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These seminar notes give a detailed treatment of finite difference

approximations to smooth nonlinear two-point boundary value problems for

second order differential equations. Consistency, stability, convergence,

and asymptotic expansions are discussed. Most results are stated in such

a way as to indicate extensions to more general problems, Successive

extrapolations and deferred corrections are described and their implemen-

tations are explored thoroughly. A very general deferred correction gen-

erator is developed and it is employed in the implementation of a variable

order, variable (uniform) step method. Complete FORTRAN programs and

extensive numerical experiments and comparisons are included together

with a set of 48 references.
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HIGH ORDER FINITE DIFFERENCE SOLUTION OF DIFFERENTIAL EQUATIONS

V. Pereyra

I. Introduction

These notes correspond to a six-week Seminar offered during the Winter

quarter 1972-73. In them, we intend to give an overview on certain gen-

era1 techniques that permit the increase of the order of accuracy of simple

discretizations to differential equations. Also, we will examine in detail

one specific application. This will lead us naturally to consider some

efficient tools which will permit the graceful implementation of the methods.

We shall consider the basic ideas in relation to a simple application:

the two point boundary problem.

(l.la) -y"(x) + f(x,y) = 0 ,

(l.lb) y(a) = CY , y(b) = S .

Most of the elements of the general theory are present here and we

shall emphasize those points which are basic and can be transferred to

other applications.

- The problem and an O(h2) discretization are presented in Chapter

II. The notions of consistency, stability and convergence are developed,

and an asymptotic expansion for the global discretization error is obtained.

The method of successive extrapolations is introduced in Section II.4

together with some comments on implementation.

In Section 11.6, the method of deferred corrections is treated. An

algorithm for obtaining an
8O(h ) discrete approximation with a cost

I
t -4-
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similar to the method of order O(h2) of II.1 is described in 11.6.3.

Numerical results for a set of four test problems frequently found in the

literature are obtained with a FORTRAN computer implementation (Section

11.6.6). An operation count and comparisons with the successive extra-

polations method are offered at the end of Chapter II.

Finally, Chapter III is dedicated to the detailed discussion of a

computer implementation for the iterated deferred corrections method. The

automatic weight generator for numerical differentiation of III.1 is an

indispensable tool in the "Universal Deferred Correction Generator" of

111.2. A theoFern  on asymptotic error estimation based on deferred correc-

tions is proved in III.3 and it constitutes one of the important building

blocks for the variable order, variable (uniform) step algorithm developed

in 111.4. Numerical results and a computer program are also included.

It is in this final Chapter that we have collected some novelties

not to be found in our former work on deferred corrections. In fact, the

comparisons with Richardson extrapolations for these types of problems

have not been performed before. It comes to no surprise that though the

- asymptotic behavior is very similar for both techniques, deferred correc-

tions fare considerably better in terms of work for a given accuracy,

giving the solution at more points as an additional bonus.

The aim of this Seminar was to evolve from the simple application

we have described to more elaborate problems, such as: two-point boundary

value problems for first order systems, elliptic boundary value problems

on rectangular and general regions, parabolic mixed initial-boundary value

problems, etc. Unfortunately, six lectures have not been quite enough to

reach that goal and the second part of these notes will have to wait for



c

a better occasion. Nevertheless, we would like to refer the reader to the

literature where some pointers are given on how to utilize the algorithms

we develop here in more complex situations. A special mention should be

made of the Deferred correction generator that can be used as presented

here in many different problems. The same comment applies to the logical

structure of the variable order, variable step method, whose flexibility

and excellent results have no equal in the published literature on non-

linear, second order, smooth, two-point boundary value problems.
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II. Two-point boundary value problems for nonlinear second order
differential equations

II.1 The problem and its discretization

We consider in this chapter problem (1.1) under the additional

conditions:
-

@la) f(x,y) 6 Cab&l  x (--4),*)l  y

(2.lb) fy(x,y) > -n2/(b-a)2

It is well known (Lees (1964)) that in this case (1.1) has a

unique solution y*a CO?[a,b], which can be approximated by a three point
c

finite difference method.

i

t

L’

c

We call (1.1) the continuous problem. The finite difference

approximation will constitute the discrete problem.

Let h = y for a given natural number n > 1 , and let

X.1 = a + ih , i=O,l,...,n  , define an uniform mesh on [a,b]. The dis-

Crete problem is obtained by replacing y" in (1.1) by a second order

symmetric difference at every interior mesh point:

d (2.2a) h-2(-Yi 1 -t2Y -Y
i i+l) + f(XijYi) = 0 , i=l,...,n-1  ,

(2.2b) Y. = Q , Yn = @ l

For short, we can denote (1.1) by

(2.3) F(Y) = 0 9

and this is to be understood as a nonlinear equation in a certain function

space. We won't make this any more precise here, since our emphasis is

in quite a different direction, but nevertheless, we shall take advantage

of the built-in power of synthesis that such a formulation has. In the
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same spirit, (2.2) will be denoted by

(2.4) F*,(Y) = 0 '

representing a nonlinear equation ("system

space En-l 9 the unknown being the vector

ally, the idea is that h will go to zero

have an infinite family of these objects.

sense, the values Yj(h) will converge to

of equations") in the Euclidean

YT = 0 1 � l l l � Yn-l ) . Natur-

( or n --+=) and thus we really

Also we expect that, in some

the respective function values

of the exact solution. In order to make these ideas more precise, we

need to introduce some extra notation. For each function Z(x) defined

in [a&] and satisfying (l.lb) we define ‘p,[Z(x)]  = [Z(xl),...,Z(xn  ,)lT ,

The operator (ph is sometimes referred to as an space discretization,

We shall say that the discrete solutions Y(h) converge discretely

to the exact solution y*(x) if:

(2.5 > lim I/Y(h) -
hl0

~hyxiJ(h)  = ' '

(b-4
where I/ 'It(,) is the maximum norm on E h

. In what follows we shall

omit the subindex (h) from the norms.

