumer trust
and interest for adopting autonomous car technology include,
but are not limited to, promoting awareness, success sto-
ries, clear instructions, and upgrading the road infrastruc-
ture (traffic signs and lights). More research is needed in
developing intelligent, efficient, smart, and fail-safe algo-
rithms and systems to minimize failures and achieve the
highest level of safety. It will be acceptable for consumers
if the system is reliably fail-safe with a lower number
of functionalities rather than unreliable with a high num-
ber of functionalities and services. More research is needed
on autonomous cars in areas such as formal requirements
specifications, intelligent control mechanisms, and connected
automated cars.

2) Diversity (Technology-Enabled and Non-Enabled
Vehicles): Currently, the autonomous car can drive itself in
restricted conditions such as on roads with clear lane marking,
clear weather, more on highways than in urban localities, and
controlled speed limits. Vehicular diversity is an important
challenge for autonomous cars. In the real world, autonomous
cars will have to drive shoulder-to-shoulder with both
non-technological vehicles and connected vehicles.28 Both
connected and non-connected vehicles include the human
factor, which differentiates them from autonomous cars.
Human behavior adds a level of uncertainty to the driving
pattern, because each person drives a car with his or her own
unique style. How the autonomous car reacts to the driving
and behavioral patterns of other vehicles (under the control
of humans) on the road remains an open research challenge.
Besides vehicle diversity, there are other kinds of diversities
as well, such as environmental diversity, social diversity,
and others. For instance, current autonomous cars (in the
testing phase) struggle with inclement weather conditions
such as heavy rain, fog, storms, and snow [210]. However,
some autonomous car technology companies have tested
their cars in rainy weather and at night [211]; therefore, this
problem will likely be solved in the near future. Similarly,
it is a challenge for the autonomous car to know when a
traffic police officer is waving his or her hand, asking the
autonomous car to pull over. A fairly sophisticated technology
must be built into the car to recognize and subsequently act
when such events occur. At the moment, the autonomous

28By connected vehicle, we mean the vehicles equipped with an on-board
unit and able to communicate with other vehicles and with the infrastructure.
Non-connected vehicles, on the other hand, refer to the vehicles that do not
have this built-in functionality.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on March 22,2021 at 14:44:35 UTC from IEEE Xplore.  Restrictions apply. 



HUSSAIN AND ZEADALLY: AUTONOMOUS CARS: RESEARCH RESULTS, ISSUES, AND FUTURE CHALLENGES 1305

car technology is not mature enough to operate in such
diverse conditions. Therefore, further research is still needed
to develop relevant solutions. Furthermore, governments and
other regulatory bodies should work toward new legislation
for traffic laws that can apply also to autonomous cars.
For instance, malicious human drivers could try to disrupt
the normal autonomous car functions through aggressive
and offensive driving behaviors. Such actions towards new
technology could be reduced through strict traffic laws.

3) Uncertain Costs: It is speculated that the initial deploy-
ment of autonomous cars will incur a staggering cost due
to expensive hardware and software [212]. As we men-
tioned in previous sections, the complex system’s software
costs may reach up to 50% of the system’s total costs.
Furthermore, to ensure the safety, reliability, and robustness of
mission-critical components and sophisticated, high-end hard-
ware, the cost will be several-fold compared to the normal
vehicles. Autonomous driving, with all of the existing and
non-existent challenges, provides noteworthy benefits to con-
sumers, although at the expense of a higher price. Additionally,
autonomous cars may require an additional expense in the
form of annual service subscription, enhanced maps, soft-
ware updates, liability, and so on. Therefore, it is still unclear
whether the consumer will opt for autonomous car technology
over existing vehicles and whether the benefits to be reaped
are worth the higher costs. From a manufacturer’s point of
view, recovery of the cost of development, profit, and service
fees will also increase the autonomous car’s purchase value.
A report by the Victoria Transport Policy Institute shows that
the additional annual cost incurred by autonomous cars will
range from U.S.$1,000 to $3000 [19]. We note that the pro-
jected actual cost incurred by the autonomous car is still a
speculation and will be clearer in the years to come.

As autonomous car technology is still in the early stage of
deployment, it will probably be unaffordable for some time
to most consumers. One economical option would be the use
of autonomous cars for the daily commute. In other words,
using the autonomous car as a utility would be much more
economical than owning a car. Therefore, car manufacturers
and service providers should develop new and cost-effective
business models that will earn them revenue, and enable people
to use this technology in an affordable way.

