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H GH ORDER FI NI TE DI FFERENCE SOLUTI ON
OF DI FFERENTI AL EQUATI ONS

V. Pereyra

Abstract

These sem nar notes give a detailed treatnment of finite difference
approxi mations to smooth nonlinear two-point boundary val ue problens for
second order differential equations. Consistency, stability, convergence,
and asynptotic expansions are discussed. |Mpst results are stated in such
a Way as to indicate extensions to nore general problenms, gyccessive
extrapol ations and deferred corrections are described and their inplenen-
tations are explored thoroughly. A very general deferred correction gen-
erator is developed and it is enployed in the inplementation of a variable
order, variable (uniform) step method. Conplete FORTRAN prograns and
extensive nunerical experiments and conparisons are included together

with a set of 48 references.
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V. Pereyra

[ ntroduction

These notes correspond to a six-week Seminar offered during the Wnter
quarter 1972-73. In them we intend to give an overview on certain gen-
eral techniques that pernmit the increase of the order of accuracy of sinple
discretizations to differential equations. A so, we will exanine in detail
one specific application. This will lead us naturally to consider some
efficient tools which will pernmt the graceful inplenentation of the nethods.

W shal | consider the basic ideas in relation to a sinple application:

the two point boundary problem

(1.12)  -y"(x) + f(x,y) =0,
(1.1b) y(a) =a, y(h) =8.

Most of the elenents of the general theory are present here and we
shal | enphasi ze those points which are basic and can be transferred to
other applications.

The problem and an OOF) discretization are presented in Chapter
1. The notions of consistency, stability and convergence are devel oped,
and an asynptotic expansion for the global discretization error is obtained.

The method of successive extrapolations is introduced in Section II.4
together with some conments on inplenentation.

In Section 11.6, the nethod of deferred corrections is treated. An

al gorithmfor obtaining an CXhS) di screte approximation with a cost
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simlar to the nmethod of order o(hg) of I11.1 is described in 11.6.3.
Nurerical results for a set of four test problens frequently found in the
literature are obtained with a FORTRAN conputer inplementation (Section
11.6.6). An operation count and conparisons with the successive extra-
polations nethod are offered at the end of Chapter 11

Finally, Chapter IIl is dedicated to the detailed discussion of a
conputer inplementation for the iterated deferred corrections nethod. The
automati c wei ght generator for numerical differentiation of I11.1is an
i ndi spensabl e tool in the "Universal Deferred Correction Generator" of
111.2. A theorem on asynptotic error estimation based on deferred correc-
tions is proved in Il1.3 and it constitutes one of the inportant building
bl ocks for the variable order, variable (uniform step algorithm devel oped
in111.4. Nurmerical results and a conputer program are al so included.

It isinthis final Chapter that we have collected some novelties
not to be found in our former work on deferred corrections. |n fact, the
conparisons with Richardson extrapol ations for these types of problens
have not been performed before. It comes to no surprise that though the
asynptotic behavior is very simlar for both techniques, deferred correc-
tions fare considerably better in terns of work for a given accuracy,
giving the solution at nore points as an additional bonus

The aimof this Semnar was to evolve fromthe sinple application
we have described to nore elaborate problems, such as: two-point boundary
value problems for first order systems, elliptic boundary value problens
on rectangul ar and general regions, parabolic mxed initial-boundary val ue
problems, etc. Unfortunately, six lectures have not been quite enough to

reach that goal and the second part of these notes will have to wait for
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« a better occasion. Nevertheless, we would like to refer the reader to the

literature where sone pointers are given on howto utilize the algorithns

we develop here in nmore conplex situations. A special mention should be
made of the Deferred correction generator that can be used as presented
here in many different problems. The sane comment applies to the |ogical
structure of the variable order, variable step nethod, whose flexibility
C and excel lent results have no equal in the published literature on non-

linear, second order, snooth, two-point boundary value problens.

—
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[, Two- poi nt boundary val ue probl ems for nonlinear second order
differenfial _equafions

[1.1  The problemand its discretization

W consider in this chapter problem (1.1) under the additiona
conditions:

(2.1a) f(x,y) ¢ Cw[[a:b] X ('°°:+°°)] ’
(2.1p) fy(x,y) > -1'r2/(b-a)2

It is well known (Lees (1964)) that in this case (1.1) has a
uni que sol ution y*eCm[aJﬂ, which can be approximated by a three point
finite difference nmethod.

W call (1.1) the continuous problem The finite difference

approximation wll constitute the discrete problem

Let h = Pig for a given natural number n > 1, and |let

Xy = a+ ih, i=0,1,...,n, define an uniform nesh on [a,b]. The dis-
crete problemis obtained by replacing y* in (1.1) by a second order
symetric difference at every interior mesh point:

(2.2a) h‘g(-y.

S Yi+l) + f(xi,Yi) =0, i=l,...,n-1,

(2.2p) Y = o, Yy =8B

For short, we can denote (1.1) by

(2.3) F(y) = 0,
and this is to be understood as a nonlinear equation in a certain function
space. W won't make this any nore precise here, since our enphasis is

inquite a different direction, but nevertheless, we shall take advantage

of the built-in power of synthesis that such a formulation has. |p the
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same spirit, (2.2) will be denoted by

(2.4) Fh(Y) =0,

representing a nonlinear equation ("system of equations") in the Euclidean

space N

, the unknown being the vector YT = (Yl’“"Yn I) . Natur-
ally, the idea is that h will go to zero (or n »w) and thus we really

have an infinite famly of these objects. Aso we expect that, in some

sense, the values Yj(h) will converge to the respective function val ues
of the exact solution. In order to nake these ideas nore precise, we
need to introduce some extra notation. For each function Z(x) defined

in [a,b] and satisfying (1.1b) we define Cph[Z(x)] = [Z(xl),...,z( )]T )

Xn 1

The oper at or ¢, is sonetimes referred to as an space discretization,

W shall say that the discrete solutions Y(h) converge discretely

to the exact solution y*(x) if:

. *
(25) l!llom HY(h) - Cphy “(h) =0,
(b-a
where || —H(h) i's the nmaxi numnormon E | . In what follows we shall

omt the subindex (h) from the norms.
As usual, this convergence depends on two properties of the

di screte operator F, © consistency and stability.

Definition 2.1. The operator F, is consistent of order p >0,

h
if for the solution y(x) of (1.1) and h _<_h0it hol ds that:

VR F (e o) |

Definition 2.2. The operator Fr is stable if for any pair of

discrete functions U, V, and h < hO there exists a constant ¢ > 0 ,

i ndependent of h , such that:

————’
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(2.7) U -V < e liB(U) . F (V)] .

Lemma 2.35. |f F, is stable then it is locally invertible around

* . . 1. , . . .
¢,y , and the inverse mapping F = is uniforny Lipschitz continuous for

all h<hg,

Proof: Let us consider the open spheres B, = B(Cphy*, p), Wwhere
p > 0 is independent of h . For any U V € B, We have, because of

the stability condition, that F = is an one-to-one mapping (since other-

wi se the right hand side in the inequality (2.7) could be zero wthout

the left hand side being zero!), and therefore is a bijection between

B, and its inmage Rh = Fh(B Thus the inverse napping F;ll exi sts

h)'
Let X, Y € Rh , then we can wite (2.7) as

h
in Ry
HF;ll(X) - F;ll(Y)“ <clx -y . D

Wth this result we can prove the discrete convergence of any
consistent, stable discretization,
Theorem 2.4. Letus assune that the continuous problem F(y) = 0

. . *
has a unique solution y . |Let Fh be a stable discretization on the

spheres B, = B(cphy*,p) , and be consistent of order p with F . Then

there is an Eo > 0 such that:

(a) For any k< Eo

the discrete problem F(Y)=0.

there exists a unique solution Y(h) for

(b) The discrete solutions Y(h) satisfy
(2.8) [1Y(h) - cphy*” = o(nP) .
(i.e., they arc convergent of order p ).

Proof: Let R, be, as in Lenma 2.3, the imge of B, by ¥ , and

* . *
l et us call Zﬁ = Fh(tphy ) . Cbviously Z €R, , and because of the
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h” -
know that tor h < by t he F, arc homeomorphisms between the spheres B,

‘“ consi stency ||z o(x®). n the other hand, because of Lemma 2.3 we

and their imagcs Ry By Brouwer's Invariance of Domain Theor em (Aleksandrov

r

,, Maps the interior of B onto the interior

of Ry , and the boundary onto the boundary. Let V be any vector on the

[1956]) we know then that F

boundary of B, . Because of the stability condition we know that

2.9)  S<pEm) -y,

and since Fh(V) will run over the whole boundary of R, while V runs

h
over the boundary of B_, we can conclude that the sphere B(Zz,p/c) is

we can now choose

ful'ly contained inR® . Since ”zz”_, 0 for h -0
hy < By such that for h <, iz < e/c , which in turn will inply

. that O € B(Z;,D/c) c Rh . But Rh was the imge of Bh by Fh , and
therefore the last statement inplies that for hSHO there exists a unique
" Y(h) € B, such that F (Y(r)) = 0. (Al these statements are repre-
sented in Fig. |.) The discrete convergence of order p follows also

fromthe stability. |n fact D

_ ‘ 1¥(h) = @37 < e 1Z5)) = o(xP) .

(8

Fig. 1
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Remark. Obscrve that there iz very little in the statenents and
results of this Section that is necessarily tied up to the two-point boun-

dary value problem and therefore they have nore general applications.

.2  Consistency, stability, and convergence

By using mhy* in (2.2) we obtain what is usually known as the

| ocal truncation error, This is an expression that shows how nuch our

L discrete operator fails to represent the continuous operator (for which
we have F(y*) =0 ):
* -2 * * *
(2.20) o Gy) = IR (o)) = B Cey Gy D)+ 27 () -y (g )+ 2000 (x,))
We can obtain a nore interesting expression for Th@Q by expandi ng

in Taylor's formula around x , which we can do thanks to the snoothness

—

assunptions. By using the fact that f(x,y*(x)) = y*”@q we get:

*(2xe) g2k o (12K |

K
2
Ta(x) = ‘Z Exy Y
k=1

r—

This expansion then shows that the discrete method 1S consistent
ol order p =2 .

Ve shall now prove that the discrete nmethod (2.1) is stable for
h sufficiently small, which through Theorem 2.4 will give us the existence
of unique discrete solutions of the nonlinear system of equations (2.1),
and their discrete convergence of order W to y*(x) . The proof of
t he L stability is basically due to Lees [1964]. W need severa
definitions and Lemmas. The technique is a sinple instance of the use of

L, estimates often found in partial difference equations.

For every h we define the inner product of mesh functions by
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(2.11) (V,u) = hz V.U, .
e

This inner product induces a normover the mesh functions that

we denote by
1
(2.12) V), = (VV)F .

By the usual relationships between the standard L  and L, norns
01 %)) < 1l < Vn || x||) we have that

1 1
(2.13) BRI < VIl < (b-a)E vy,

1
since Vit = o = (352,

Let us consider the difference operators A, and 4 :
_ -1
A+u(x) = h

h™L(u(x) - u(x-h))

u(x+h) - u(x)) ,
(2.14)

A_u(x)

It is clear that 62u(x) = h-e[-u(x-h) + 2u(x) - u(x+h)] satisfies:

(2.15)  -&u(x) = b u(x) .
W need still another normin our space, that will involve the
difference operator a_
n %
. _ 1 2
(2.26) IVl = (8 V,47)% = (2D |av|
i=1

Ve quote without proofs the following results of [29] .
a) 2 [[V|| < 1IV]| A’

b) (U, 62V) =(a U, AV).

This inplies in particular that

) (670,0) = [IUII}
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2 . . . .
If s Is considered as a linear operator over the nmesh functions,

then its matrix representation has the famliar tridiagonal form h'e(-l, 2, -1).

This matrix has eigenvalues , _ 4 .2 Jmh - q

; h2 2(ba] Jj=l,...,n-1 , an
we have al so:
2 2
d) Ay HHHOSHHHA
Theorem 2.5, et 7 3 int r,  The discretization (2.2) is

stable for h < by satisfying:

2 nzﬂz ?2
_:T—Z_ 1 - —0 <7 .
(b-a) ea(b-a)Qg

Proof: Letus consider two mesh functions v, V, and |et q
1’ g2

be defined as:

2
6 U + f<X’U) = ql b

n

F,(U)
F (V) = 65V + f(x,V) = q, -

Putting W =U -V , and q = 9, = 4, we obtain by the mean value thcorem

in integral form:
1

2
&2 +ffy<x, €U + (1-gv) dz-u = q .
0
Calling the integral term P we observe that P > 1 . By taking inner

products (see (2.11)), we get
2
(w, 6 W) = (W:Q) - (W, ),
and theref'orc by c) and Schwartz's inequality:
2 _ 2
HWHA =AW, el - Wil

By d) we obtain ”W]]if_ A‘l%NWHA hall,, - s

Xl ”W”A or,
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(2.17) (1 + %) i, < Tl -

It is easy to verify, by expanding sin X in Taylor series and truncating

at the first and second termrespectively, that

272
2 oy s 2 L (mh./ (b-a))
(b-a)2 ="l = (b-a)z 2k

and since (2.17) can be witten as:
2

1w, < ﬁn all,

we have fromthe hypothesis that

(2.18) gy < n(b-a)~"
A —n (’ﬂ'ho)g 2 “ QHO =K || QHO
5 1 - ) + 7
(b-a) (b-a)™24
where the denomnator is greater than zero. W still haven't got the

inequalities in the infinity norm(j-||). W recall (2.13) and a) in

order to transform (2.18) into:
K 1
Hu-vil < 5 (b-a)® )| F (U) - F, (V)] .