As usual, this convergence depends on two properties of the

discrete operator Fh : consistency and stability.

Definition 2.1. The operator Fh is consistent of order p > 0 ,

if for the solution y(x) of (1.1) and h 5 ho it holds that:

(2 l 6> IjFh((PhY)☺I  = ochp>  l

Definition 2.2. The operator F
h

is stable if for any pair of

discrete functions U , V , and h < h_ o there exists a constant c > 0 ,

independent of h , such that:
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(2.7) 11� - �11 5 � f(Fh(U)  - F,(v)ll  l

Lemma 2.3. If Fh is stable then it is locally invertible around

'hy*' and the inverse mapping Fhl is uniformly Lipschitz continuous for

all h < h- 0'

Proof: Let us consider the open spheres Bh --= B((p,y*, p), where

p > 0 is independent of h . For any U, V E Bh we have, because of

the stability condition, that F
h is an one-to-one mapping (since other-

wise the right hand side in the inequality (2.7) could be zero without

the left hand side being zero!), and therefore is a bijection between

Bh and its image R
h 5 Fh(Bh) . Thus the inverse mapping Fi' exists

in Rh l

Let X, Y E Rh , then we can write (2.7) as

- 71 '

With this result we can prove the discrete convergence of any

consistent, stable discretization,

Theorem 2.4. Let us assume that the continuous problem F(y) = 0

has a unique solution y* . Let Fh be a stable discretization on the

e spheres
Bh z B((phY*'P)  ' and be consistent of order p with F . Then

there is an ho > 0 such that:

(a) For any h < ii0 there exists a unique solution Y(h) for

the discrete problem Fh(Y) = 0 .

(b) The discrete solutions Y(h) satisfy

( i.e., they are convergent of order p ).

Proof: Let Rh be,as in Lemma 2.3, the image of Bh by Fh , and

let us call Z* E Fh(cphy*) .
h Obviously ZL E R, , and because of the
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consistency //Z*,11 = O(hp) . On the other hand, because of Lemma 2.3 we

know that l'or h 5 ho , the F
h

arc homeomorphisms between the spheres Bh

and their 'imag(:s Ji
h' By BrouwcP:: invariance of Domain Theorem (Aleksandrov

[1956]) we know then that Fh maps the interior of B
h onto the interior

of Rh ’ and the boundary onto the boundary. Let V be any vector on the

c-

boundary of Bh . Because of the stability condition we know that

(2.9) k < IIF#) - z;ll ’

t-

and since Fh(V) will run over the whole boundary of R
h while V runs

over the boundary of B
h ’ we can conclude that the sphere B@:,P/c) is

fully contained in Rh . Since IIZyhjl-3  0 for h -+O , we can now choose

;(J F ho such that for h < h_ ok JlZx,ll  < P/c 9 which in turn will imply

that ,O C B(ZE,P/c) C Rh . But Rh was the image of Bh by Fh , and

therefore the last statement implies that for h 5 ho there exists a unique

Y(h) E Bh such that Fh(Y(h)) = 0 . (All these statements are repre-

sented in Fig. I.) The discrete convergence of order p follows also

from the stability. In fact
- II

Fig. I
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Hemark. Observe that there is very little in the statements and

results of this Section that is necessarily tied up to the two-point boun-

dary value problem, and therefore they have more general applications.

II.2 Consistency, stability, and convergence

By using Thy* in (2.2) we obtain what is usually known as the

local truncation error, This is an expression that shows how much our

discrete operator fails to represent the continuous operator (for which

we have F(y*) - 0 ):

(2 JO) ‘hcxi> E [Fh('PhY+)]i  f h~2(-y*(xi 1) + 2Y*(x
i > - y*(xi+l)) + f(xi,Y*(xi))  .

We can obtain a more interesting expression for T,(x) by expanding

in Taylor's formula around x , which we can do thanks to the smoothness

assumptions. By using the fact that f(x,y*(x)) z yw"(x) we get:

K

T,(x) = -
c

2 *(2kQ+x)h2k + o(h2K+2) ,

k=l

This expansion then shows that the djscrete method is consistent

01' order p = 2 .
d

We shall now prove that the discrete method (2.1) is stable for

h sufficiently small, which through Theorem 2.4 will give us the existence

of unique discrete solutions of the nonlinear system of equations (2.1),

and their discrete convergence of order h2 to y"(x) . The proof of

the Lo3 stability is basically due to Lees 11.9641. We need several

definitions and Lemmas. The technique is a simple instance of the use of

5 estimates often found in partial difference equations.

For every h we define the inner product of mesh functions by
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(2.11) (VJJ) E h c ViUi .

i=l

This inner product induces a norm over the mesh functions that

we denote by

(2.12) IlVll 0 f (v,l+ .

By the usual relationships between the standard L and L2 normsco

(11 XII < llXIl2 < vn II XII) we have that

since IIVII-() =

Let us consider the difference operators A+ and A :

(2.14)
A+44 = h-'(u(x+h)  - u(x)) ,

qw = h-'(u(x) - u(x-h)) .

It is clear that b2u(x) = hZ[-u(x-h) + 2u(x) - u(x+h)] satisfies:

(2.15) - 62u(x) = A+A_u(x) .

We need still another norm in our space, that will involve the

e difference operator :

n

(2.16) Ilvil,  = (A V,A-V)* = h
c
i=l

IA v- i )
6.

I 2 .

We quote without proofs the following results of [29] .

a) 2 llVll I IIVII * ;

b) (U, b2v) = (A U, A V) .

This implies in particular that

4 (6*wJ) = il$-  l
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is considered as a linear operator over the mesh functions,

then its matrix representation has the familiar tridiagonal form hN2(-1, 2, -1).