4) Operational Robustness: The autonomous car will
achieve most of the expected results in terms of functional-
ity, operation, and other targeted features. However, timely
decisions in some driving scenarios will still pose a serious
challenge to designers of the intelligent autonomous car. One
such scenarios is crowd management. In developed countries,
traffic lights usually work in a highly systematic way, and
thus the autonomous car can decide when to stop and when
to move even in the absence of traffic lights. The situation
is completely different in developing countries, so adaptation
of autonomous cars in such an environment will be a real
challenge. In large, crowded, and overpopulated cities such as
Mumbai and Dhaka, even if the signal is green and the cars
are good to go, people still cross the road. In this case, the
autonomous car might have to wait forever or run over pedes-
trians. Therefore, testing the autonomous car for robustness

and accuracy in such hostile conditions is imperative before
deployment.

In light of these aforementioned scenarios, beyond tak-
ing into account traffic lights in the urban environment, the
autonomous car also must be equipped with a highly efficient
mechanism for recognizing objects in real time without delays.
Careful driving profiles could also help autonomous cars
avoid accidents. However, these issues are indirectly related to
autonomous cars’ behavioral aspects. Ideally, autonomous cars
must learn behaviors from the surroundings and adapt their
driving profiles accordingly. For instance, in crowded cities,
the driving profile could be “cautious”. Furthermore, dynamic
traffic lights might help (to some extent) in eliminating prob-
lems (such as long delays at traffic lights and recognizing
different objects) with traditional lights (e.g., during rush
hours). Such upgraded traffic light systems will not only
benefit autonomous cars but also connected car technology.

5) Liabilities: During unforeseen circumstances (such as
accidents) while driving, forensics are of paramount impor-
tance for both insurance and law enforcement agencies. The
current model (where we have a human driver behind the
wheel) is, by far, efficient and acceptable to all parties (vehicle
owners, insurance agencies, and law enforcement agencies).
However, the autonomous car brings a completely new sce-
nario for all the stakeholders. If an autonomous car is involved
in an accident (e.g., the autonomous car runs over people or
bumps into other vehicles), it will be challenging to justify the
situation to insurance agencies and law enforcement agencies.
In such cases, will the vehicle’s owner (rather than the occu-
pants) face charges regarding the accident? Or should the car
manufacturer be the one ultimately responsible for it? There
are many unresolved issues that need to be addressed for such
scenarios in the future.

Recently, Volvo stated that they will take full responsibility
for accidents caused by their autonomous cars [213]. At least
for now, this does address some of the issues we raise regard-
ing liability issues with autonomous cars. However, it is quite
likely that car manufacturers will have to rethink their busi-
ness model in such circumstances. To cope with their business
and ensure profit revenues, we foresee that the car manufactur-
ers will include hidden purchase costs for their products that
will ultimately put more of a financial burden on consumers.
Furthermore, we may also see a decline in the involvement
of the insurance agencies if they are not involved with the
claims (if these are being dealt with directly by car manufac-
turers). Another point of view is that, with the deployment of
autonomous cars, insurance companies will have to rethink
their business models, and the relationship between insur-
ance companies and car owners may come to an end. In case
of an accident, the insurance companies will insure the car
manufacturers directly instead of the car owners [214].

These insurance and liability issues with autonomous cars
will require concrete and serious legislation, where all stake-
holders have a share in the responsibility. Concrete policies are
also needed from the government for the insurance of both
the autonomous car and its occupants. Traditional insurance
plans might not work with autonomous cars. Although post-
incident forensics might reveal the culprit(s) of an accident,
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outstanding issues (such as who to insure and how to insure)
require insurance agencies to develop new business models for
the autonomous car market.

6) Recent Incidents Involving Autonomous Cars: Another
major challenge we need to address before deploy-
ing autonomous cars involves recent incidents caused by
autonomous cars. In 2016, a Tesla Model S car crashed and
killed a person in the self-driving mode. The accident took
place when a tractor-trailer took a left turn in front of the Tesla
car, and the self-driving car failed to apply the brakes. This
was the first fatal accident caused by autonomous car tech-
nology. After that fatal crash, Tesla admitted the limitations
of the currently available technology in their cars. No matter
how much effort auto makers put into their products, there are
so many unforeseen scenarios to anticipate. This fatal crash
had a significant impact on consumer satisfaction and serious
afterthoughts about the deployment of such technology, despite
its numerous benefits. In addition to this accident, there have
been a series of other incidents with automated cars. In 2016,
a Google driverless car collided with another commercial van
on the road. According to the reports [17], the accident was
caused by confusion with traffic signals. In another accident, a
Google driverless car collided with a bus, but at a lower speed.
Also, a Tesla car ran into a truck in China in 2016. All these
previous incidents with autonomous cars clearly demonstrate
that they are not yet mature enough to be deployed on high-
ways and all kinds of roads. No matter how many millions
of miles driverless cars travel, a single incident significantly
impacts the deployment and adaption of autonomous cars.