Theorems 2.4, 2.5, and equation (2.10) prove that the discretization

(2.2) is convergent of order 2, i.e.

(2.19)  |¥(n) - 9.y = o(r) |
In the next section we shall develop a nore detailed expression

for the global discretization error (2.19).
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.3 An asynptotic expansion for the global discretization error

Under the assunptions of Sections 1 and 2 it is clear that the
variational equation (linear!) associated with (1.1)

(2.208) e’ + £ (x,y)e = 9(X)

(2.20p) e(a) = e(b) =0
has an unique solution e(x) ¢ ¢"[a,b] for each given ¢ functions
y(x), e(x) .

If we use for (2.20) the same discretization (2.2) as we used for
(1.1), then an expression simlar to (2.10) holds. |n fact, it will be
conveni ent to-use the notation F (y)e = g for (2.20), and Fﬂ(CPhy)E =98,
for its discrete anal ogue.

The prime here denotes derivative (in the sense of' Fréchet;
Jacobian in the finite dinensional case). Therefore we have, at the

solution of (1.1)

K
* * o}
(2.21) Ti(x) = Fl(ey )oe (x) = @ fg - E ake*(gkﬁ)(x)hgkp o(1°K*y |
k=1
* [}
where is th di luti k' (2.2 d _r_’-._j
e (x) is the corresponding solution ok' (2.20), an & = Ty -
As it turns out, higher order derivatives of the mappings oF, F coi nci de,

having the form

. ()3 = (3 o3 - ;
( ) @hF e Fh whe = wh 3 e

Theorem 2.6. Let F, F_ Dbe as above. Then for h < hy the gl obal dis-

cretization error has an asynptotic expansion in even powers of h ;

K
(2:235)  w) -t = o) =g 3 (0 w0 HE)
k=1
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The functions ek(x) are independent of h and satisfy the

linear two point boundary value problens:

(2.28)  F)e, = e +2 (1,7 (x))e, =

. e (2) = e (b) = 0.

bk’

The functions b, will be constructed in the proof.

Proof: W can rewite (2.23) in the form

K
S(h) = e(h) - cphz e, (O = o(7¥*) .
k=1
K
Let us call for short u(h) EZ ekhg,k and | = —Fh(wh(y* + w(h))) .
k=1

If we are able to prove that for appropriate choices of b I = o(h2K+2) ,

then by using the stability condition the expansion (2.23) wll follow

In fact we have, since Fh(Y(h)) =0, that

(2.25) 1)l = T, (¥(n)) - F (o, (v + u(0))))f >

% I1Y(n) - mh(y*) - u(n)) . % lIs(n) .

2 . .
weww that  p(h) = O0(h7) , let us expand | in Taylor's series around
® y*

h K -(3)
T (F (2.57)  Fl(oy z *h

j=2

(why*)

¥ [0, u(n)1%} + o(n"K™®)

Usi ng the expansions (2.10), (2.21) and (2.22), we obtain:

K K
_ *(2k+2) 2k L ¥ 2 -
I = “’h{E 2y ( 2% 4 ¥ (y Ju(n) + E aju( k+2)(h)-h2J +
k=1 J=1

K
' Z ai f\((‘])(x,y*)u’(hﬂ}' o(n Ky

j=
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Now we observe that:

K K
2 FEOn) = Y R e 2D b
) k=1 k=1
X - & K
o) Z ajh(2k+2 )23 :Z . (Z e£2k+2)h2v) 2]
=1 J=1  \w1
K
Z(Z e (2(k -y +2)) S
k=1

J_ 2E
c) w(h)? = Z C},g(el’... ‘ef-j+l)h + O(n 2K+‘2
E=J

where the QJ. g are pol ynom al s j-honmogeneous on their variables,
2

Repl aci ng these three expressions in | we get:

|- K *(2k+2) Sl (2 (5-v)42)
= cPh Z &y + bk + y a

k\)v
\):

k
+ Z %f§J)(x,y*)Qj }i(el,.. : ’ek-j+1)'] h2k}+ O(h2K+2) |

J=1
where we assume =
Y, =0
Since we want | to be (k") , that means we would like to
, _ 1 *(h :
choose b, SO that { } vanishes. Thus bl(x) =-3V ( )(x) C with

which we can determne e (x) by solving (2.24):

%w>=-LF-<“w> ANORE S RSRETCI

which allows us to determne e,(x) , and so on. W& observe that in

general, the determnation of b jnyolves derivatives of the solution

* . .
y , and earlier error functions e\) , v=l,...,k-1 .

Therefore the by
can be determned recursively. This proves the Theorem D
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II.4  Successive extrapolations

Expansion (2.23) is the basis for the well known nmethod of successive
extrapol ations ("to h=0"), a fairly sinple procedure used to increase the
order of' the discretization. In other contexts, this procedure is asso-
ciated with the nanes of Richardson [1910], Ronberg [ 1955], Gragg[1963],
Bul i rsch and Stoer [1964], Stetter [1965], and Pereyra [1967a]. See
Joyce [1971] for a detailed survey and a nore conplete set of references,
and Wdlund [1971] for a survey of recent devel opments.

W shall describe briefly the application of successive extrapol a-
tions to our present problemin order to enphasize certain aspects and

establish a basis for conparison with other high order methods.

h h
Let ¥(h), Y(?o-) , . , Y(~i9), be the solutions of (2.2) for
2

the indicated step sizes, that correspond to systens of dinensionality

b- .

n, = -h—j‘- -1, ..., m =2xmn_ +1(seeFig. 2for an exanple).

Function n Gid
Y(l/2) 1 } D .
0 M 1
Y(l/l‘) 3 é + & } ]
1
Y(1/8) 7 ——%———1+—
0 1
Fig. 2

It is clear that only the points corresponding to the coarsest nesh
(ho) are common to all neshes. It is at those commn points where we shall

be able to inprove the order of our solution. Let us then call Y? t he

n, vectors obtained from Y(hi) by extracting the conponents
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Y o1 (hi) : t=l,...,n0 )
of ¥(h,). Wth these initial values Yio . we can formthe (vector)
Ronberg triangle
wyd=l _yd-l
(2.26) —yJ L. e T VU S

yd o1

From (2.23) we can easily derive asynptotic expansions for v - cp y* :
K i h?
J * _ 2k 2K+2
(2.27) Yo o- fohoy = ¢hoz ekj(x)hi + 0(h ) .
k=3+1
Also, if we disregard terms of order greater than h§23+2)  then

we can obtain an asynptotic error estimate for the global discretization

error.

Lemma 2.7

(2.28) Y -9 y ~ (¥9- ) G+l
i Th] i - /(1-heTT)

where =~ stands for asynptotically equal.

Proof: Wite (2.27) for Y‘i] and Y?-I , and subtract, ignoring terms of
order greater than h(23+2):

J J

YT - Y

J * (23+2) i

Y, -o y ~o e, (x)h; <Y N
i ho hO J+1,3( ) i 1 - Ag+l

[l'.5 Some comments on inplementation

W have proved the existence of discrete solutions Y(h) n a
nonconstructive way. The nost frequently used procedure for actually solving
equations (2.2) is Newton's nethod. |n cases in which fY is hard to

conpute some alternate procedure mght be preferable. \ won't go into the

details of the inplenentation of Newton's nethod in this case since this
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is fairly straightforward and it has been extensively discussed in the
literature (cf. Henrici[1962], Keller [1968]). Let us only remark that
system (2.2) is tridiagonal, which nmakes the solution of the linear
systens that appear at each Newton step very sinple. [f there is no

other information, a linear interpolation between the boundary val ues can

provide a reasonable starting vector.

In constructing the successive extrapol ates one can fol |l ow several

paths. One of the nost reasonable seens to be the follow ng:

i) Conpute Y(ho) .

i) Use Y(ho) and interpolation in order to have a good initial

approximation for Y(hl) )

iii) Use Yz, Yi in order to estimate the error in Yz. If you
are satisfied, quit. If not:

i v) Conbine YB s Yi in order to get Yl )
1
v) Cbtain Y(hg) and construct a new row of the triangle, etc.

Cbserve that for Y(ho) we shall use as a starting vector something
probably pretty inaccurate, but the dimensionality of this problem will be
the smallest. For any other Y(hi) we shall use in the Newton iteration
the fairly accurate initial values provided by Y(hi l) , using interpola-
tion to fill into the new abscissas. This is a very inportant point,
since it will tend to decrease considerably the number of Newton iterations
necessary to carry the residuals below a | evel conpatible with the discret-
ization error.

W have always to renmenber that the dinensionaiity of the problem

is miltiplied by 2 every tinme we conpute a new row. A source



of' criticismfor this nethod has been the fact that one gets the nost accurate
results Yg only on the coarsest nesh, wasting all the precious conputation

perforned in the finer meshes. |n a recent paper of Lindberg [1972] the

author inplements and justifies an idea of Dahl quist for producing accurate
results on the finest mesh through a recursive interpolation procedure.
This is done for initial value problens but it is clear that a simlar
principle will hold for our present problem (though it has not been done

as far as | know, it would be worthwhile to investigate this matter fur-

ther, clarifying Lindberg's statements).

171.6 Deferred corrections

IT.6.1  Introduction

As early as 1947, Leslie Fox advocated a technique called "difference
corrections".  Through the years he and his collaborators have applied this
technique to a variety of problens in differential and integral equations
(see Pereyra [1967c] for a detailed bibliography and historical account).

In Fox [1962], a wealth of information on the state of the art in the
English School can be f'ound. It is there where we find the term"deferred
corrections" wused interchangeably with that of difference corrections. The
reasons for this switch in nonenclature are not apparent, except perhaps
for the feeling that the technique was in sonme way connected with the
"deferred approach to the limt" that we were discussing in the earlier
Sections, and al so because the name reflected the fact that a posteriori
corrections were perfornmed.

W have preferred to adopt the latest nanme in our work on this

t echni que since our approach is not tied up (at |east in appearance) to
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expansions in terms of differences, as it was in the earlier devel opments.

.
W base our formulation of the nethod on the asynptotic expansion
for the local truncation error:
C - *(2k+2) 2K+2
@29) 7o) = -} g E e s qrD)
k=1
:_.f _ whi ch, as we have already observed in Section 11.2, only needs smoot hness
¢ of the exact solution y*(x) and the application of Taylorts fornula for
its derivation,
L For any smooth function y*(x) we can approxi mate |inear combina-

tions of its derivatives with any order of accuracy in h at any grid
point by using sufficient ordinates in a neighborhood. This is again a
consequence of a wi se application of Taylor's expansions and nunerical

differentiation techniques. Thus, there exist weights wS such that

L 24+2+q
- *(2k+2 2k42 *
{
L k=1 s=1
qy - * q .
0(h7) = 8,(y (x;)) + o(n%) , @, integers.

r--——-
+

W shal |l show | ater how to obtain w. o in an efficient and suffi-
ciently accurate way. Cbserve that we have nultiplied Th(x) by he .
In this fashion Sz becones a bounded operator (for h|0) and most
of the dangers of nunerical differentiation formulas are avoided. In
fact, because of the linear relations between differences and function
val ues, sone choi ces of Sz(y (xi)) will coincide with Fox's fornulation,
t hough we feel that this nore general presentation, coupled with efficient

wei ght generators is better'adapted for use ona digital conputer. |n fact,
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Fox's difference correction procedure was nostly advocated for desk cal -

culator conputation, where a table of' differences manipulated by an able
person was a real asset, The main contributions of the author of these
notes, starting with a Stanford Report (Pereyra [1965]), have been to put
on a sound theoretical basis the asynptotic behavior of a very genera
procedure nodel ed on Fox's difference corrections, and what is even nore
relevant, he has produced tools and conplete inplenentations of this tech-
nique in a variety ot applications. However, so many years and develop-
ments later (wth some minor changes) the words in Fox's[1963] very inter-
esting expository paper are still very nmuch actual: "This idea (difference
correction) does not seemto have penetrated deeply into the literature of
automatic conmputation . . . . Certainly we have to do some differencing
involving extra programmng, extra space, and some difficulties in auto-
matic inspection of differences, but machines are getting larger and pro-
gramming easier (or so everybody tells ne), and if we are concerned with
accuracy, as We certainly should be, 1 should have thought that sonething
like this was essential."

Probably one of the main reasons tor this neglect in recent times
has been the wi despread interest in other high order nethods (splines,
finite elements). Unfortunately, the theoretical developnents in these
areas have very nuch surpassed (and overshadowed) the practical, efficient
i mpl enentation of the methods. Thus, we find ourselves in the sad situation
of having a highly promsing, very general, theoretically well supported
technique, that is begging for an at |east equal treatment in its practica
aspects, while on the other hand, for sonme applications at least, it is

fairly clear that the results obtained with our nore traditional finite
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difference techniques will be hard to beat. (Conpare the numerical results
for simlar problems in Garlet, et al [1967,1968], perrin, et al [1969],
and Herbold and Varga [1972], with those in Pereyra [1967¢,1968, 1970] and
this report.)

I wouldn't be surprised if it finally turns out that a successful
i npl ementation of high order spline nethods comes about via a deferred
correction type of approach, bypassing in some way the very expensive
steps of high order quadrature fornulae and conplicated systems arising
from the present approaches. See Fyfe [1969] for a first timd step in

that direction.