This matrix has eigenvalues h 4 2 jnh
j

= z sin -1 , j=l,...,n-1 , and

we have also:

Let 1 3 inf 1'
Y l

The discretization (2.2) is

satisfying:

Theorem 2.5,
i

stable for h 5 ho

2 2
nh0

24(b-a)2
3

2

(bTI >
2

-aL-

Proof: Let Us consider two mesh functions U, V, and let q
1' q2

be defined as:
i

‘i Fh(U) z 62u + f(x,U)  = q1 ,

F#) = 6'v + f(x,v) = q2 .1

62w +
J

fy(x, <u + (LFJV) q-w = q .

0

Calling the integral term P we observe that P > q . By taking inner
-

products (see (Zll)), we get

and theref'orc by c and Schwartz's inequality:
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L

It is easy to verify, by expanding sin x in Taylor series and truncating

at the first and second term respectively, that

2
l-r

(b-a)2

2

(b" >
2

-a

(nh@a))2 *
24 3

and since (2.1'7) can be written as:

&

llWllh 5
5

i
1

+ q II a()

we have from the hypothesis that

(2.18) VJ II 4j10 = K II qll(J

where the denominator is greater than zero. We still haven't got the

inequalities in the infinity norm (II =I/). We recall (2.13) and a) in

order to transform (2.18) into:

Ilu-vlI < ; @-a)$ IIFh(U)
- F,(v)ll  l

- Theorems 2.4, 2.5, and equation (2.10) prove that the discretization

(2.2) is convergent of order 2, i.e.

. (2*19) llY(h) - (p$*I/ = O(h2) .

In the next section we shall develop a more detailed expression

for the global discretization error (2.19).



c

e

-16-

II.3 An asymptotic expansion for the global discretization error

Under the assumptions of Sections 1 and 2 it is clear that the

variational equation (linear!) associated with (1.1)

(2.20a) -en + fy(x,y)e = g(x)

(2.2Ob) e(a) = e(b) = 0

has an unique solution e(x) E c"[a,b] for each given C" functions

Y(X),  g(⌧)  l

If we use for (2.20) the same discretization (2.2) as we used for

(l.l), then an expression similar to (2.10) holds. In fact, it will be

convenient to-use the notation F'(y)e = g for (2.20), and Fh(vhY)E = (phg )

for its discrete analogue.

The prime here denotes derivative (in the sense of' Frcchet;

Jacobian in the finite dimensional case). Therefore we have, at the

s3lution of (1.1)

K
(2.21) T;(x) = F$'Phy*)qhe*(x)  = cphfg -

c
a .*(2k+2)
k

(x)h2kl, O(h2K+2) ,

k=l

where e*(x) is the corresponding solution ok‘ (2.20), and
a ak -& '

As it turns out, higher order derivatives of the mappings vhF , Fh coincide,

having the form

Theorem 2.6. Let F, Fh be as above. Then for h 5 ho the global dis-

cretization error has an asymptotic expansion in even powers of h ;

K
(2 23) W) - why* = e(h) = cqh

c

2%c:.
kCxP1

rK+2
+ O(h > .

k=l

c
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The functions e,(X) are independent of h and satisfy the

linear two point boundary value problems:

(2 24) F’(y*)ek f -eL f fy(x,y*(X))ek  = bk , e,(a) = ek(b) = 0 .

The functions
bk wili be constructed in the proof.

Proof: We can rewrite (2.23) in the form,

K
c S(h) = e(h) - vh

c
*k

ek(x)h = O(h2K+2) .

I = cph

k=l

K

Let us call for short p(h) z
c

e h2kk , and I =
-Fh((Ph(Y*  + p(h)))  l

k=l

If we are able to prove that for appropriate choices of
bk I

= O(h2K+2) ,

then by using the stability condition the expansion (2.23) will follow.

In fact we have, since Fh(Y(h))  = 0 , that

(2 25) II111 = IIFh(Y(h)) - Fh(~hbx~ + /-dh)))ll  2

$ /IY(h)  - �ph(y*)  - p(h)l1  = ; Ils(h)ll  l

Recalling that k(h) = O(h2) , let us expand I in Taylor's series around
a

(PhY*  l

I = - {F&�hY*) + F;(~hY*)~h~(h)  -+

K Ff ) ((P,Y*)

c

.

2K+2
j! bh&$lJ] + O(h ) L

j=2

Using the expansions (2.10), (2.21) and (2.22), we obtain:

K
a y*(2k+2)h2k
k + F'(y*)p(h) -i-

c
a pc2k+2+h).h2j +
j

j=l

K
+
c

& f(jJ
Je Y

j=2

(x,y*)p(h)j + O(h2K+2) .
' 1
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Now we observe that:

K K

F'(Y*)p( h) =
c

F'(y*)ekh2k  =
c

b h2k
k ;

-- k=l k=l
K

b)
c

a
3
h(2k-@ lh2j = h2j

j=l

&k
e(2(k-'J)+2)

-v v
h2k + o(h2Kf2)

;

K

4 dh)j = c Q. (e
1’ l l l ‘ef-j+l

2%
J,s )h

2K+2
+ O(h >

5=j

where the Q
j,T

are polynomials j-homogeneous on their variables,

Replacing these three expressions in I we get:

k-l
I = tph *(2k+2) + b

k + c
(2(k-v)+2)

v-1 ak-vey

k
+
c $ f~j)(X,Y*)Qj  k(el,�  l ,ek-j+l)

2K+2

j=l ' Y + w > ,

where we assume &l,k = 0 .

Since we want

choose
bk so that {

which we can determine

I to be 0(h2K+2) , that means we would like to

] vanishes. Thus bl(x) = - & Y*(~)(X) , with

e,(x) by solving (2.24);

y*w
( >

1X (4)
+iFel x( 1 1 Y

which allows us to determine e&4 Y and so 3n. We observe that in

general, the determination of bk involves derivatives of the solution

Y* Y and earlier error functions e
V

, v=l,...,k-1  . Therefore the bk

can be determined recursively. This proves the Theorem.
II
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II.4 Successive extrapolations

Expansion (2.23) is the basis for the well known method of successive

extrapolations ("to h=O"), a fairly simple procedure used to increase the

order of' the discretization. In other contexts, this procedure is asso-

ciated with the names of Richardson [1910], Romberg [ 19551, Gragg [1963],

Bulirsch and Stzer [196&j, Stetter 119651, and Pereyra [1967a]. See

Joyce [lgl] for a detailed survey and a more complete set of references,

and Widlund [191] for a survey of recent developments.