C. Social Challenges

The autonomous car technology brings significant benefits
such as improved safety, traffic management, time man-
agement, ease of access and so on. Similar to other new
innovations, the autonomous car is also susceptible to social
risks and challenges [215], [216]. There are several risks
involved with the proliferation of the autonomous car. For
instance the adaptation of the autonomous car in our lives,
errors that could lead to deadly accidents, and the humans’
natural fear of change. Risk also has a social dimension for
different groups of people. For example, the beneficiaries (ven-
dors and service providers) of autonomous cars are not affected
by the (possible) harm caused by the autonomous car whereas
the consumers (who directly take risk) do not share to the
same extent the benefits that the vendors do. In a nutshell,
the social problems associated with autonomous cars is a
dilemma because on one hand, as suggested by a recent sur-
vey [217], the consumers approve utilitarian moral decisions
(the autonomous car should sacrifice the passengers for the
greater good), but on the other hand, the same consumers
would not prefer to ride in the same autonomous car. The
study by Bonnefon et al. [217] concluded that a rational trade-
off is essential to choose the right kinds of algorithms among
utilitarian and self-protective algorithms (in the case of moral
decisions) for autonomous cars. The discussion on social chal-
lenges needs further research. However, in current discussions,
we limit them to the most obvious social challenges (such as

the behavior of people towards autonomous cars and the impli-
cations of autonomous cars on the society that include loss of
jobs for drivers and loss of businesses) faced by autonomous
cars. To this end, social challenges include dynamic human
behavior, as well as ethical and moral challenges faced by the
autonomous car.

1) Human Behavior: During the initial deployment stage,
when both autonomous and non-(semi)-autonomous cars will
occupy our roads, it will be important to understand human
drivers’ behaviors toward autonomous cars. Similarly, the driv-
ing pattern and behavior of autonomous cars will also influ-
ence their adoption. Thus, it is also important to know whether
autonomous car users will be able to tune the autonomous car’s
behavior [218]. Another challenge concerns ethical issues.
Humans possess the discretional power of judgment, whereas
machines do not. The autonomous car technology is, in prin-
ciple, developed for safety and comfort where the safety and
security of its occupants must be the highest priority. This
requirement leaves the automated car no room for mistakes
or errors on the road. This requirement also means that the
autonomous car by default will adapt to careful driving behav-
ior. However, as we mentioned previously, human behavior is
highly dynamic and therefore it will be quite challenging for
autonomous cars to cope with diverse situations. Recently, an
autonomous car experienced aggressive behavior from truck
drivers [219] on the road and almost resulted in an accident.
Coincidentally, the same vehicle experienced a fatal acci-
dent later [220]. Additionally, to mimic human behaviors, the
autonomous car must be flexible in adapting to any unforeseen
situation on the road. At the moment this feature, along with
dynamic behavior, are not fully realized and more research
is required in the fields of machine learning, artificial intel-
ligence, and human psychiatry to empower autonomous cars
to react safely without delay to unpredictable events on the
road. It is also important to educate people about autonomous
car technology, and in this context, service providers and auto
makers should arrange trainings and/or tutorials for the public.

2) Ethical and Moral Consequences: “Right of way” rules
are clearly well-defined universally and are applied in every
country [218]. However, in some cases, these rules might
be overturned by human empathy. Depending on the driving
behavior, some drivers give way even though they have the
right of way, and the opposite behavior also occurs. It will
be very interesting to see what an autonomous car will do
in such situations. To take this scenario to another level of
complexity, let us consider an unforeseen emergency situa-
tion: suppose that a child chased a ball into the middle of the
road in an urban locality. Will the autonomous car be able to
swerve into either oncoming traffic but away from the pedes-
trian, threatening the lives of the autonomous car’s occupants,
or will it run over the child instead to make sure its occu-
pants are safe? Will there be any way for the autonomous
car to achieve the best outcome from the worst scenario? If
so, will the autonomous car be able to decide on the best
outcome? To make it worse, there is even a deeper moral
dilemma faced by the autonomous car. Consider the mighty
“trolley problem” [221], which exhibits a scenario where, “a
conductor of a trolley has the choice of staying on the planned
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track and running over 5 people, or turn the trolley onto a
track where it would only kill one person, assuming there
is no traffic on it”. In such a case, it is really important
to know which moral basis the autonomous car will use to
come to a decision. Furthermore, even if it is possible for the
autonomous car to come to a timely decision, how does the
underlying software get programmed to make such decisions?
These are fundamental questions related to daily life that must
be taken into consideration before the autonomous cars full
deployment.