11.6.2  Agorithns

There are many ways of producing deferred corrections. Fox' s way
consisted essentially of representing y" as a series of differences
In the first step, common to all procedures, one woul d conpute using
only the first termof the expansion (in this case the basic nethod (2.2)),
and then use these O(h2) values in the difference expansion, and recom-
pute in order to obtain a nore accurate solution. The process was thought
as iterative, providing in infinitely many steps the exact solution. This
was never done in practice; in fact it is hard to find any published numer-
ical exanple in which nore than two corrections were perforned, carrying
perhaps three or four terns in the difference expansion. Naturally, the
reason for this was that on a desk cal cul ator any prol onged conputation
was a big undertaking.

Let Y be the Q(h2) solution to (2.2), and let S, bpe, as

in (2.30), an CXhé) approximation to T, = -aly*(l*)hl+ , the first term
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in the local truncation error (nultiplied by hg). hserve that since

h . n
therei salready a lacltor h inT we only are requiring an 0 ()

1
approx imation Lo y*()*) athe grid points. 1f we have y*( X) available
then, as we said before, there is no problem in obtaining the weights W
for s, - But all what we have is Y(O). In principle it cannot be ex-
pected that froman CXhZ) discrete approximation to a function one can
obtain an o(hg) approximation to a derivative. |t is here where we make
use of the expansion (2.23) for the global discretization error. |pn fact
we have that because of linearity and (2.30):
sl(Y(O-)) - sl(cphy*) = Sl((phel)h2 + sl(cpheg)h” + O(h6) .

(bserve that we have used the fact that 8, = Q1) . But sl(cphy*) =T 4 O(h6),

_ (L) 4 6 .
Sl(aohek = -aje 4 o(h”) , k=1,2 . Therefore,
(o) _ 6
sl(x ) = T+ o(h7) ,
and we can use Y(O) i nstead of <Phy* and still obtain the same asynptotic

behavior. Wth Sl(Y(O)) computed at every grid point we solve for a cor-

rected val ue Y(l)
(e .51) F(v) =078 (v(%)) .

The local truncation error for this new discretization is o(hl‘) and

therefore, since we are still talking about the same basic operator Fy s

the stability condition proves that there exists a uniquesolution Y(l)

to this problem and that
(2.52) ¥ _ oL o)

Provi ded we can obtain an asvmototic expansion for y(l) - y*
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this procedure can be repeated, and each time two more orders in h will
be gained. In general, the iterated deferred correction procedure can be
described in the follow ng way:

1) Let Y pe an O(h2k+2) discrete sol ution.

(k)) 2k+2

i) Conpute h'zs , an h approxi mation, to the first

1Y
(x+1) ternms in the local truncation error expansion.

iii) Solve r,(v) = 0%, (v!)) for y(H)

For boundary val ue problens there are some theoretical difficulties
in obtaining the successive expansions needed to justify the nethod, The
difficulty cones fromthe fact that different differentiation formulas
nust be used at different points of the mesh. |n fact, in the first step
we can use five point symetric fornulas in order to approximte y*(”)
to order n° at the mesh poi nt's X2, ..., X9 > but we shall need six

poi nt unsymmetric formulas at the points x X, 1 . For the symmetric

l )
fornul as we have asynptotic expansions in even powers of h :
K

Nz * 2v 2K+2 .
(2. 33) Sl(y (xj)) = Tl(xi) + E L\)(xi)h + 0(h ), i=2,...,n-2 ,
v =5

while for the unsymetric fornmulas we shall have (different) expansions

.with all powers of h . Wth a small manipulation it can be shown that
2K
* -2 (0)y — k 2K+1
Floy ) - 78, (v'%)) = whz r, ()n® + o(n™)
k=h
but rk(x) will in general be discontinuous, because of the change of

differentiation formulae. Therefore, Theorem 2.6 cannot be applied in

order to guarantee the existence of expansions for Y(l) - (phy* . which
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in turn would be necessary (in our approach) for proving the accuracy of
the differentiation formulas in successive steps
One way of deferring this until after the second correction is the
followi ng: Since y%" = f{x,y*) then we can replace all higher deriva-
tives of y* by total derivatives of' f two orders lower. Thus in our
£

. . * ‘
rirst correction we need to approxi mate ~—s fx,y (x)) only to order hd,

dx
and by using grid values of f(xi,Yi) we can achieve this with a symetric
three point formula over the whole range. Naturally, the sane probl em
we discussed above will appear after the second correction. W shall see

later that by using a basic nethod of order hl'L

, We can rigourously obtain
an h8 order nmethod applicable to the problem of this Chapter.

W can also rigourously performdeferred corrections (any nunber)
for boundary value problenms of the form(i.1a) wWith periodic f , i.e.:

f(x +b - a, y) = £f(x) , and periodic boundary conditions
y(a) = y(b) , v'(a) = y'(b) .

In this case, we can use the same differentiation formula over the whole
range since there are really no boundaries in this problem and we can
extend our solutions by periodicity.

Now the fact that we cannot obtain with the present nethods the
theoretical asynptotic behavior of the iterated deferred corrections for
problens (1.1) does not nean that the technique is useless in this genera
case. Far fromit, we shall show numerical results that should justify a
more careful study in order to determ ne precisely what is that asynptotic
behavior. W would like to stress the point that the asynptotic expansions

for the successive global errors y(¥) why* are used only in the theoretical
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justification ot the nmethod, but at no tine are they needed in its practical
inplementation as in the case of successive Richardson extrapol ations.

More general equations of the form
(2.54) y" = f(xy,y )
can and have been treated. W feel at the present time that those problens
will be nmuch nmore easily dealt with using a géneral procedlufe for systens of
the form

y' = £(x,y)
(2.35)

Ay(a) + B y(p) = 2,

which is now in development. W expect that our method will conpete fav-
ourably With the multiple shooting techniques that have become fashionable
inrecent times. In Keller [1969, 1972] the rel evant theory for an o(hg)
discrete approximation to (2.35) i s devel oped and asynptotic expansions
are derived. Keller uses then this fact to justify a successive Richard-

son extrapolation procedure. See also Kreiss [1971].

11.6.3 An O(h8) met hod for the price of an O(hg) net hod

In this Section we consider problem(1.1) again, but we shall use
the more accurate O(h4) di scretization

(2.36)  w™[-v. +2v. -y, | + S, + 1075 i-f

i3 | i 1 =0, i=1,...,n-1

i+l

where £, = f(x,,Y W synbolize (2.36) by G, (v) . By recalling that

)
(x, y*(x)) = y*”(x) it is then easy to derive via Taylor expansions that

the local truncation error is in this case:
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X - (2k) * g-. 2K+
Gp(oy ) = @ Z a (X, y (X))m + 0(h™7)
k=2

1 1
where Ay - Ty ER D) T 6

This nethod can al so be proven to be stable as was the case for
the sinpler method (2.2). (See [ ].) Thus we can produce an algo-
rithm simlar to the one described in 11.6.2 but which now should gain &
orders per correction. W shall make explicit that algorithmin the next
Chapter, while presently we devel op a correction nethod of order h8
which is specially effective and economical. Paraphrasing terns which
are very fashionabl e these days we could say that the method to be described
is of a high conputational "sinplicity". The main idea is that one correc-
tion with the same asynptotic properties as in the usual procedure, can be
obtai ned by sclving the variational equation associated with the problem
with an appropriate right hand side. |f Newton's nethod is being used to
sol ve the nonlinear equations resulting fromthe basic discretization then
the correction wWill look just like one extra Newton step. |f we observe
that the o(hh) nethod (2.36) is essentially not nore conplex than the
O(hg) method (2.2) then the reason for the title of this Section becones
clear.

The linearized equations that obtains at each Newton step v are

the follow ng:
2 p) ‘
h_ . vy 5h
(2.37) [12 Iy(xi-l’Yi-l) l] B, |+ [-3- fy(xi,Y\i’) + 2]. E, o+

h2 v %
1z Ly Yig) - 11 B T F
where
2

v Y] AV \Y] \ o
(2.38)  ry = - {0y g w200 - W) w5 () w100 w0y )}
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For short, we can call the left hand side of (2.37): 2 1oV
h Gh(Y JE . Once

{E;} is obtained, then the new iterate results:

(2.59) Y?+l = Y? +E_ .
Because of the stability, it is enough to reduce the residuals r

to a level conpatible with the global discretization error in the final cor-

rected Solution. |n fact

2
r’ o= wa (vY) , 6 (Y(n) = 0,
and therefore we have that
-2
IYY - v(n)) < c Jja, (YV)) = ch™ ey .
Thus,
* -
1YY = o S IYY = v+ 0 () - o) < e eV v ot
and a reasonable stopping criteria for Newon's nmethod is then:

(2.50) f1z¥] < on'®

where c, is usually chosen to be a small constant unless sone nmore precise

information about ¢ and C is available. Let Y(°) be the computed

O(hl‘) solution. If we now define

(2.41) 7(x,) = - = d f(x., v (%) ST * n°
¥ T O T v ) gy - g~ 0 v () gy

and

(242 s(s(,749)) = 0 x) + o)
Then by sol ving

(2.53)  6/(x(ON)E = g(r{°))

and putting

(2.40) ¥ 2 (@) 5
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w shal | have an Cth) appr oxi mat i on

Proof: By an argument similar to Theorem 2.6, we know that the smooth
function el(x) satisfying
(2.45) 6'(y")e, = n7'

is such that = v(0) - * _ 4 8
e=Y ®y = @eh +0(n) .
But al so,
’ ¥\—=  _ 8
Gp(ey )e, = @ T + o(n),

_ 4
wher e e = %.eh
Therefore, using (2.42) we get

6p(0,y )%, - 67 (x®)E = (60507 - 6/(r)z) +o/(x))z, - 5)

. -Gﬁ(why*)e . Ei Gé(Y(O), (31 - E) = O(h8).

But since the terma/ e & = / , ,
utst 6a(%3 e ¥ = o(nd)  and Gh(Y(O)) is stable we obtain
- 8
€ - E=0(n")
which in turn inplies that

(Y(O) -E) - why* = O(h8)

as we wanted to prove. []

II1.6.4. Some numerical results

In this Section we present sone test problems fromthe current

literature in high order methods.  gyne |inited conparisons are included

The limtations are generally due to the vagueness in which nunerica

results are often presented.
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Problem 1
-y7 o+ y'"\ -sin X (1 +sjnex) 0
y(0)= y(m)=0
Exact sol ution:
y(x) =sin x .

See Pereyra [1968].

Probl em 2

Exact sol ution:

y(X) = -4n 2 + 24n (C .sec(gC (x-%))}

The constant ¢ satisfies: ¢ sec E =2 .

c = 1.336055694906108. ..

See Perrin, Price and Varga [1969], H B. Keller [1972].

Probl em 3

_y//+y +y5 +eSin 2nx

y(0) = y(1) = 1
Exact sol ution:

y(x) _ esin2rrx )
See Carlet, Schultz and Varga [1968].

Probl em &

3 -

v+ 5 (y+x+ 1) =o0

y(0) = y(1) = 0

[Lmz(cog 2mx - Sin 2nx) - gesin2mx 1]

=0
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Exact sol ution:

2
y(x):g_x-x-l.

See Ciarlet, Schultz and Varga [1967] or Schultz [1973], p. 98.

The results of this Section were obtained with a FORTRAN |V inple-
ment ation (WATFIV conpiler) of the algorithm described in 11.6.3 running on
the IBM 360/91 conputer at the Stanford Linear Accelerator Center. poyple
precision ( ~ 16D) was used throughout. Newton's nethod was enpl oyed for

solving the nonlinear equations, using as starting vectors in each case the

linear interpolation of the boundary val ues.

The eval uation of the correction termwas perfornmed via the Universal
Two- Poi nt Boundary Val ue Probl em Deferred Correction Generator which wll
be described in detail in the follow ng Chapter.