We shall describe briefly the application of successive extrapola-

tions to our present problem in order to emphasize certain aspects and

establish a basis for comparison with other high order methods.

Let Y(ho) , Y(2)) . . . , Y(>), be the solutions of (2.2) for

the indicated step sizes, that correspond to systems of dimensionality

n3
= b-a -1ho Y . . . , ni = 2 x niwl + 1 (see Fig. 2 for an example).

Function n Grid

1

5

0,1

y(1/8) 7 t :
I
I

I a I I
I v 1

4
I I t

0 1

Fig. 2

It is clear that only the points corresponding to the coarsest mesh

(ho) are common to all meshes. It is at those common points where we shall

be able to improve the order of our solution. Let us then call Yy the

n
0

vectors obtained from Y(hi) by extracting the components
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Yt2i (hi) , t=l,...,n
0 y

of Y(hi) . With these initial values Yp , we can form the (vector)

Romberg triangle

$,j-l _ yJ-l
(2.26) yj =: * i-1 ,

i 41j - 1
i = l,... ; j=l,...,i .

From (2.23)
.

we can easily derive asymptotic expansions for YJ - cp *

K i
hO

y :

(2.27) Yj - (ph y* = Cpi
0 hOc

ekj(x)h:k + O(h2Kf;!) .

k=j+l

Also, if we disregard terms of order greater than hi(2j+2) , then

we can obtain an asymptotic error estimate for the global discretization

error.

Lemma 2.7

(2.28) Y; - Vh Y” = (Y; - Yj )
0 i-l /( 1-4j++

where = stands for asymptotically equal.
.

Proof: Write (2.27) for Yi and YJi-l ' and subtract, ignoring terms of

order greater than ,(eje > ..

II .5 Some comments on implementation

We have proved the existence of discrete solutions Y(h) in a

nonconstructive way. The most frequently used procedure for actually solving

equations (2.2) is Newton's method. In cases in which f
Y

is hard to

compute some alternate procedure might be preferable. We won't go into the

details of the implementation of Newton's method in this case since this
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is fairly straightforward and it has been extensively discussed in the

literature (cf. Henrici  [1962], Keller [1968]). Let us only remark that

system (2.2) is tridiagonal, which makes the solution of the linear

systems that appear at each Newton step very simple. If there is no

other information, a linear interpolation between the boundary values can

provide a reasonable starting vector.

In constructing the successive extrapolates one can follow several

paths. One of the most reasonable seems to be the following:

i) Compute
Y(h☺ l

ii) Use Y(ho) and interpolation in order to have a good initial

approximation for
Y(h☺ l

L

iii) Use Yz , Yy in order to estimate the error in Yy . If you

are satisfied, quit. If not:

i

I

iv) Combine Y"0 ' YF in order to get Yi .

v) Obtain Y(h2) and construct a new row of the triangle, etc. . . .

Observe that for Y(ho) we shall use as a starting vector something

a
probably pretty inaccurate, but the dimensionality of this problem will be

,

L

the smallest. For any other Y(hi) we shall use in the Newton iteration

the fairly accurate initial values provided by Y(hi l) , using interpola-

. .

I

I1
tion to fill into the new abscissas. This is a very important point,

since it will tend to decrease considerably the number of Newton iterations

necessary to carry the residuals below a level compatible with the discret-

ization error.

We have always to remember that the dimensionaiity of the problem

is multiplied by 2 every time we compute a new rc)w. A source
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of' criticism for this method has been the fact that one gets the most accurate
.

results YJ
j

only on the coarsest mesh, wasting all the precious computation

performed in the finer meshes. In a recent paper of Lindberg [1972] the

author implements and justifies an idea of Dahlquist for producing accurate

results on the finest mesh through a recursive interpolation procedure.

This is done for initial value problems but it is clear that a similar

principle will hold for our present problem (though it has not been done

as far as I know; it would be worthwhile to investigate this matter fur-

ther, clarifying Lindberg's  statements).

11.6 Deferred corrections

L

r

i

L

L

11.6.1 Introduction

As early as 197, Leslie Fox advocated a technique called "difference

corrections". Through the years he and his collaborators have applied this

technique to a variety of problems in differential and integral equations

(see Pereyra [1967c] for a detailed bibliography and historical account).

In Fox [1962],  a wealth of information on the state of the art in the

e English School can be f'ound. It is there where we find the term "deferred

corrections" used interchangeably with that of difference corrections. The

reasons for this switch in nomenclature are not apparent, except perhaps

for the feeling that the technique was in some way connected with the

"deferred approach to the limit" that we were discussing in the earlier

Sections, and also because the name reflected the fact that a posteriori

corrections were performed.

We have preferred -b adopt the latest name in our work on this

technique since our approach is not tied up (at least in appearance) to
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expansions in terms of differences, as it was in the earlier developments.

We base our formulation of the method on the asymptotic expansion

for the local truncation error:

K

(2.29) Th(Xi) z -
c

aky*(2k’2)(x  )hzk 2K+2)
i + O(h Y

k=l

which, as we have already observed in Section 11-2, only needs smoothness

of the exact solution y*(x) and the application of Taylor-9 formula for

its derivation,

For any smooth function y*(x) we can approximate linear combina-
L-

tions of its derivatives with any order of accuracy in h at any grid

point by using sufficient ordinates in a neighborhood. This is again a

consequence of a wise application of Taylor's expansions and numerical

differentiation techniques. Thus, there exist weights w
S

such that

1

a
c

2&+2+q

(2.30) Ta(xi) f - aky*(2k+2)(xi)h2k-@  =

c
wsY*(xi+ash)

k=l s=l

+ O(h') E Sa(Y*(Xi)) + O(h') ) cy S
integers.