Nyholm and Smids [222] tried to separate the analogy
of the trolley problem from the accident-algorithm of the
autonomous car; however, the actual ethical problem still exists
for the autonomous car. Thus, some of the situations are asso-
ciated with ethical issues rather than technological ones. It
is worth mentioning here that if an algorithm used by the
autonomous car’s software is fast and intelligent enough, then
it mostly will decide in favor of applying the brakes instead of
swerving into other traffic, vegetation, or pedestrians. Critics
suggest that autonomous cars should adapt a combination of
multiple ethical theories based on different parameters such
as, but not limited to, maximizing utility, deontological ethics,
morality, and so on to be able to make morally and ethi-
cally correct decisions while responding to an unforeseen but
expected crash [223]. We also note that the driving behav-
ior of some autonomous cars might also make its occupants
uncomfortable or even offend the occupants in some cases
such as, for instance, when aggressive users of autonomous
cars feel bored with the polite or slow driving behavior of
other autonomous cars and vice versa [218]. Therefore, accu-
rately modeling the autonomous car’s behavior dynamics is
another challenge for the technology.

Despite the fact that the autonomous car will eliminate car
crashes, improve economy, and provide consumers with var-
ious features and services [24], there are still social equity
concerns and moral challenges that will somehow be at odds
with the promise of autonomous car technology. We only
focus on the economic issues here. The development of the
autonomous car system will worry people in the driving pro-
fession because, for instance, taxi drivers might lose their
jobs. According to a recent estimate, autonomous car tech-
nology, if successful, will cost roughly 5 million jobs in the
U.S. alone [224], which comprises about 3% of the workforce.
Furthermore, beyond drivers, a lot of other professions directly
or indirectly related to automation will suffer. For instance,
car washers, mechanics, auto engineers, and car dealers will
all be impacted by the evolution of the autonomous car. Once
autonomous cars pervade our roads, people might feel reluc-
tant to own a car, because they will not need to perform typical
tasks such as fueling, parking, maintenance, insurance, and so
on when they can easily order a driverless car. Such a situa-
tion will clearly put pressure on governments and lawmakers
to come up with acceptable alternatives and policies to the
aforementioned problems.

Thus, with the proliferation of autonomous car technol-
ogy, governments must offer alternatives to the people affected
by this technology. These alternatives could include jobs, tax
subsidies, and so on.

D. Policy Challenges and Recommendations

The proliferation of autonomous cars will provide a plethora
of opportunities but, as we mentioned, it will also create new
policy challenges for governments and lawmakers. The tradi-
tional mindset behind driving will change forever, because of
the human exclusion from the equation. Policies and regula-
tions currently in place when a human driver is present will
need to be revised when a robot car drives itself [225], [226].
We need a clear, concise, win-win policy that not only has
a positive economic impact, but also addresses consumers’
concerns.

In November 2016, the U.S. DoT announced a federal pol-
icy on automated vehicles that covers different aspects of
autonomous car development [227]. This policy announce-
ment is considered a significant milestone in the development
of autonomous cars. The policy describes details about all
aspects of the autonomous car, including design, implementa-
tion, software, hardware, and security. Earlier in June 2016,
the National Association of City Transportation Officials
(NATCO), which represents more than 40 cities in the United
States, also released a policy statement on automated vehicles
(autonomous vehicles [228]). The focus of the NATCO pol-
icy statement was on the urban environment for automated
vehicles and its after-effects. Furthermore, it also provided
recommendations that will simplify the deployment process
for autonomous car technology. NATCO provided the fol-
lowing key recommendations to federal regulators and state
transportation departments:

1) plan for regularizing and deploying fully automated cars
instead of connected vehicles;

2) plan road networks carefully, keeping in mind the
proliferation of automated cars;

3) enforce security measures, including speed limits in
urban environments to guarantee safety and security;

4) define clear and concise data-sharing requirements and
regulations to ensure user privacy; and

5) design and build flexible traffic models to incorporate
the change in paradigms and mindsets due to automated
cars in mainstream traffic.