In Table i we present results for Problemi , i=1,...,b, "Error"
stands for the nmaxi mum absolute error at the grid points between the exact
and discrete solutions. Runs with maxinumrelative error gave sinilar
results.  Error, corresponds to the basic h4 approxi mation and M
to the corrected solution. (n+l) is the nunmber of grid points, while
(n-1) is the dinensionality of the systems sol ved. m is the conputed
order obtained by conparing the errors for two solutions for different

step sizes. Thus,

A _ loglerror(h)/error(h/2)]
(c. .ué) m = lOé 2I‘OI‘ / )

Oper. stands for (nunber of operations)/1000 . A detailed

operation count study will be performed in the next Chapter, and it is
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from there where we obtain the results for this colum. Function eval-

uations are not included in the operation count, but their nunber is

connected in an obvious fashion with the colum iter., which gives the

number of Newton iterations necessary to reduce the maxi num norm of the

residuals in the solution of the basic problem below the |evel EpS .
W adopted EPS = 10'Z§<h8 whi ch gives the follow ng stopping criterion
v for the Newton iteration:
(2.47) HGh(YV)Hm < max (lo'u X h8, 5 X 10"16) ,
where the constant 5 x 10716 is related to the 1BM System 360 doubl e
i preci sion.
L Ve list in res. the normof' the last residual. The notation a ,
' b nmeans a x 10° .
.
n error, m errorg m iter. res. oper.
8 2.90, -5 -—-- 1.05, .7 -——- 7 1.22, -13 1.3
i 16 1.81, -6 4,00 1.12, -10 9.87 7 3.13, -13 2.8
32 1.13, -7 4.00 5.57, =13 7.70 7 7.2, -15 5.9
64 7.0k, -9 4.00 1.97, -13 1.45 7 2.07, -15 12.0
128 4.40, -10 4.00 4.60, -14 2.10 8 1.97, -16 241
256 2.79, -11 3.98 3.92, -13 ---- 7 3.76, -16 48.5

Table 1
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n error m error g m iter. res. oper .
8 5.86, -7 7.36, -10 —— L 1.47, =17 .8
16 2.42, -8 I .00 1.6h, -12 8.81 L 2.1, =17 1.8
32 1.52, -9 5.99 4.08, -15 8.65 b 1.55, -17 3.8
6 g8, -11  H.00 3 95 -16 3 38 4 2.27, -17 7.6
128 5.92, -12 L.oo  7.91, -16 ——-- n 2.50, -17 15.4
256 3.7k, <13 3.98  Lh.02, -15 L 2.51, -1 30.9
Table 2
n error, m error g m iter. res. oper.
8 1.97, -2 9.02, -2 6 2.22, -16 1.2
16 1.06, -3 L.,22 1.57, -b 9.36 6 2.78, -16 2.5
32 6.40, -5 h.05  T.06, -7 7.60 6 3.19, -16 5.2
eh  3.97, -6 b.o1  7.97, -10  9.79 6 3.76, -16 10.5
128 2.hr, -7 L.o1 2.hg, -12 8.32 6 5.81, -16 21.2
256 1.55, -8 5.99 1.33, -15 L .23 6 3.87, -16 42 .6
Tabl e
n error, m error g m 1ter. res. oper.
8 1.64, -5 ——— 4.65, -7 —— L 2.09, -13 .8
16 1.05, -6 3.97 2.20, -9 (URE 5 1.91, -17 2.2
52 6.60, -8 3.99 5.65, -12 8.61 5 1.80, -17 L.5
o 4,13, -9 k.00 1.39, -1k 8.66 5 1.62, -17 9.1
128 2.58, -10 4.00 5.72, -16 4,60 5 2.12, -17 18.3
256 1.54, =11 L .o7 9.27, =15 ——— L 2.32, -16  30.9
Table 4
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o n error,, m errorg m iter. res. oper,
10 1.19, -5 9.39, -9 7 7.86, -14 1.7
20 7.39, -7 4.01 1.74, -11  9.08 7 2.00, -14 36
« 40 4,61, -8 4. 00 2.42, -13 6.17 T 5.19, -15 7.k
80  2.88, g L.o0  2.06, -13 - 7 1.35, -15 15.0
160  1.81, -10  3.99  2.74, -13  —e-- 7 .98, -16  30.2
¢

Table 5 (Probl em 1)

time in seconds

n (all problems)
8 0.21
16 0. 34
32 0.58
64 1.09
128 2.26
256 5.68

Table 6
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11 .6.5 Discussion of results and comparisons

The first thing we must observe is that the residual in the solution
of the basic problemby Newton's method must be reduced to a level com
patible with the accuracy expected in the corrected solution. That is
the rationale behind our stopping criterion (2.47). For this type of
problem Newton.9 method is known to be quadratically convergent and this
theoretical fact is supported by the numerical behavior of our iteration.
Therefore, we see that as soon as the residual is reduced below 142
(and this has occurred in all our experiments after four iterations at
the nost) , then in the following two steps we shoul d have residual s approx-
imately < .01 h* , 10'LLh8 and stop. Experiments using a |ess stringent
stopping criterion show that on the average one m ght save one New on
iteration, at the risk of losing several figures accuracy.

Unfortunately, the "double precision” in isv System 360 does not
provide a sufficiently long word to test the asynptotic behavior of this
very precise technique, and therefore the conputed exponents for the

corrected, supposedly o(h8

) solution, are sonewhat erratic. However,
in the regions where there is not too nuch round off contam nation, the
computed exponents |ie around 8 s they shoul d.

We can conpare the results ot Table 5 With those in Pereyra [1968]
There, an iterated deferred correction procedure was inplenented, based on
t he o(hu) formula (2.36). Details of this inplenentation will be given
later on. It is interesting to conpare the results of the first correction,

as performed in [38] with the results of Table 5, the difference in the

two procedures being that it we plan to correct nore than once then a full
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nonl i near problemhas to be solved at each correction, as opposed to the

procedure described here. The other inportant difference i s that in [48]

advantage was taken of the periodicity of the solution, thus using symmre-

tric fornulas throughout. Naturally the basic solutions coincide, SO we

only conpare the errors for the CXh8) corrected sol utions.

error8/n 10 20 40 80
(8) (8) (8)
[58 1 4.2, -9 1.6, -11 6.2, -14 2., -16
Thi s - (9) (6) (-)
method 9.4, -0 1.7, -11 2.h, -15 ! Q ArE

The nunbers in parentheses are the computed exponents. W? see that the

method in [358] gives results that have a nore clear asynptotic behavior.

This can partly be explained by the fact that the results of that paper

were obtained using double precision on a CDC 3600 conputer, i.e. wth

nunbers with 84 binary digits nmantissas. W would |ike to point out

however that the actual errors are conparable for n = 10, 20, 40 where

the point of dimnishing returns (on this conputer) is reached for the

present,

Pr obl em

nmore econonical al gorithm

2is used as a test problemin various papers that dea

with high order spline approximations via a Raleigh-Rtz approach [5, k1, 46],

in Keller [1972] where a successive Richardson extrapolation procedure is

enmpl oyed

and al so in Wasserstrom[1975] using a continuation techni que.

Since the only meaningful conparison is that of progranms witten in the

sanme | anguage,

or

envi ronnent),

running on the sane machine (ideally under the sane conditions

we feel that it is useless to compare our results with those
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presented in [5, 41,46] since very little information is provided in those
papers about the actual inplementation of the nethods

The only comment we shall make is that the highest accuracy reported
in[ 5, 41,46] for this problemis max.abs.error <5 x 1078 (cf. Table 21).
Kel ler reports max.abs.error < 4.01x 10'12, obtained with an o(he) di s-

crete method for systens of first order equations, plus three extrapola-

- . 1 1 1 1

tions . = = .
The nmesh sizes used by Keller were 5.7 513 and 5T - Unf or

tunately, as we pointed out in Section 1I.5, the accurate solution is ob-

tained only on the coarsest nesh, i.e. at the two points x = % , % . A

glance to Table 2 shows that results slightly nore accurate than those of
Kell er can be obtained by the method of this Section with a 15 point nesh,
and that these results are valid over the whole grid. |n the next Section,
we shall make some general conments conparing the amount of arithmetic and
function evaluations that are necessary for successive Richardson extra-
pol ations and for our procedure. \Wasserstromreports results accurate to

six figures with 16 seconds of computing time on a GE-635 machine (cf. Table 6!).

Simlar coments applyto the results of' Tables 3 and 4.  For in-

5 lance, the best results (in terms ol accuracy) of Ciarlet, Schultz and.
Varga [ 1968] for Problem 5 are improved by our results of Table 5 with
n =32 :
max.error [ 5 ] = 5.49 X10_6 )

mex.error [this nethod: n=32] =7.06 x 10 !
As we said above, these conparisons are not oo meaningful. For instance
it can be argued that the spline approach produces sol utions defined over
the whole interval, as opposed to the discrete solutions furnished by

finite difference techniques. On the other hand, there is nothing to

prevent us from obtaining a posteriori an sccurate spline interpolation
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ol our discrele date . Once a definite goal IS stated, for instance: "find
tin algorithm capable Of approximating the solution of the ditrercntial
equation at any point of the interval [a,b] With absolute precision ",
then two different algorithns can be analyzed in terns of their costs to
achieve the desired goal. In order to obtain this, fair inplenentations
must be tested on the same installation and the true costs conpared. It
isinthis light that we have tried to produce careful, usable inplenen-
tations of the techniques described in these notes, and that we include
here the actual conputer prograns with, and conditions under, which the
nunerical results were obtained, with the hope that our experinents will
be reproducible and thereiore future, better methods, can make accurate
claims. Also we expect that by making avail abl e these wel | -docunent ed,
easy to use, subroutines, the public: will be served in an area which is
begging for such nmaterial.

In the next Section we present a conputer printout of the program

used to obtain the nunerical results of this Chapter.

I71.6.6 A FORTRAN |V program for the O(h8) met hod of 11.6.%

In this Section we present the FORTRAN |V subroutine pcavp8 with
which We obtained the results of Section 11.6.4. this subroutine calls
the unsymmetric tridiagonal |inear systens solver subroutine TRISOL and
the subroutine uvzpce that generates the necessary correction terns.
These two subroutines, the driver program ani the subroutines defining
the equations, are also provided. U2DCG will be described in detail in

Chapter 3.



SUBROUT I N E DCBVPS (N, F, DFY, X, Y)

IMPLICIT REAL*8(A-H, 0-2)

LOGICAL DEFCOR

DIMENSION X(257),Y(257),A(257),B(257),C(257),R(257),AA(50)

* L FU(257),DFU(257)
*******************************************************************
8TH ORDER FIN ITE DI FFERENCE TWO PNDINTBOUNDARY VALUE PROBLEM
SOLVER FOR

=YYY4FE(X,Y) = 0 , Y(X(1))=Y(1) , Y(X(N+1))=Y(N+1)
T H EH**4 ORDER METHOD
Hew=2 *(=Y(1=1)+2*Y (1))=Y (I1+1))+(F(1-1)+10*xF(1)+F(1+1))/1
IS COUPLED WITH ONE LINEAR DEFERRED CORRECTION IN NRDER T
AN H*%*8 ORDER METHOD.
FXEXLIMITED TO N =(X(N+1)=X(1))/l (LLE, 2ER  ***#x*
TO PROCESS FINER MESHES CHANGE THE NDIMEMSION STATFMENTS
IN ALL SUBROUTINES ACCORDINGLY.
*x*u4%|JSER PROVIDED DATA****+
X(1) = LEFT END ABSCISA
X(H+1) = RIGHT END ABSCISSA
Y(1)ANDY(N+1) : CORRESPONDING BOUNDARY VALUES.
N+ 1 IS THE NUMBER OF MESH POINTS (COUNTINGTHEEND POINTS.
THEY ARE ASSUMED TOBEEVENLY SPACEDRBY H =(X(N+1)=X(1))/N
F , DFY ARE EXTERNAL USER PROVIDED SUBROUTINES THAT SHOULD PRODUCE
THE MESH FUNCTIONS F(X(1),Y (1)) , DF/DY(X(1),Y(1)), t=2,...,N, RESP.
THEIR CALLING SEQUENCES MUST BE:
F(N, X, Y, FU)
DFY (N, X, Y, DFU)

WHERF FU(257),DFU(257) ARE THE ONE-DIMENSIOMAL ARRAYS TO BF

FILLED WITH THE REQUIRED MESH FUNCTIONS.

ON OUTPUT THE ARRAY Y WILL CONTAIN THE COMPUTED DISCRETE SOLUTION,

2 =0
0 PRODUCE

OO OO OO OO OO0

NP1=N+1
H=(X(NP1)-X(1)) /N
HSN=H**2
Crexxiex  NEXT STATEMENT IS INSTALLATION DEPENDENT wwxdxxnnw
c . IF THIS PROGRAM IS NOT USED ON ANIBM/360COMPUTER IN REAL*8 PREC.
C THE CONSTANT 5.0D-16 S H O U L DREREPLACED BY (APPROX IMATELY)
C 10«MACHINE PRECISION I N ORDER TO AVOI D UNDUE CYCL ING IN THE
C NEWTON 1 TERAT ION,

EPS=DMAX1(5.0n-16, .,0001*HSN**4 )
DEFCOR=, FALSE.
C1=(Y (NP1)-Y(1))/N

DO 51=1,50
5 AA(1)=0.D0
DO 10 I=2,N

XCH=X(1)+(1-1)*H
10 Y(1)=C1#(I1-1)+Y(1)
HSNO12=HSQ/12
Al=5,+*HSQ/6
ITNEW=0
15 CALL F(N, X, Y, FU)
RESN=0.
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DO 20 I=2,N
RO =Y (1=1)=2%Y(1)+Y(1+1)=-HS 012+ ~1)+ *
TE=DABS (R(1)) n (FUCI-1)+10. FUCI)+FUC1+1))
20 IF(TE .GT. RESN) RESN=TE
IF(RESN .LE. EPS) GO TO 500
25 CALL DFY(N,X,Y,DFU)
DO 30 I=2,N
ACI-1)=A1*DFU(1)+2.
B(1)=HSQO12*DFU(1)-1,
30 C(1-1)=HSQO12+DFU(1+1)-1.
NM 1=N-1
CALL TRISOL(A,B,C, R, NM1)
ITHEW= ITNEW+1
DO 40 I1=2,N
40 Y(E)=Y(1)+R(1)
IF(DEFCOR) RETURN
IFCITNEW _LE. 10) GO TO 15
500 AA(5)=-.1
AA(7)=-11.D0/84.D0
P DEFCOR=,TRUF.
CALL U2DCG(1,4,4,N, AA,FU,R, IERROR,.TRUE.)
DO 100 I=2, N
100 R(I)==HSQ*R(1)
GO TO 25
END

e
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SUBROUTINE TRISOL(A,B,C,F,N)
IMPLICIT REAL*8(A-H,0-2)
****************************************************t**************
UNSYMMETRIC TRIDIAGONAL SYSTEM SOLVER
A - MAIN DIAGONAL; B : LOWER SUBD,; C : UPPER SUBD,
F : RIGHT HAND SIDE. DESTROY EDANDREPLACEDBYSOLUT 1 ON.
THE ITH EQUATION IS:
BOI)*X(I=1)+ACI)*X(1)+CCI)*X(1+1)=F(1+1) ,
iI=1,...,N ; N CORRESPONDS TO (N-1) IN THE MAIN PROGRAM,
*******************************************************************
DIMENSION A(257),B(257),C(257),F(257)
FACTORI ZATION
no 10 1=2,N
IMl=1-1
C(IM1)=C(IM1)/A(IM1)
ACTL)=AC T )=BC 1 )*C(IM1)
F(2)=F(2)/A(1)
DO 20 1=2,N
FOI+1)=(FCI+1)=-BCI)*F (1)) /AC1)
BACK SOLUTION
NM1l=N-1
NP1=N+1
DO 30 I=1,NM1
IN=NP1-1
FOINI=F(IN)=C(IN=1)*F(IN+1)
RETURN
END
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- SURROUTINF U2DCG(K,P,0,N,A,Y,S, | FPROR, FVFN)
IMPLICIT REAL*8(A=-H,0-2)
I NTEGERP, N
.0G | CAL EVFN
NDIMENSION AC 50),Y(257),5(257),C(50)