We shall show later how to obtain ws in an efficient and suffi-

ciently accurate way. Observe that we have multiplied am by h2 .

In this fashion Sa becomes a bounded operator (for h10) and most

of the dangers of numerical differentiation formulas are avoided. In

fact, because of the linear relations between differences and function

values, some choices of Sa(y*(xi)) will coincide with FOX'S formulation,

though we feel that this more general presentation, coupled with efficient

weight generators is better'adapted for use on a digital computer. In fact,



b

FOX'S difference correction procedure was mostly advocated for desk cal-

culator computation, where a table of' differences manipulated by an able

person was a real asset, The main contributions of the author of these

notes, starting with a Stanford Report (Pereyra [1965]), have been to put

on a sound theoretical basis the asymptotic behavior of a very general

procedure modeled on Fox's difference corrections, and what is even more

c relevant, he has pmfhced tools and complete implementations of this tech-

nique in a variety 01' applicatjons. However, so many years and develop-

ments later (with some minor changes) the words in Fox's  [1963] very inter-

esting expository paper are still very much actual: "This idea (differencet-

correction) does not seem to have penetrated deeply into the literature of

automatic computation . . . . Certainly we have to do some differencing,

involving extra programming, extra space, and some difficulties in auto-

L
1

matic inspection of differences, but machines are getting larger and pro-

gramming easier (or so everybody tells me), and if we are concerned with

aiacuracy, as we certainly should be, 1 should have thought that something

like this was essential."

a Probably one of the main reasons 1'Dr this neglect in recent times

has been the widespread interest in other high order methods (splines,

finite elements). Unfortunately, the theoretical developments in these

areas have very much surpassed (and overshadowed) the practical, efficient

implementation of the methods. Thus, we find ourselves in the sad situation

of having a highly promising, very general, Theoretically well supported

technique, that is begging for an at least equal treatment in its practical

aspects, while on the other hand, for some applications at least, it is

fairly clear that the results obtained with our more traditional finite



t

L

i

t

i

-25-

difference techniques will be hard to beat. (Compare the numerical results

for similar problems in Ciarlet, et al [1967, 19681, Perrin 3 et al [1969] 9

and Herbold and Varga [lg2], with those in Pereyra [1967c, 1968, 19701 and

this report.)

I wouldn't be surprised if it finally turns out that a successful

implementation of high order spline methods comes about via a deferred

correction type of approach, bypassing in some way the very expensive

steps of high order quadrature formulae and complicated systems arising

from the present approaches. See Fyfe [1969] for a first timid step in

that direction.

11.6.2 Algorithms

There are many ways of producing deferred corrections. FOX'S way

consisted essentially of representing y" as a series of differences.

In the first step, common to all procedures, one would compute using

only the first term of the expansion (in this case the basic method (2.2)),

and then use these O(h2 > values in the difference expansion, and recom-

- pute in order to obtain a more accurate solution. The process was thought

as iterative , providing in infinitely many steps the exact solution. This

was never done in practice; in fact it is hard to find any published numer-

ical example in which more than two corrections were performed, carrying

perhaps three or four terms in the difference expansion. Naturally, the

reason for this was that on a desk calculator any prolonged computation

was a big undertaking.

Let Y O( > be the O(h2) solution to (2.2), and let '$1 be, as

in @JO), an 'O(h ) approximation to Tl G -aly*(4)h4 , the first term
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in the local truncation error (multiplied by h2) . Observe that since

ttlc?r*c  i s  already a i’actor t-1
4

:in T
1'

wc vnly ar*e requiring an 0 ( t? )

appr3x imation I,0 y+q'c) at the grid points. If' WC? h&WC? y*j x) availablt~

then, as we said before, there is no problem in obtaining the weights ws

for s1 . But all what we have is Y ' .( > In principle it cannot be ex-

petted that from an z
O(h ) discrete approximation to a function one can

r
obtain an O(h') approximation to a derivative. It is here where we make

use of the expansion (2.23) for the global discretization error. In fact

we have that because of linearity and (2.30):

Sl(YO) - Sl(cphy*) = Sl((Phel)h2 + SI([Phe2)h4 + O(h6) .

6Observe that we have used the fact that Sl = O(1) . But S,(Cp,y*) = Tl + O(h ) 3

Sl(qhek) = -alek4)h4 + O(h6) , k=l,2 . Therefore,

Sl(Y(3)) = Tl + O(hb) ,

and we can use Y ( >0
instead of Thy* and still obtain the same asymptotic

behavior. With ( >Sl(Y ' ) computed at every grid point we solve for a cor-

rected value Y0)

(2 031) Fh(Y) = h-2Sl(Y(o))  .

The local truncation error for this new discretization is 4O(h ) and

therefore, since we are still talking about the same basic operator
Fh '

the stability condition proves that there exists a unique solution y(1)

to this problem and that

(2.52) ,,Y(Q 4
- (ph3�it/☺ = O(h > l

Provided we can obtain an asvmntotic  expansion for Y(1) - Thy*
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this procedure can be repeated, and each time two more orders in h will

be gained. In general, the iterated deferred correction procedure can be

described in the following way:

i> Let Y (k) be an O(h2k+2) d.iscrete solution.

ii) Compute h
-2
Sk+l(Y(k)) , an h2kQ approximation, to the first

(k+l) terms in the local truncation error expansion.

iii) Solve Fh(Y) = h-2Sk+l(Y(k)) for Y(k'l) .