Another American non-profit policy think tank Research
and Development (RAND) corporation also provided its
insights into autonomous car technology and provided a com-
prehensive and detailed document [37] to assist autonomous
car policymakers throughout the policymaking process. RAND
recommended more funding for additional research on dif-
ferent functional and non-functional aspects of autonomous
car technology. RAND also recommended subsidies and tax
reforms to stabilize the fluctuation in costs of autonomous
cars. The report further states that human lives should be
the highest priority throughout the course of autonomous car
development. Additionally, the judiciary system should also
take into consideration the costs and other parameters related
to both companies and autonomous car owners when ruling on
cases related to incidents involving autonomous cars. Finally,
the report from RAND also recommended that the policymak-
ing process be less stringent, because the long-term effects
of the policies on autonomous technology will decide its
future.
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Apart from governmental and other organizations’ efforts to
promote the next paradigm shift in transportation, individual
efforts also have been made by the research community, result-
ing in some recommendations. For instance, Fagnant et al. [24]
highlighted key aspects to standardization and regulation bod-
ies for autonomous cars. Similar to the RAND report, [24] also
highlighted the need for increased funding that will foster addi-
tional autonomous car research and streamline autonomous
car technology with noteworthy results. Another important
aspect is autonomous car certification. Although the U.S. DoT
has been working on a joint policy that could be used for
generic autonomous car systems [229], there are still several
areas (such as testing and validation) that need guidelines and
recommendations.

It is also worth noting that according to the U.S. NHTSA,
state-level efforts have been made to legalize level 4 (fully
autonomous cars with possible human intervention if needed)
and level 5 (fully autonomous cars with no human intervention
in any case) autonomous cars [230]. Policies and regulation
impacting security, privacy, costs, services, and liability also
should be given serious attention before deploying autonomous
cars on a massive scale.

VII. CONCLUSION

Autonomous car is a rapidly evolving technology, and today
many auto makers and other technical companies are experi-
menting with autonomous cars. An autonomous car’s overall
functional cycle falls into the following abstract categories:
situational awareness, planning, control, and actuation. The
major benefits of autonomous cars include, but not limited to,
improving safety for both passengers and outsiders (pedes-
trians and other vehicles), new business opportunities, ease
of use and convenience for people who cannot or do not
want to drive, improved traffic conditions, and creating a
consumer-centric experience. However, despite these benefits,
there are still design and implementation issues that need to
be addressed before commercial autonomous cars are fully
deployed on the road. In this paper, we have conducted a
detailed and comprehensive review of current state-of-the-art
solutions in Section IV, design and implementation issues in
Section V, and future challenges for the autonomous car tech-
nology in Section VI. We focused on research areas where
the research results have been applied to the autonomous
car domain so far. These areas include computer vision,
learning, perception, planning, control, and decision-making.
Furthermore, we also outlined some of the real-world tests
conducted on autonomous cars.

We classified the design and implementation issues into
the following categories, and we thoroughly investigated each
one of them in detail: the autonomous car’s cost, digital
map construction, software complexity, testing, validation,
and simulations. Besides these issues, other concerns remain
and these include technical and non-technical challenges. As
for the technical challenges, we discussed different stan-
dards (such as ISO26262) related to autonomous cars. We
also reviewed aspects of safety and reliability, computational
resources, accuracy of object detection, sensors management,

decision-making, actuation, security, and privacy. Furthermore,
we also discussed non-technical challenges such as diversity,
consumer trust, the uncertain costs of autonomous vehicles,
their operational robustness, complex liability paradox, and
social challenges such as human behavior toward driving, plus
ethical and moral consequences. Finally, we discussed pol-
icy challenges and offered recommendations to help designers
and policymakers devise safe, reliable, and viable policies
for autonomous cars’ design, implementation, and deployment
(which should also be acceptable to consumers). Despite the
remarkable results achieved to date with autonomous car tech-
nology, it is still too early to speculate about the commercial
phase of the autonomous car. Nevertheless, we believe that
more research results will lead the autonomous car indus-
try towards commercialization in the years to come. It is our
hope that, moving forward, this paper provides some baseline
for researchers who want to pursue research in the field of
autonomous car technology.
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