C *****************************t*************************************
c THIS 1'S AN UN | VERSAL TWO POINT BOUNNARY VALUE DEFFRRED CORRECTI ON
c GENERATOR.
C c 61 VEN THE ASYMPTOT! C EXPANS | OM
c
C T(K) = SUMCACJ)*(D*x(J=1))Y/(J=1)1! * Hex(J=1))
£ J = 0+1,...,04P#K
, c
: C AMD FUNCTION VALUES Y(1),...,Y(N+1), COPRESPOND I NG TO AN
¢ C UNIFORMLY H-SPACED MESH : X(1) = X(1) + (1-1)«H , I =1,,.,,N+1,
c U2pCG WILL PRODUCE S(2),...,S(N) : AN H#*x(n+PxK) ORDER
r APPROXIMATION TO T{(K) AT THF [INTERIOR GRID POINTS,
e FOR FIXED INTEGERS N,P,N, A RFSTRICTION ON K IS
C de g de ok ke bk K JLE, (M+1=n)/P doR Tk Wk kK
o ALSO P .GF. 1 , N .GE. 1 , ¥ GFE, 1
. c IERROR = 1 MEANS THAT ONE OF THFESE COMDITIONS HAVE BEEM VIOLATED
c AND NN CORRECTION HAS SEEN COMPUTED.
c A(1), . ..,A(") APE SET TO ZFRO RY U2DFG,
. r IF THE EXPANSION T(K) HASQMLY EVEN DERIVATIVES THFN EVEN SHOULD
c RF SET TO .TRUF, OTHERWISF IT SHNULD SF SET TO ,FALSF.
C;
, r FFBRUARY 1973 RahRE kAR RN R R R VICTOR PERFYRA
- (‘ *******************************************t***********************
, I F (K .GT. (N+1=-0)/P .OR.P.LT. 1.0R.N,LT. 1 .0R.X LT. 1)
f * ROTO 100
S PO 20 I=1,0
20 A(1)=0,
L KK1=N+PxK
KK=KK1=-1
KM ID=KK1/2
I ERROR=N
KMID1=KMID-1
= KINT=KK1
c UNSYMMETR | C APPROX I MATI ON. LEFT BOUNDARY.
1 IF(KMIND1.LT.2)G0 TO1 O

PO 5 1=2,KMID1
CALL COEGEN(KK1, 1,C,A)
ACUM= 0.
NO 4 J=1, KKl
4 ACUM=ACUM+C(J)*Y(J)
5 S(1)=ACUM
¢ CENTER, RANGE
10 IF(.NOT. EVEN) G0 TO 25
30 KINT=KK
25 CALL COEGEN(KINT,KMID,C,A)
NF=N+1=K | NT+KM 1 D
DD 40 1=KMID,NF
ACUM=0,
[ 1=1=KMID
DO 38 J=1,KINT
38 ACUM=ACUM+E (J) *Y (11 + J)
50 SC 1) =ACUM
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RI GHT BOUNDARY
IF(KMID1 _LT. 2) RETURN

KMIDP1=KMID+1+KK1~KINT

DO 50 I1=KMIDP1, KK

CALL COEGEN(KK1, I, C,A)

ACUM= 0 .

I 1=N-KK

I 1=N+1-KK1

DO 4 8 J=1, KK1

ACUM=ACUM+C () #Y ( 1 1+J)

SCI+11)=ACUM

RETURN

IERROR=1

RETURN

END

SUBROUT INECOEGEN (N, NP, C, BR)

IMPLICIT REAL#*8(A-H, 0-2)

DIMENSION C(50), BB(50), ALF(50)
******************************************************
THIS IS A SLIGHTLY MODIFIED FORTRAN 4 VERSION OF THFA
PROCEDURE PVAND, P. 901 OF

"SOLUT 10N OF VANDERMONDE SYSTEMS OF EQUAT IONS” BY
A. BJORCK AND V. PEREYRA. MATH. COMP., VOL. 24,PP.893-903 (1970),
WHERE A COMPLETE DESCRIPTION OF THE METHOD USED CAN BE FOUND,
TH1S IMPLEMENTATION ASSUMES THAT THEALF(I) ARE INTEGERS.
****************************************************************
DO 1 1=1,N

C(1)=BB(1)

DO 11 I=1,N

ALF(1)=1=-NP

NN=N- 1

DO 6 I=1,NN

LL=N-1

No 6 J=1,LL

K=N-J+1

C(K)=C(K)=-ALF(1)*C(K=1)

DO 8 I1=1,NN

K=H-1

XKIN=1,D0/K

KM1=K+ 1

DO 8 J=KMI,N

C()=C(J)*XKIN

JM1=J-1

C(JM1)=C(JM1)-C(J)

RETU RN

END

okdkdok ok kk ok ok
.GO

GOL
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- C MA IN PROGRAM FOR TESTING 8TH ORDER METHOD FOR 2 PVBPR.

IMPLICIT REAL*8 (A=H.0-7)
: EXTERNAL F1, F2, F3, Fu, DFY1, DFY3, DFY4
= DIMENSION X(257),Y(257),IPROB(IO),YEX(257)
P1=3,141592653589793D0
READ, (IPROB(1), 1=1,4),4JJ,N
DO 100 J=1, JJ
, N=2#N
b DO 100 I=1, 4
IFCIPROB(!) .GT. 0) GO TO (1,2,3,4), I
GO TO 100
1 X(1)=0,
X(N+1)=p|
Lt Y(1)=0.
ot Y(N+1)=0,
PRINT," PROBLEM. X , Na',6N
. CALL DCBVP8(N, F1,DFY1,X,Y)
CALL EXACT1(YEX, X, N)
GO TO 10
2 X(1)=0.
X(N+1)=1.,0
Y(1)=0,
L, Y (N+1)=0.
PRINT, ' PROBLEM 2 .N=',N
CALL DCBVP8 (N, F2, Fi, X, Y)
L CALL EXACT2(YEX,X,N)
GO TO 10
3 X(1)=0,.
X(N+1)=1,
Y(1)=1,
Y(N+1)=1,
PRINT, ' PROBLEM R, Ns' N
CALL DCBVP8(N,F3,DFY3,X,Y)
- CALL EXACT3(YEX, X, N)
GO TO 10
b . X(1)=0.
X(N+1)=1,
Y(1)=0.
Y (N+1)=0,
PRINT," PROBLEM 4 ,. Na' N
GALL DCBVP8(N, F4,DFY4, X, Y)
CALL EXACTY (YEX, X, N)
10 ERRNOR=0,
DO 35 L=2,N
ERR=DABS(YEX(L)=Y (L))
C IF(YEX(L) .EQ, 0,) GO TO 35
c ERR=ERR/DABS(YEX(L))
IFCERR .GT., ERRNOR) ERRNOR=ERR

c PRINT, X(L), Y(L), YEX(L), EPR

35 CONT 1 NUE
PRINT, ERRNOR
100 CONTINUE
STOP
END
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SUBROUTINE F1(N,X,Y, FU)
IMPLICIT REAL*8(A~H, 0-2)
DIMENSION X(257),Y(257), FU(257)
N1=N+1

DO 10 I=1,N1

SI=DSIN(X (1))
FUCI)=Y(1)**3-S1%(1,+SI%##2)
RETU RN

END

SURROUT t NE DFY1 (N, X, Y, DFU)
[MPL 1 C IT REAL*8 (A-H, 0-2)
DIMENSION X(257), Y(257), DFU(257)
N1=N+ 1

DO 10 1=1,N1

DFUC T )=3, #Y( 1 )##2

RETURN

END

SUBROUTINE EXACTI1(YEX, X, N)
IMPL I C IT REAL*8 (A-H, O- Z)
DIMENSION YEX(257),X(257)
no 10 =2, N
YEXCI)=DSIN(X(1))

RETURN

END

SUBROUT INE EXACT2 (YEX, X, N)
IMPL IC IT REAL+8 (A-H, 0-2)
DIMENSION YEX(257),X(257)
C=1.336055694906 10800
C02=,5%+C

DLN2=-DLOG (2, DO)

DO 10 I=2,N

YEX(1)=DLN2+2, *DLOG(C/DCOS(CO2* (X (] )=+5)))
RETURN

END

SURROUT I NE F2 (N, X, Y, FU)
IMPL IC IT REAL*8 (A-H, 0-2)
DIMENSION X(257),Y(257), FU(257)
N1=N+1

DO 10 I=1,N1

FUC 1 )=DEXP(Y (1))

RETURN

END
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SUBROUT I NE F3(N, X, Y, FU)
IMPL IC IT REAL*8(A-H, O-1)
DIMENSION X(257), Y (257),FU(257)
N1=N+1
TWOP1=6.283185307179586D0
TPSQ=TWOP 1 *TWOP |
DO 101=1, N1
TPX=TWOPI*X (1)
C SI1=DSIN(TPX)

EXPSIsDEXP(S1)
10 FUCH)=Y(1)* (1, +Y(1)*Y (1))+EXPS1* (TPSQ+* Xk - -

o UexperatrpariyYs (TPSQ*(DCOS(TPX)*+2-51)

, RETURN
- END
¢ SUBROUTI NE DFY3 (N, X, Y, DFU)

IMPL I C IT REAL+8 (A-H, 0-2)

DIMENSION X(257), Y(257), DFU(257)

Nl=N+ |

DO 101=1,N1
10 DFUCE)=1,+3.*xY(1)*Y (1)
b- RETURN

END
SUBROUTINE EXACT3(YEX, X, N)

- IMPL ICIT REAL*8 (A-H, 0-2)
DIMENSION YEX(257), X(257)
TWOP1=6.283185307179586D0

' DO 10 I=2,N
10 YEX(I)=DEXP(DSIN(TWOPI*X(1)))
RETURN
L END
SUBROUTI NE F4 (N, X, Y, FU)
IMPL IC IT REAL*8 (A-H, 0-2)
L DIMENSION X(257),Y(257), FU(257)
N1=N+1

DOI1l0iI=1,N1

10, FUCH)=,5%(Y(1)+X(1)+1,)nx3
RETURN
EN D
SUBROUT I NE DFY4 (N, X, Y, DFU)
IMPL IC IT REAL*8 (A-H, 0= Z)

- DIMENSION X(257),Y(257),DFU(257)

N1l=N+1
D O101=1,N1

10 DFUCE)=1.5%(Y(1)+X(1)+1,)xx2
RETURN
END
SUBROUT | NE EXACT4 (Y EX, X, N)
IMPL IC IT REAL*8 (A-H, 0-2)
DIMENSION YEX(257),X(257)
DO 10 1=2,N

10 YEXC1)=2,/(2.=-X(1))=X(1)-1.
RETURN
END
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11.6.7  Operation count

In this Section we shall nake an operation count for the O(h8)
al gorithm just described. First of all, each Newton iteration requires
(n-1) evaluations of the function f and its partial derivative f

Al the other operations required are arithnetic or |ogical and our count

refers to the former. " will stand for nultiplications or divisions,
and "A" will stand for additions or subtractions. |nteger operations
are not counted. W call nl =n-1 , and we shall essentially keep only

the higher order terns in the total count.

The main steps in a Newton iteration are:

(a) Conputation of residual: Sn A + 3n,M
(b) Setting tridiagonal system 3n.A + 5n.M
(c) Solution of tridiagonal system 3n,A + SnlM
(d) Updating of Y n A
(2.48) 12n,A +1ln M/Newton iteration

W won't count the operations involved in the conputation of the
initial value Y° by Iinear interpolation since that can be considered
as a step comon to all techniques of this type.

Finally we have to account for the work involved in conputing the

correction. W have:

(a) 5 calls to the Vandermonde sol ver: 96A + 6hM (independent of n!)
(b) Calculation of S Tn A + 7o
(c) Parts b), c¢), d of New on: 7nlA + 8nlM

)
lmlA +]5nlM .

Therefore, if' i Newton iterations are performed, then the total work will

be
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(2 .h9) W = (123 + lh)nlA + (113 + lS)nlM .

Let us consider, for instance, Problem 2. For h = 1/32 , four
Newton iterations were required in order to decrease the residual bel ow
1.55, -17, and the corrected CXhB) result had « max. abs. error of
k.08, -15 at the grid points. Formula (2.49) tells us that the total
nunber of operations is then:

(2.50) TW(prob.2;def.corr.;n=52) = 1922 A + 1829 M.

Since the basic method is clearly Qhu) we can estinmate what kind
of a mesh would give us equival ent accuracy (n=256 is alnost there, but
not quite). In fact we would need 790 points in order to achieve that
accuracy (provided that roundoff' does not ruin it first). Fromthe num-
ber of Newton iterations required for the various nesh sizes shown in
Table 2 we can expect that again 4 iterations will be needed for n=790
and the operation count will be in this case:

(2.51) I’W(prob.2;O(hh)method;n=78o) = 37440 A + 34320 M.