For boundary value problems there are some theoretical difficulties

in obtaining the successive expansions needed to justify the method, The

difficulty comes from the fact that different differentiation formulas

must be used at different points of the mesh. In fact, in the first step

we can use five point symmetric formulas in order to approximate *v+)y

to order h2 at the mesh points x2 ,...,xn-2 ' but we shall need six

point unsymtnetric  formulas at the points x1 , xn 1 . For the symmetric

formulas we have asymptotic expansions in even powers of h :

K

(2. ST) S1(yx(Xj))  = Tl(Xi) + y lJv(xi)h2v + O(h2K+2) , i=2,...,n-2 ,

while for the unsymmetric formulas we

.with all powers of h . With a small

a

shall have (different) expansions

manipulation it can be shown that

E’,(q~,y*) - ho2S,(Y(')) = cph
c

rk(x)hk + O(hiiKcl) ,

but rk(x) will in general be discontinuous, because of the change of

differentiation formulae. Therefore, Theorem 2.6 cannot be applied in

order to guarantee the existence of expansions for Y (1) - 'DhY* , which
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in turn would be necbessary  (in our approach) for proving the accuracy of

the differentiation formulas in successive steps.

One way of deferring this until after the second correction is the

following: Since y*# = f(x,r*) then we can replace all higher deriva-

tives of y* by total derivatives of' f two orders lower. Thus in our

d2f'.irst correction we need to approximate V2- f(x,y*(x)) only to order h2 ,
dx

and by using grid values of f(xi9'j-J we can achieve this with a symmetric

three point formula over the whole range. Naturally, the same problem

we discussed above will appear after the second correction. We shall see

later that by using a basic method of order h4 , we can rigourously obtain

an h
8

order method applicable to the problem of this Chapter.

We can also rigourously perform deferred corrections (any number)

for boundary value problems of the form (l.la) with periodic f , i.e.:

f(x + b - a, Y> = f(x) 9 and periodic boundary conditions:

YW = y(b) , y’(a) = y’(b) .

In this case, we can use the same differentiation formula over the whole

- range since there are really no boundaries in this problem, and we can

extend our solutions by periodicity.

Now the fact that we cannot obtain with the present methods the

theoretical asymptotic behavior of the iterated deferred corrections for

problems (1.1) does not mean that the technique is useless in this general

case. Far from it, we shall show numerical results that should justify a

more careful study in order to determine precisely what is that asymptotic

behavior. We would like to stress the point that the asymptotic expansions

for the successive global errors Y04 - (Phy* are used only in the theoretical
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justification oL' the method, but at no time are they needed in its practical

implementation as in the case of succr~~'aOive Richardson extrapolations.

More general equations of the form

(2.54) y" = fhY,Y '>

can and have been treated.
- - We feel at the present time that those problems

_- - - . -
will be much more easily dealt with using a general procedure for systems of

the form

y' = _f(x,y)

(2.35)

Ay(a) $23 y(b) = E >

which is now in development. We expect that our method will compete fav-

ourably with the multiple shooting techniques that have become fashionable

in recent times. In Keller [1969, 1921 the relevant theory for an O(h2)

discrete approximation to (2.35) is developed and asymptotic expansions

are derived. Keller uses then this fact to justify a successive Richard-

son extrapolation procedure. See also Kreiss [lgl].

a

11.6.3 An O(h8) method for the price of an W2) method

In this Section we consider problem (1.1) again, but we shall use

the more accurate 4
O(h ) discretization

(2.36) h-2[ -Yi 1 +2y -y
i i+l 1 + ~ [fi_l +10f i-fi i+ll = 0 , i=l,...,n-1

where fi z f(Xi'Y.) .
1 We symbolize (2.36) by Gh(Y) . By recalling that

f‘(x, y*(x)) = y*/'(x) it is then easy to derive via Taylor expansions that

the local tl*url(:ation error Is in this case:
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Gh(mhY*) = qh
x

a f(2k+
2k

L k
x, y*(x)),+ +- O(h2K+2) >

.
- k=2

where a. 1 1
k = (k+l)@k+l) - 6 .

This method can also be proven to be stable as was the case for

the simpler method (2.2). (See [ , 1.) Thus we can produce an algo-

L

~*ithm similar to the one described in 11.6.2 but which now should gain 4

orders per correction. We shall make explicit that algorithm in the next

Chapter, while presently we develop a correction method of order h8

t,
which is specially eff'ective and economical. Paraphrasing terms which

are very fashionable these days we could say that the method to be described

- is of a high computational "simplicity". The main idea is that one correc-

c

tion with the same asymptotic properties as in the usual procedure, can be

L_ obtained by sclving the variational equation associated with the problem,

with an appropriate right hand side. If Newton's method is being used to

L
solve the nonlinear equations resulting from the basic discretization then

_ the correction will look just like one extra Newton step. If we observe

that the O(h4) method (2.36) is essentially not more complex than the

O(h') method (2.2) then the reason for the title of this Section becomes

clear.

The linearized equations that obtains at each Newton step v are

II-

1
.
L

L

the following:

2.37) 12 i~(xi-lYY~-l) - l 1 Ei +

i+l"Y+l ) - 11 Ei+l = r?1
(2.38) rr = - ((-YY 1 + 2~? - Y! ) + 2 (fV

1 1+1 I2 i-l +lofY+fV
LL+l

)) .



For short, we can call the left hand side of (2.37): h2G$Y")E . Once

(3,) is obtained, then the new iterate results:

(2.59) Y'+l = Yw + E
i i i'

Because of the stability, it is enough to reduce the residuals ri

to a level compatible with the global discretization error in the final cor-

rected solution. In fact,

t

rw = h2Gh(YV) 9 Gh(Y(h)) = ' >
and therefore we have that

IIYW - Y(h)// < c I/Gh(YU)//  = ch-2- II,'vII =

Thus,

lPW - (phy*I(  2 IIyw - Y(h)ll + 11 'ch) - (phY?j 5 ch-2 /@II + Ch4 )

and a reasonable stopping criteria for Newton's method is then:

(2.40) I@$ 5 clhl' ,

where
5 is usually chosen to be a small constant unless some more precise

information about c and C is available. Let Y O( 1

O(h4)

be the computed

solution. If we now define

e

(2.41) T(x,) = -

and

(2.42) S(f(x,Y

Then by solving

(2 -43) G;(Y(‘)

and putting

(4 >

Y(2.44) y(l) = y(O) _ E
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WC shall have an 8O(h ) approximation.

Proof: By an argument similar to Theorem 2.6, we know that the smooth

function cl(x) satisfying

(2.45) G'(y*)el = hV4T

is such that ezy"( > - vhY* = cPhelh
4
+ O(h8) .

But also,

G;((P,y*$ = (PhT + O(h8) 7

where
el

4
= cPhelh .

Therefore, using (2.42) we get

G~(v$f*&  - G;(Y(‘))E = (GpJhy*)F1 - G;(y(“))Zl) + G;(Yco))(Fl - E)

= -Gk((p,y*)e  l Fl ( >
+ G;(Y  � ) (F

1 - E) = O(h8) .

But since the term G$cphy*)e Fl = 8O(h ) ( )and G$Y ' ) is stable we obtain

e
1 - E = O(h8)

which in turn implies that

0
( >0

- El - Thy" = oh81

as we wanted to prove.

1~6.4. Some numerical results

In this Section we present some test problems from the current

literature in high order methods. Some limited comparisons are included.

The limitations are generally due to the vagueness in which numerical

results are often presented.,

II
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Problem 1

-y" + y.‘) - s-i-n x ( 1 -1- s.i n’ x) 0

y(0) = y(n) =I 0
. .

Exact solution:

Y(X) = sin x .

See Pereyra C1968l.

Problem 2

-yN + ey =0

Y(O) = y(1) = 0

Exact solution:

y(x) = -an 2 + 2% (c l sec($ (x-9)))

The constant c satisfies: c set $ = v2 .

C = 1.336055694906108...

See Perrin, Price and Varga [19691, H. B. Keller [1972].

Problem 3

-y” + y + y3 + e sin 2rrx [41-r2 2
(cos 2nx - sin 2nx) - e2sin277x

- 11 = o

Y(O) = Y(l)  = 1

Exact solution:

y(x) z esitinx .

See Ciarlet 7 Schultz and Varga [1968].

Problem 4

-yN + $ 3(y+x+l) = o

Y(O) = Y(l) = 0
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Exact solution:

Y(X) = & - x - 1 .

See Ciarlet, Schultz and Varga Cl9671 or Schultz [lg3], p, 98.

c
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i-
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The results of this Section were obtained with a FORTRAN IV imple-

mentation (WATFIV compiler) of the algorithm described in 11.6.3 running on

the IBM 360/91 computer at the Stanford Linear Accelerator Center. Double

precision ( - 16D) was used throughout. Newton's method was employed for

solving the nonlinear equations, using as starting vectors in each case the

linear interpolation of the boundary values.

The evaluation of the correction term was performed via the Universal

Two-Point Boundary Value Problem Deferred Correction Generator which will

be described in detail in the following Chapter.

In Table i we present results for Problem i 7 i=l,...,k , "Error"

stands for the maximum absolute error at the grid points between the exact

and discrete solutions. Runs with maximum relative error gave similar

results.- Error,+ corresponds to the basic h
4

approximation and Error

to the corrected solution. (n+l) is the number of grid points, while

(n-l) is the dimensionality of the systems solved. m- is the computed

order obtained by comparing the errors for two solutions for different

step sizes. Thus,

(2.46)  m = lOg[error(~~~e~ror(h/2)1 .

Oper, stands for (number ef operations)/1000 . A detailed

operation count study will be performed in the next Chapter, and it is
I
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from there where we obtain the results for this column. Function eval-

uations are not included in the opercltion  count, but their number is

connected in an obvious fashion with the column iter., which gives the

number of Newton iterations necessary to reduce the maximum norm of the

residuals in the solution of the basic problem below the level EPS .

We adopted EPS = 10-4 8xh which gives the following stopping criterion

for the Newton iteration:

where the constant 5 x 10 -16 is related to the IBM System 360 double

precision.

We list in res. the norm of' the last residual. The notation a ,

b means a x 10b .

n error‘!l m errorR m iter. res. oper.
~---

8 2.90, -5 ---- 1.05, -7 ---- 7 1.22, -13 1.3

16 1.81, -6 4.00 1.12, -10 9.87 7 3.13, -13 2.8

32 1.13, -7 4.00 5.37, -1-3 7.70 7 7-92, -15 5.9
.

64 7.04, -9 4.00 1.97, -13 1.45 7 2.07, -15 12.0

128 4.40, -10 4.00 4.60, -14 2.10 8 1.9, -16 24.1

256 2.79, -11 3.98 3.92, -13 ---- 7 3.76, -16 48.5

Table 1
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- n error4 m error8 m iter. res. oper .
- - - - -

8 3.86, -7 - - - - 7.36, - 1 0 mm-m 4 -17 .8
k

1.47,
w

16 2.42, -3 h .oo 1.64, -1-2 8.81 4 2.15, -17 1.8

52 1.52, -9 3.99 4.08, -1-y 8.65 4 1.55, -1.7 3.8
L._

L 64 9.48, -ii 4.00 3.95, -16 3.38 4 2.27, -iy 7.6

128 5.92, -I2 4.00 7.91, -16 - - - - 4 2.50, -17 15.4

256 3.74, -13 3.98 4.02, -15 ---- 4 2.51, -1-i’ 30.9

Table 2

b, -
n error-4 m error8 m iter. res. oper.

-

8 1.9, -2 ---- 9.02, -2 ---- 6 2.22, -16 1.2
L 16 1.06, -3 4.22 1.37, -4 9.36 6 2.78, -16 2.5

Qb 32 6.40, -5 4.05 7.06, -7 7.60 6 3-19, -16 5.2
L

64 3*Yi? -6 4.01 7.97, -10 9.79 6 3.76, -16 10.5

C 128 2.47, -7 4.01 2.49, -I2 8.32 6 3.81, -16 21.2

SW 256 1.55, -8 3.99 1.33, -13 4.23 6 3.87, -16 42.6

Table f,-

L n error4 m error8 m xter. res. oper.