W see conparing (2.50) and (2.51) that the qhh) met hod wil |
need approximately 20 tines nore arithnetic operations than the corrected
one. Also we nust count the number of function evaluations. |n this
pr obl em fy =f =¢’ , but in order to nake a general statenent we shall

1 %)
method, with n=32 , requires FE8 = 330, while the CXhu) nmet hod with
n=780 W ll require FE, = 6248 , i.e. again about 20 tines nmore work.

W shoul d also nmention that 25 times nore storage W Il be needed for the
O(hh) method to achieve the desired accuracy. However, all this conpari-

son is unfair. After all we expect a bona fide high order nethod to

~



52 -

performbetter than a [ ower order one; therefore, except to enphasize this

fact in a specific case, we should look for stronger conpetitors.

'S Successive Extrapolations ( SE)

Wth mnor nodifications our programfor deferred corrections can

be enpl oyed for perfornming an algorithmsimlar to the one described in

L 11.4. mfact, what we have done is to introduce the necessary changes
in the Main Programof p. 47 and "short-circuit" the correction step in

DCBVP8 by replacing the 5th statenent of p. 43 by

b IF(RESN.LC.ERS) RETURN
L Thus, Subroutines uv2pcg and COEGEN are unnecessary.  Since our
basi ¢ nethod has order 4 then, given h, . Ve cal l Yi , i=1,..., to the
L (n,-1) vectors obtained from the solutions Y ;‘31 . These are to be,
; of course, approximations to y*(a + kho) . W then formthe successive
- colums of the extrapolation triangle by:
X yI*L _ )‘L(JH)Y}] ” Y?-I
i y(3+1)
| Qbserve that
Yf“ - why* = o(hij‘d*)

and only two orders of h are gained per extrapol ation.

W report now the nax. absolute error in Yi for the various prob-

lenms and different initial neshes.
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Probl em 1 Probl em 2
No errorg m errorg m
4 1.69, -9 ——-- 4.01, -12
8 1.60, -11 6.72 1.64, -14 7.93
16 1.68, _13 6.57 2.87, -16 5.84
32 3.31, -14 2.3k4 8.01, -16 —_———
Table 7
Probl em 3 Probl em 4
No error§ m error8 m
in 6.06, -5 ~——- 2.97, -9 ————
8 8.1k, -7 6.22 1.45, -11 7.68
16 2.06, -9 8.63 6.07, -14 7.90
32 7.51, -12 8.10 6.24, -16 6. 60
64 1.38, -13 5.77 ——— —
Table 8

N Comput er Ti mes

o in sec. (all problens)

4 0.38

8 0.75

16 1.45

32 2.96

Table 9
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It is somewhat hard to choose a reasonable criterion of conparison
between these two nethods. (ne that seens adequate is to choose two
results of simlar accuracies and conpute the work necessary to obtain
them From Tables 3 and 8 we find that for Problem 3, DC with n-256
has an accuracy of 1.33, -13 , while SE with no=6h attains an accuracy
of 1.38, -13 . FromTable 3 also we learn that 6 Newton iterations are
necessary to reduce the residuals to the necessary level for n=64, 128,
256 . Thus the total nunber of operations for DC is, according to (2.49):
(2.52)  TW(prob.3;def.corr.;n=256) = 21930 A + 20655 M,

For the SE procedure we recall that the basic problens for neshes
n=6L4, 128, 256 nust be solved and their results conbined linearly. This
| ast part requires 3n A + 6nJW, and conbining this figure with the work
required by the various Newton iterations we get
(2.53)  TW(prob.3?;Rich.ext. ;no=6l+) = 324484 + 29952M .

The nunber of function evaluations is in each case
(2.54) FE(DC) = 3598 ; FE(SE) = 5ki2 .

Finally, we nmust remark that DC gives its CXh8) solution at 256
points while SE only gives it at 64 points. The conputer tine required
by SE for this problemwas 1.79 sec., while DC took only 1.18 sec
Thus we see that in this problem for the same accuracy and 4 tines nore
detail, deferred corrections is 1.5 tines faster than successive extra-
pol ations, both nethods being of the same asynptotic order, Al so observe
that Problem3 is the most "difficult" of our set of test exanples.

In the followng Chapter, an Iterated Deferred Correction procedure
will be developed, and we will be able to carry out additional conparisons

with higher order successive extrapolations
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< Finally we would like to point that in higher dinmensional problens

the effect of' mesh refining on the amount of work and storage is much nore

dramatical, as it has been indicated in Pereyra [1967].

w W include some sanple results and the nodified prograns for SE
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MA1 N PROGRAM FOR TESTING SUfCFSS | VE RICH, EXTRAPNL, FOR 2PRVP,
FOR A GIVEN BASIC MESH N, PROBLEMS FOR WHICH IPROB(1)=1 ARE RUN,
(JJ=1) R1 CHARDSON EXTRAPOLAT! ONS ARE PERFORMED.
IMPLICIT REAL*8(A-H,0-2)
FXTERNAL F1,F2,F3,F4,DFY1,NFY3,NFYY
DIMENSION X(257),Y(257), 1PROB(10),YEX(257),R(257,6),RER(E,E)
P1=3,141592653589793Dn0
READ, (1PROB(1),1=1,4),JJ,N
N1=N
NO=N=»2
DO 100 I=1,4
N=N1
IFCIPROB(1) .EN, 0) GO TO 100
NO 1000 J=1,4J
N=2#N
G0 TO(1,2,3,4), 1
X(1)=0,
X(N+1)=P|
Y(1)=0.
Y(M+1)=0,
CALL DCBVP8(N,F1,NFY1,X,Y)
CALL EXACTI(YEX,X,N)
G0 TO 10
X(N+1)=1.,0
Y(1)=n,
Y(N+1)=0,
CALL DCBVP8(N,F2,F2,X,Y)
CALL EXACT2(YEX,X,N)
GO TO 10
X(1)=0,
X(N+1)=1,
Y(1)=1,
Y(N+1)=1,
CALL DCRVPS(N,FS,DFYS,X,Y)
CALL EXACT3(YEX,X,N)
GO TO 10
X(1)=0,
CX(N+1)=1,
Y(1)=00
Y(N+1)=0,
CALL DCRVPR(N,Fu4,DFYL, X,Y)
CALL EXACTH(YEX,X,N)
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FRRNOR=0,
PO 35L=2,N
FRR=DABS(YEX(L)=-Y(L))
IF(ERR ,GT. FRRNNR) FRPNNR=ENR

CONT INUF
RER(J, 1) =ERRNOPR

LST=2%%(y-1)
LL=LST+1
no 90 L=2,N0
PCL,d)=Y(LL)

LL=LL+LST

CONT 1 NCJE
HO=(X(N+1)=-X(1))/NO
P 0180L=2,N0
XCL)=X(1)+(L-1)*HD

PRINT,! PROBLEM!, |
G0 TO (11,12,13,14),1
CALL EXACTI(YEX,X,ND)
GO TO 15
CALL EXACT2(YEX,X,ND)

GO TO 15

CALL EXACT3(YEX, X, ND)
CO TO 15
CALL EXACTuU(YFX,X,NO)

PO 200 J=2,Jd
CO=Lxx]
nIv=1,n0/(co-1,n0)

PO 20011=4,JJ

IR=JJ=114+y

ERRNOR=N,

PO 190 L=2,NN
R(L,lR)=D|V*(Cﬂ*R(L,|9)~R(L,lp"1))
FRR=DABS(R(L, IR)=-YEX(L))
IF(ERR ,GT. FRRNOR) FRRNOR=FRP
CONTINUE

RER(IR,J)=FRRNOR

PRINT,' RICHARDSON EXTRAPOLATIONMAX,. FRROR ON GRID NO=',NO
PO 30011=1,4J .

PRINT, (RER(11,4),d=1,11)

PRINT, "#dxantnnrwnrenntranrarreentass’
CONT INUF

STOP

FND
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SUBROUTINE DCRVP8(N,F,DFY,X,Y)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION X(257),Y(257),A(257),R(257),6(257),R(257),AA(50)
* LFU(257),DFU(257)

***************tt****!**'***t*tt***********************************
TWO POINT BOUNDARY VALUF PRORLEM SOLVER FOR

“Y'YAR(X,Y) = 0, YIX(1))=Y(1) , Y{X(N+1))=Y(N+1)
TYE H*=4 ORDFR METHOD
Hiw=2 (=Y (1=1)422Y(1)=Y(141))4(F(1=1)+10+F(1)+F(1+1))/12 = O
1S USED

*exx IMITEDT O N= (X(N+1)-X(1))/H L,LE, 256 *odk

TNPROCESS FINER MESHES CHANGE THEDIMENSION STATEMENTS
IN ALL SUBROUT! NES ACCORD ! NGLY,

**xxew{JSEFR PROVIDED DATA*++++

X(1) =LEFT END ABSCISA
X(N+1) =RIGHT E N D ABSCISSA
Y(1)A N D Y{(N+1): CORRESPNOND 1| NABOUNDARYVALUES,
N+1 IS THE NUMRER OF MESH POINTS (COUNTING THF END POINTS),
M MUST BEGREATFR OR EQUAL THAN TWO,
THEY ARE ASSUMED TOREEVENLY SPACED BYH=(X(N+1)=-X(1))/N
F . DFY APE EXTERNAL USFR PROVIDED SUBPOUTINES THAT SHOULD PRODUCE
THE MESH FUNCTIONS F(XC1),Y(1)) , DF/DY(X(1),Y(1)), I=2,...,N, RESP,
THEIR CALLING SEQUENCES MUST RF:

F(N,X,Y,FU)

DFY(N,X,Y,DFU)

WHERE FU(257),DFU(257) ARE THF ONE-DIMENSIONAL ARRAYS TO BE
FILLEDWITH THERENUI R E D MESHFUNCTIONS,
ON OUTPUT THE APRAY Y WILL CONTAIN THE COMPUTED DI SCRETE SOLUTION,
NPl=N+1
H=(X(NP1)=X(1))/N
HSNaHex 2

Crxwwx NEXT STATEMENT IS NSTALLATI ON DEPENDENT #*%rxunxwn

DOOD

1n

IF THIS PROGRAM IS NOT USED ON AN | BM/360 COMPUTER IN REAL=*8 PREC,
THE CONSTANT 5.0n=-16 SHOULD RF REPLACED BY (APPROX IMATELY)
10+MACHINE PRECISIOM INORDERTOAVO 1 D UNDUE CYCLING IN THF
NEWTON ITERATION,

FPS=DMAX1(5.0D~16, ,0001*HSNw*Y)

Cl=(Y(NP1)=-Y(1))/N

PO 10 iI=2,N

XCHD=X(1)+( 1-1)+H

Y(1)=Cl+(1=1)+Y(1)

HSNN12=HSN/12

Al=5,%HSN/6

I TNEW=0
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CALL F(N,X,Y,FU)
RESN=0,
PO 201=2,N

R(!)=Y(l-1)-2*Y(|)*Y(l+1)-HSn012*(FU(l-l)*lO.*FU(l)*FU(I+1))

TE=DARS(R(1))

IF(TE .GT, RESN) RESN=TE
IF(RESN ,LE., EPS) RETURN

CALL DFY(N,X,Y, NFU)
no3 otr=2,N
ACI=-1)=A1+DFU(I)4+2,
B(1)=HSNO012+DFUY(1)=-1,

C(1-1)=HSN012+DFU(1+1)-1,

IF(N-2)35,35,36
R(2)=R(2)/A(1)
GOTN3 7
MM1=N=-1

CALL TRISOL(A,B,C,R,NM1)

I TNEW=1TNEW+1

N0O40 1-2,N

Y1) =Y(1)+R(1)
IFCITNEW.LE.10)GOT O
END

1

5

-60-
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1. Comput er inplenentation of iterated deferred corrections for
boundary val ue probl ens

The iterated deferred correction (IDC) al gorithm described in
Chapter Il, p. 27, requires the conputation of the various correction
oper at ors Sy that approximate the sections of the local truncation
error. Gven a known basic discretization F of order p  and the

kth segnent of the asynptotic expansion for the |ocal truncation error:

T W)
(5.1)  T(x) = Z & yJ_(XZ nd

J=q

’

where the coefficients aj are independent of h , we would like to have
a flexible, fast, and accurate al gorithm capable of producing the weights
W that define Sy (see (2.30)). 1n the next Section, we devel op such
an algorithm which can also be used for other applications. The fact
that the sum (3.1) starts fromq # p has been added for even further
flexibility. There are situations in which the order p and the first
derivative appearing in the expansion do not coincide, in which case this

added flexibili ty will come in handy. Subrouti ne uv2pca of p. 45 is a

FORTRAN |V inpl enentation of our algorithm.

[11.1 An automatic weight generator f'or numerical differentiation
and other applications

Gven a snooth function y(x) , an uniformmesh of: size h with
points {x;} , and an abscissa x , we are interested in approximating

t he nunber

m
ils

G2) L) =) e,

J=

y(j?(g) hj
Jn
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by neans of a linear conbination of values of the function y(x) at sone
of the mesh points:

m+1

(55) M) = D wylxg )

s=1

where r is a given integer. The algorithmthat we are about to describe

can be easily adapted to the case of nonuniform neshes, but here we prefer

to present it in its sinplest form
We assunme that the accuracy required is o(hm+l) . It is well known
(see Collatz [1960], Ballester and Pereyra [1967]) that if y(x) has (m+1)

continuous derivatives then the approximtion (3.3) exists if one takes

t=m+ 1 different abscissas.

Proof: Let o, = (x

oo~ X)/h , and let us expand My) in a Taylor

series around x :

t t-1 . t
(J)-)Z (t)
= j=0 s=1
el t AENE LI () gy ¢
b 3 (5 ) 20 (5 ) e
j=0 \ ==1 "5=1

Qur aimis to make the difference My) - L(y)(x) as large an

order of h as possible. Matching terms with the same powers of h

generates the follow ng conditions for the weights W

t
(5.5) Z wel =a

s=1
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In order to nake the linear system (3.5) square we can inpose as nany as
t of these conditions, i.e. j=0,...,t-1 . |f this system of linear equa-
tions can be solved then the resulting My) wll have the property

t
t
(5.6)  My) = LH)E) + (Z wsaz)y_(??lsl ot

s=1
But system (3.5) is a Vandernonde system of equations and since
t he o, are distinct it is non-singular. []
Therefore, our problem of evaluating the appropriate weights WS

has been reduced to solving systens of |inear equations of the form

5.7)  V(w=a
T T T
where o = (al,...,at) , 8 = (al,...,at) , W= (wl,...,wt)
and v(a) is the Vandernonde matri x:
- am
11 ) ) ) 1
¥ % oy
R O T
t-1 t-1
- o
It is well known that Vandernonde natrices are ill-conditioned

(cf. Gautschi [1962, 1965]), and if one attenpts to use a standard Gaus-
sian elimnation code on this type of problem failure occurs even for
very nodest sizes. Geat |oss of accuracy is also common, even for t=5 .
Fortunately, there are techniques for solving this and simlar kinds of

problens that not only are nore accurate and stable, but that al so

4f-----lllllllllllllIlI!!!!..l.......lll..l...l......‘zr--
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take much less arithnetic operations to produce the desired result. Nat-
urally, they take advantage of the special structure of the matrix v(z)
(see Ballester and Pereyra [1967], Bjorck and Pereyra [1970], Galinberti
and Pereyra [1970, 1971] and Pereyra and Scherer [1973] for nore details,
general i zations and other applications).

InBjorck and Pereyra [1970], a method for solving the transpose
(dual) problem

(3.9) v

) a = f

Is developed. A matrix interpretation of the method permts then the
consideration of the direct problem (3.7) with little difficulty. For
probl em (3.9), advantage is taken of the fact that if we think of the
el ements of the vector f as values of a certain function, then the
equations (3.7) are just the conditions of interpolation by a polynom al

of degree (t-1), and therefore, the solution a will have as conponents

the coefficients of the unique interpolation polynom al:
t

_ S
P(x) = Bgr1® .

-1
5=0
The Newton form of the interpolation polynomal P(x) is obtained

if one considers the new basis given by the polynomals

(5.10)  Q(x) =1, q(x) =

Wth this basis, we have

t-1

> e )

k=0

(3.11) P(x)
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where the coefficients c, are the divided differences constructed with

the function values f and the abscissas o :

c, = f[ai,..rﬂak+ll s k=0,...,t-1

1t is well known that these divided differences can he obtained

recursively by

] - aj_k_i_l’..‘:aj_'_l]. i_k’...’aj]-

(3.12) fleo, )
- 0. 2

SIVSRRRFL I

k=0,...,t-2 5 j=k+1,...,t-1

Once we have conputed the vector ¢ ot gjvyided differences then a

Horner-like Schene permits to evaluate (3.11). In fact, we can conpute

(G.15) oy () = ¢ a4 (x) = (x - o )a, (x) + ¢ 5 k=t-2,...,0

b

and then clearly,

9., (x) . P(x) .

Let
_ (%) (x) (k) t-1-k
qk(x) =epq tEgxt o tagx ,
(t-1) _ ,
aj+l "Cj > J:O,...,t—l '

If we replace these expressions in (3.13) ue obtain a si npl e recursion for

i ci k
the coefficients ag ) , k=t-2,t-3,...,0

a(k) :a(k+l),

p j I=1,...,k 3 ¢
k) k
3.1k a( = C. - (k+1)
( ) B k = %k+1%k+2 s
(k) (k+1) (k+1)
a. = - ] i
J %5 W18y 0 I E-

Recursions (3.12) and (3.14) furnish the solution to problem(3.9).

Let us consider the |ower bidiagonal matrices of order t Lk(aD , defined by
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%Ja%i=ll; HJ“%&LiZZO’ i=1,...,k ;
(3.15)
Lk(a)i+l,i = -, izk+l,...,t-1 .

Ve shal |l call
Lo = Iyleg) 5 M =15 (1),
and Dk to the diagonal matrices;
(3.16) Dkzmm(lynﬂg%é- %%””@%-atkﬁy
Wth this notation it is easy to see that recursions (3.12) and (3.14) can

be represented in matrix form as:

o) _ Ry o) D;leg(k) » k=0,...,t-2

(3.17)
g(t-l) _ g(t.l) , g(k) _ L;;g(ku)  k=t-2,...,0 .

Calling ', ¥ to the Iover and upper unit triangular natrices
(7.18) UT = D;iéMtug...D; 5 3 - OLfL?.LE_E
then we see that (3.17) can be expressed as
(5.19) ¢ = Uz, a=1%.

Since a = vt , we have then v - LT , or
(5.20) VT owup oy o Ll

and we have found a factorization in bidiagonal factors of the unique tri-
angul ar matrices furnishing the UL deconposition of the inverse Vander-

monde matrix V' . Wth this factorization we can easily wite a recursive

algorithmfor solving the problemof our nore imediate interest, i.e. the
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primal or direct Vandernonde system (5.8). in fact, we have

-1 _ P IS R (R |
(3.21)  w =7V "(a)a = Ulg = (MgDp~... 2 Dy )Ly o L )2,

from where we can easily derive a recurrence to conpute W . Sybroutine
COEGEN (see p. 46) is a FORTRAN IV inplenentation of this recurrence, while
in[ 3] Algol 60 inplementations of both Vandernonde sol vers and sone
variations can be found.

In the present inplementation the user has to provide the size of
the system N, the integer location of x , NP, with respect to the
nodes used in (-3.3). W assume here that X is actually a grid point.
Wth this informati on COEGEN generates the vector « , whose conponents
are integers: o = i - NP . Therefore the elenents different from1 in
the diagonal matrices D, (see (35.16)) are sinply: @ - SE+L,
which amounts to the small nodification we mentioned above. The right
hand side of the system nmust be supplied in the array BB, while the
solution to the systemw || be found upon output in the array C. |n our

application COEGEN -is called by the subroutine U2pcG that we pass to

des cribe .

[11.2 A Universal 2-point boundary value Deferred Correction Generator

As we said before the gist to an effective inplementation of iter-
ated deferred corrections lies in being able to obtain the correction operators
S, appr oxi mating the expansions (2.30) or II.6.3. The correction operators we
are going to develop are of the general form(3.3), and therefore the subrou-
tine COEGEN will be an important conponent in our algorithm Oher types

of corrections are possible as we have pointed out in [34]. See al so Denny
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and Landis [1972]. The word Universal in the title of this Section refers
to the fact that we hope that the generality of the subroutine u2pcg wll
be able to cope with a variety of different boundary val ue probl ens and
various discretizations. For instance, we have seen already for the
sinple problem(1.1) two different discretizations which in turn produce
different asynptotic expansions (cf. (2.29) and 1163, p.30). The

theory devel oped in Chapter [I, which carries over to many other situa-
tions, and our conmments above are the reasons for the choice of the form
(3.1) as the type of general expansions we would like to approximate.

In a two point boundary value problem where approximtions to an
expansion of the form (3.1) are necessary at all the interior grid points
of an uniformgrid, we are faced with various standard problens:

(a) The order of the approxination nmust be o(hq+pk) at

each point
(b) W like to use as centered fornulas as possible since
t hey have the smallest truncation constants and smaller
weights. In the "center" of the interval we can do this
without difficulties, but as soon as we get closer to the
boundaries we need to use unsymetric fornulas.
These tasks are fulfilled by the subroutine vencg which is listed on p. 45
of these notes.

The user needs to know what kind of an expansion he wants to approx-
imate, i.e. he has to provide the coefficients aj in(3.1), for
J =4a,. . .,qtpk-1 (setting to zero those for which the corresponding
derivative does not appear; observe that due to programmng | anguage

limtations, the coefficient, a5 corresponds to the (j-1) derivative).
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The other two parameters required are the order p ot the basic nethod
from which the expansion came, and the correction Step k which is desired.
The number of interior nodal points plus one, N, is also required, and
finally the grid function (array) Y , which will be used in formulas like
(3.3) nust also be provided. It is assunmed that Y is an CXhQ+p’(k'l))
order approximation to y*(x) . On output, the correction mesh function
Sk(Y) is produced in the array S. The integer variable TERROR Wi ll be
equal to 1 and no correction will bhe computed in case some of the follow ng
assunptions are violated,

(3.22) K < (N+1-q)/P;P, Q, K >1

The condition P, Q, x> 1 is pretty obvious; the first condition is a
constraint notivated by the fact that a m ni mum nunber of grid points are
necessary to achieve a given accuracy for a certain derivative. Thus in
order to obtain the required accuracy we need ¢ + pk points. Since we
count with N+1 grid points and p and g are given then that inposes
a condition on k , O course, if our expansion consists only of even
derivatives then we can have sufficiently accurate symetric fornul as
wth only g+ pk - 1 points, at lcast in the center range. This case
is indicated to the subroutine by setting the |ogical parameter EVEN to

.TRUE., otherwi se this parameter should be set to .rFaisE. .
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111.3 Asynptotic error estimation by deferred corrections

The procedure of' Section 11.6.5 was actually a way of obtaining an

asynptotic error estimate for the basic O(h4) solution. It turns out

that a simlar technique can be enployed in general to estimate the error

in an iterated deferred correction algorithm g shal| give now an ex-

. . . "
planation associated with the o(h’) pethod of 11.6.3, but this result,

as nost of the others carries over to much nore general situations (cf.

[39]).
For k=1, et
- B (k+1)-1 (3) *
(329 10 - Y f gf,y ) J
. j:
W th
o, Jj odd
(5.24) &, = 1 1 i
6 Zj+15(2j+15 ? e
b (k+1)
% *
Let, Sk(why )(Xip = wsif( )

X, .
ier 48 Yior +s
§= 1 !

where the displacenent . will be dependent upon the position of x ip
|

(5.25) Sk(y(k'l>) = Tk<X) + O(hh*(k+l)),

where the discrete function y(k-1) satisfies

(3.26) o, (v(Y)) - 5, (1F2))
and
(3.27) e =yl . oy = o),
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Theorem3.1. | et A .| bethe solution to the linear problen

(3:28) o0 ya =5 (109)) gy len))
Then

B8 A =e,, + o(n (L))

(i.e.: A,_y is an asynptotic error estimtor for Y(k-l))

Proof:  gince Gh(why*) =T, (x) + o(hu*(k+l)) , we obtain
relationship with (3.26):

» conbining this

(k-1) * -
ST - Gy la) = s (FER)) g ) 4 o)y
But from (3.25) and the Mean Val ue Theorem we can deduce that

(x-2)

o) + o (r )kt o ) ;-

(Y
-1
-~ Sk(Y(k-l)) + O(hh*(k+l))

5

or, since 8K > kx(x+1) for k > 1,

‘ (k-l o * .
et - o) =5, (BB g (v0eD)) ey

Subtracting this last expression from (5.28) we obtain rinaily

op(e ) A | se 1 = ot ()

k-1

and since G, is stable, sois G/ and the result follous. [:]
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C I1T.4 A variable order, variable (uniform) step, two point boundary
: value problem solver, based on deferred corrections

In this Section, we address ourselves to the follow ng task:
"Gven problem(1.1), (2.1), n > 5, and 10x machine precision < ¢,

find a discrete solution on an uniform mesh with at |east (nt+l) points and
maxi mum absol ute error less than equal to ¢ ."

é_ We won't claimthat our algorithmis optinmal with respect to the
solution of this problem but we shall try to show that it has some good
points as conpared with other available techniques. |n fact, the algorithm

C— will be designed in the style of an adaptive scheme, except that the mesh

will be automatically refined over the whole interval. A nore conplicated

al gorithm could be designed, such that |ocal refinenents are perforned in

L order to follow better the local variations of the exact solution. In
fact, the vector A of Theorem 3.1 provides an excellent tool for that

L more conplicated task since it measures the error at each individual nesh

4 point. W prefer to reserve this type of approach for situations in which

the use of non-uniform meshes is unavoidable, |ike in the case of nultipoint

boundary value problens, or problenms with isolated, interior discontinuities

b (interfaces) (see Keller (1969, 1972)).

Qur strategy will be based on the Iterated Deferred Corrections (1DC)
algorithmof 11. 6.2, for the o(hh) di scretization (2.36). W know from
— 1.2 that for a given n there is a natural linitation on the nunber of
corrections that can be performed. Also, from past nunerical experience

(and conmon sense), we know that for a given problemand nesh size there

are also limtations on the nunber of corrections that will do us good.
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Unfortunately, while the first linitation can be exactly predicted (i.e.
k < (n+l - 4)/4) , the second one is problem and machine dependent.

On the other hand, it turns out that the asynptotic error estimation
procedure of' [11.3 provides a fine, reliable tool for detecting on line
the behavior of the corrections. Thus, | byl > lla Il Ts a clear indicator
that the (k+1)th correction will not inprove our solution (and also that
By Is not a reliable estimator for ek) - Thi s phenonenon is obviously
connected with what in the past has been known as "the growth of high
order differences", which served as a signal-to the pencil and paper num-
erical analyst to cut his series of differences (see also [26,27]). W see then
that without having to construct, store and conputer inspect a table of differ-

ences We can still extract the useful informstion inherently contained in the

procedure. As a matter of fact, we use in our programthe nmore strict test

gl < - 2#1a i -
If this condition is violated we halve the mesh since we are not obtaining
a sufficient reward for our pains.

A flow chart and a FORTRAN |V program for the algorithmfollow W
enphasi ze here that by changing appropriately some boxes in the program one
can solve other problems with this sane |ogical arrangenent. Subroutine
| DCBVP cal |'s Subroutines TrRisor and u2ncg, which have been listed earlier in

t hese notes.
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Fl ow Chart f'or Variable Oder,

“Th-

Variable (Uniform Step,

Deferred Correction Sol ver

Input parameters:
N, X(1), X(N+1),
Y(1), Y(N+1), TOL

ERR@LD ¢ +oo

]

K& O
H«(X(Nﬂ)-X(l))/N
— | EPS: MAX. RES. FOR -
NEWION

KMAXe(N+1-L ) /4 )
ERREV « .FALSE.

linitialize v(I) Ee10
for Newton as
S5 Hl inear conb. of Xyep = X(W/2+1)
boundary o
no val ues }\
Inirtralize Y(1) ?
on new grid fron ¥ > 25e\es| N=N/2
(1) on old grid TOL=ERROLD
ERREV = ,TRUE.
- Comput e § (Y(k‘l)2
F t . 1 ' 1 N = 2% —'J
, = oxy
| T, =T : 1 =
{ yes
Conpute residual
and its norm .GT.
RESK ] \‘/
\
? I
RESN<EPS BAS 500 K=K+1
no
: ? FRREV ¢ .FALSE. ?
Solve lin- ERREV = ,TRUR, ~\Vga Compute errcr —y -/J\
ear_equas, estimate and norm. ERRNGR < TOL 2{sTop
/\ - FRRNOR :

ITNEW « lleW+l
Correct Y(I)

' N
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SURROUTINFE INDCRVP(M,F,NDFY,Y,Y,T0L)
IMPLICIT PFAL#*R(A-1,0-7)

LOGICAL FEPRFY

DIMFNS ION X(257),Y(257),A(257),n(257),n(257),R(257),AA(50)

* L, FU(257),DFU(257),5(257)
************************t************w**************t***t**********
VARTARLE NRNDER, VAR | ARLE (UM| FOPM) STEP F I NI TE D | FFFRENCF
TVOPOINT BOUNDARY VALUF PRORLFM SOLVFR FOR

SY'THF(X,Y) = 0, Y(X(1))=Y(1) , Y(X(N+1))=Y(N+1)
THFE  Hwxxl  ORNDFR METHOD
Hix =) *(-Y(I-1)+2*Y(I)-Y(!+1))+(F(|-1)+1n*F(I)+F(!+1))412 =0
I'S COUPLED WITH ITFRATEND DFFFERRED CORRFECT! ONS | N ORDFR TO PRODUCE
A DISCRETE SOLUTION WITH MAX, ABS., FRROR ¢ TOL OM A CRID NNT
COARSER THAN THFE GIVFN N,

**xx | {MITED TO Moo= (X(N+1)-X(1) )/H ,LF, 256 FRE Rk

TO PROCFSS FI NFR MESHFS CHANGF THF D IMENS 10N STATFMENTS
1M ML SUBROUT I, NES ACCORD | MGLY,

*xkxx{ISFR PROV INED DATAR 2% x»

X(1) = LEFT FEND ARSCISA
X(N+1) = RINHT ENN ABSCISSA
Y(1) AND Y(N+1) : COPRESPOMDINA RALMDARY VALUES,
M+l IS THE NUMBER NF MFSH POINTS AT WHICH THE SOLUTIONN IS NDESIRED
(COUNTING THF FNMD POINTS), OM OUTPUT N WILL COMTAIN THF SI17F OF
THE MFSH ON WHICH THE FIMAL Y M“AS ACTUALLY COMPUTED,
THFY ARF ASSUMED TN RF FVEMLY SPACFND BY H = (X(N+1)=X(1)) /N
TOL « NSFRYS NESIPED MAX IMUM ARSOLUTE ERRON NOAPM OM A MFSH MNOT

COAPSER THAN N, ON NUTPUT  TOL WILL CONTAIM THE ERROPR

FSTIMATED RY IDCRYP,
F , DFY APE EXTFDPMNAL USFR PROVINED SURBROUTIMES THAT SHNULD PRODUCF
THE MESH FUNCTIONS  FOX(1),Y(1)) , DE/DY(XC1Y,Y(1)), 1=2,...,N, RFSP,
THEIR CALLING SEFNUENCES MUST BF:

FIN,X,Y,F )
DFY(N,X,Y,NFU)

WHMERF FU(257),DFU1(257) APF THF NNE=NDIMENSINNAL ARPAYS TN RE
FILLED WITH TYF PENUIREN MFSH FUNCTIONS,
NH OUTPUT THFE ARRAY Y WILL COMTAIM THE COMPUTED DISCRFTFE SNLUTION,
FPS=1,
MO=M
K=
FACT=1,.DN
FRROLN=1,N10
MP1=N+1
VMAX=(NP1-U4) /1L
H=(X(NP1)=X(1))/\
NSA=Hwx?

FPOFY= FALSFE,
nn o5 1=1,5n
AACT) =N, NN
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t INITITALIZATIONFORNEVTON
IF(N JFO, NOYIPD TN 9
NHALF=N/ 2
M1=NHALF+1
nn A I=1,N1

R ACEY=Y (L)
N 7 J=1,NHALF
J2=2*d
Y(J2+41)=A(J+1)
7 Y(J2)=,5N0%(A(J+1)+A(J))
no 8 1=2,M
S(1)=n,
R XC1)=X(1)+(1-1)#H
coTn 11
9 C1=(Y(NP1)=Y(1))/N
no 10 |=2,N
SCi)=0n,
XC1)YsX(1)+(1=1)=n
1n Y1) =C1x(1=-1)+Y (1)
11 HENAN12=HSN /12
Al=5, *HSN/(
12 I TNFY=n
IF(EPS ,EN, 5.0N=16) "D TO 15
FPS=NMAX1(5.0N=1F, ,1#Hwex(LaK+10))

Crxexxx  NMEXT STATEMENT | S INSTALLATINM DFPENDEMT  savawwawsn
[F_THIS PPOCRAM IS NOT USFD NN AM [BM/360 FOMPUTER |N REAL#*S PPEC
THE CONSTAMT  5,0D=16 SHOULD RFE PEPLACED BY (APPPOY IMATFELY)
LO*MACHINE PPELISION IN ORNFR TO AVOID UMDUE GYCLING IN THE
NEWTON |ITFRATIOM, o - ‘ ‘
15 PALL F(N,X,Y,FU)
NESM=N,
nno20 1=2,M
D(l)=v(t—1)-2*v(l)+vc|+1>-u9n012*<rn(t-1)+1n.*ru(n)+Fu(|+1))—s(!)
TE=NARS(R(1)) '
N IF(TF .GT. PESN) RESM=TF
© IF(RFSN ,LE, FPS) N0 TN 50N
25 CALL PFY(N,X,Y,NFU)
no 30 1=2,M
ACT=1)=A1*NFU(1)+2,
201)=HSND12*DFU(])=1, :
7N CO1=1Y=MSN012+NFU(1+1)-1,
MM1=N=1
CALL TRISOL(A,R,f,R,NM1)
IF(FRRFY) RO TN 150
I TNFW= ) TNFW+1
no 40 =2,N
un YCI)=Y(1)+R(1)
IFCITNFW (LF, 10) RO TN 15

e 2 B B |
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COMPUTATION NFE SK
K=v+1
FACT=. 1Dhn
IF(x .nT.
V2=2+K+1]
no 50 1=2,K2

12=2%1+1
ARCI2)=1.D0/C(1+1)*12)=1.D0/6.Nn
EPPEV=_ TRUF,

KMAX) n~n TOH 300

CALL U2DEG(K, 4,4, N, AR, FUI, 0, IFORND,  TPUF, )

noo1nn 1=2,N

STE=1SN*R(1)

P(1)=S(1)=STF

S(1)=STE

~tn TN 25

FPROR COAMTRNL AND DFCISION CFMTER
FRREV=,FALSF,

FPPNOR=N, NN

no RO 1=2,M

TE=NARS(R(1))

IF(TE AT, FRRNAR) FRRMNA=TF
Kl=k=1

IF(ERRNOP _UT. TOL) £0 TO 200
IF(ERRNOR ,AE, ERROLND*FACT .0OR, K+
FPROLN=FRPNNR

A0 TN 12

TOL=FRANNR

RETUPN

M=2#N

IF(N ,AT. 256) GO TN L4OO
Y(M+1)=X(N/2+1)

cnoTon i

N=t] /2

TOL=ERRALN

PETURN

FN'D

BT,

KMAX) GO TO 300
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[11.5 Nunerical results

W give in this Section numerical results corresponding to the
four test problems of 1I.6.4, and for a boundary |ayer type equation sug-
gested by Sam Schecter (Stanford Research Institute). The new test prob-
lemis linear:

Probl em 5.

_y// - 583’ _ 0

(e+x)

-8

—— a m:Y(a) . -y(-a) , e ,a>0

Sol ution:

For e - 0, y(x) - sign x which has a junp discontinuity at x - o .
For small ¢, thisis afairly hard problemto solve with finite dif-
ferences.

In Table 10 we have collected various statistics about 1DCBVP for
Problems i , i=1,...,5. For all problems we have started with N =8 ,
and requested a final max.abs.error tolerance of EPS = 1075 . Probl em

5 paraneters were ¢ = 10" S a=01.
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Fi nal Fi nal
Probl em ESE:?E:ed giigr FL?aLOFﬁpger
1 7.0, -17 2.8, -15 32
2 5.5, -15 5.2, -15 16
3 9.0, -16 5.2, -14 128
4 2.2, -14 2,3, -14 32
5 3.8, -13 6.1, -13 256
Table 10

W see fromthese results that the automatic step adjustment follows

closely the difficulties of the problem (recall earlier results for Problem

3). In order to have a better feeling for the actual flow of the conputa-

tion for each problem we give in Table 11 sone additional information.

For each problemwe list under the mesh size the nunber of nonlinear sys-

tens of that size that have been solved and the total nunber of Newton

corrections enployed (in parentheses).

Prob. No. Points 8 16 32 64 128 256
1 1 (5 3 (&) 3 (9
? 1(3) 3 (4
3 L5 2¢() 3B (1 34
4 1 (3) 3 (5) 3 (4)
5 L) 2R 3(G) 30G) &) u©)

Table 11
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To give some idea of the behavior of the asynptotic error estinmator

- we show the detailed evolution for a bad case: proplem3, in Table 12.

Estimated Exact

N N k Error Error
2 0 8.3, -2 2.0, -2

0 9.6, -4 1.1, -3

1 Lh, 3 1.h, -3

L 32 0 6.4k, -5 6.4, -5
1 2.1, -1 7.1, -7

6l ) 1.2, -6 8.6, -7

0 k.o, -6 4.0, -6
- 1 7.8, _10 8.0, -10
2 3.86, .11 b3, -11
L 3 3.87, ~12 L., -12
128 0 2.5, -7 2.5, -7
L 1 2.5, ~12 2,5, =12
2 9.0, -16 3.2, -1k

- Tabl e 12

In the following Table, we give sone information about the perfor-

" mance of successive extrapol ations on the same probl ens. The basic grid

size is N=8. W indicate the final grid size and nunber of extrapol -

ations needed to reach accuracies simlar to those in Table 10 for 1DC ,

or if that was not possible for N < 256 , then we show the best accuracy
attained on the diagonal of the Richardson triangle. The nunber of

Newton iterations is taken from Tables |-4, pp. 35-36,
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Accuracy Fi ner Nunber of Number of Newt on

Probl em At t ai ned Mesh Ext rapol ati ons |terations

1 3.2, =14 128 4 7575757,8

2 2.5, -16 64 3 LRNTR I

3 1.4, -13 256 5 6,6,6,6,6,6

L 5.6, -15 6“‘ 3 L",555,5

5 1.6, -7 256 5 | i near problens

Tabl e 13

Using Lemma 2.7 of p. 20 we could have actually inplemented an

asynptotic error estimator for the successive extrapol ati ons method and

devel oped an automatic error monitoring and stopping procedure. Though
we cannot vouch for its success (since we didn't have the tine to do it),
past experience and the simlarities with the asynptotic behavior of IDC
indicate that it is probably a good idea. naking believe that we have
done such a thing (and that the asynptotic predictions were accurate),

we now indicate the best results in the whole Richardson triangles (not
only in the diagonal) for each problem Rows and col ums are nunbered
from1. The colum (i,j) of Table 1k indicates the position of the best

result in the Richardson triangle.

Probl em Best Resul t (i,3).
1 6.6, 15 (5,2)
2 1.9, -16 (4,3)
3 1.3, -13 (6,3)
I 5.8, -16 (5,5)
5 - 3.2, -9 (6,3)

Tabl e 14
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N & see that, with the exception of Problemdi4, the best results

are not located on the diagonal of' the Richardson triangle. Thase results

indicate that the error nonitoring should be carried out on all the elements

w of the Richardson triangle.

Mral: FINTE DIFFERENCES: ARE YOU REALLY DEAD?
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