-
8 1.64, -> ---- 4.65, -7 ---- 4 2.09, -13 .8

16 1.05, -6 3.97 2.20, -9 7 l 72 5 1.91, -17 2.2
I-

32 6.60, -8 3.99 5.63, -IIT 8.61 5 1.80, -17 4.5

- 64 4.13, -9 4.00 1.39, -14 8.66 5 1.62, -17 9.1

128 2.58, -10 4.00 5.72, -16 4.60 5 r.12, -17 18.3
h-

256 1.54, -11 4.07 9.27, -13 ---- 4 2.32, -16 30.9

-
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n error4 m error8 m iter. res. oper .

10 1.19, -5 ---- 9.39, -9 ---- 7 7.86, -14 1.7

20 7*39, -7 4.01 1.74, -11 9.08 7 2.00, -14 3.6

40 4.61, -8 4.00 2.42, -13 6.17 7 5.19, -15 7.4

80 2.88, -9 4.00 2.06, -13 ---- 7 1.35, -15 15.0

160 1.81, -10 3.99 2.74, -13 --mm 7 'c.98, -16 30.2

Table 5 (Problem 1)

16
I

0.34

32 0.58

64 1.09

Table 6
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TJ .6.3 Discussion of results and compar*i.sons

The first thing we must observe is that the residual in the solution

of the basic problem by Newton's method must be reduced to a level com-

patible with the accuracy expected in the corrected solution. That is

the rationale behind our stopping criterion (2.47). For this type of

problem, Newton.9 method is known to be quadratically convergent and this

theoretical fact is supported by the numerical behavior of our iteration.

Therefore, we see that as soon as the residual is reduced below .lh2

L-

(and this has occurred in all our experiments after four iterations at

the most) , then in the following two steps we should have residuals approx-

imately < .Ol h4 , 10 -4 8h and stop. Experiments using a less stringent

stopping criterion show that on the average one might save one Newton

iteration, at the risk of losing several figures accuracy.

L

t

l
L

Unfortunately, the "double precision" in IBM System 360 does not

provide a sufficiently long word to test the asymptotic behavior of this

very precise technique, and therefore the computed exponents for the

corrected, supposedly O(h8) solution, are somewhat erratic. However,

M in the regions where there is not too much round off contamination, the

c>ornputed exponents lie around 8 as they should.

We can compare the results 01' Table: ', with those in Pereyra [1968]

There, an iterated deferred correction procedure was implemented, based on

the O(h4) formula (2.36). Details of this implementation will be given

later on. It is interesting to compare the results of the first correction,

as performed in [38] with the results of Table 5, the difference in the

two procedures being that i-1 we plan to correct more than once then a full
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nonlinear problem has to be solved at each correction, as opposed to the

pr*ocbcdu.re  described here. The other important dif'ference is that in [$8]

advantagt:  was taken of the periodjcity of the solut-i.on,  thus using symme-

tric formulas throughout. Naturally the basic solutions coinc-ide, so we

only compare the errors for the 8O(h ) corrected solutions.

error /n8 10 20 40 80

L-

(I38 1 4.2, -9 1.6, -11 6.2, -14 2.4, -16

This -- (9) (6) (-1

method 9.4, -0/ 1.7, -11 2J+, -15 2 l b -13

L

L -

L

Tht> numbers in parentheses are the con~pui;ed cxponc:nts. WC? see that the

meLhod in [38] gives results that have a more clear asymptotic behavior.

This can partly be explained by the fact that the results of that paper

were obtained using double precision on a CDC 3600 computer, i.e. with

L

L

r

”
c

numbers with

however that

the point of

84 binary digits mantissas. We would like to point out

the actual errors are comparable for n = 10, 20, 40 where

diminishing returns (on this computer) is reached for the

present, more economical algorithm.

Problem 2 is used as a test problem in various papers that deal

with high order spline approximations via a Raleigh-Ritz approach [5, 1~1, 461,

in Keller [lg;i] where a successive Richardson extrapolation procedure is

employed, and also in Wasserstrom [lg3] using a conlinuation technique.

Since the only meaningful comparison is that of programs written in the

same language, running on the same machine (ideally under the same conditions

or environment), we feel that it is useless to compare our results with those
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presented in [5 , 41,461 since very little information is provided in those

papers about the actual implementation of the methods.

The only comment we shall make is that the highest accuracy reported

in [I 5 , 41, 46 ] for this problem is max.abs.error < 5 x 10 -8= (cf. Table 2!).

Keller reports max.abs.error < 4.01~ 10 -3.2
c , obtained with an O(h2) dis-

i

;-

L

Crete method for systems of first order equations, plus three extrapola-

t ions . The mesh sizes used by Keller were $ ,i,$ and A. Unfor-

tunately, as we pointed out in Section II.5, the accurate solution is ob-

tained only on the coarsest mesh, i.e. at the two points x,1 2

3 '7' A

glance to Table 2 shows that results slightly more accurate than those of

Keller can be obtained by the method of this Section with a 15 point mesh,

and that these results are valid over the whole grid. In the next Section,

t
L

i

we shall make some general comments comparing the amount of arithmetic and

function evaluations that are necessary for successive Richardson extra-

polations and for our procedure. Wasserstrom reports results accurate to

six figures with 16 seconds of computing time on a GE-635 machine (cf. Table 6:).

L

Similar comments apply to the results of' Tables 5 and 4. For in-__-_ - --- - .-. .--- -, .__
- s Lance, the best results (in terms 0L' accuracy) 0.l' Ciarlet, Schultz and.

Varga [ 19681 f or Problem 3 are improvec! by our results of Table 3 with

n+=32 :

max.error [I 5 ] = 5.49 x 10 -6 ,

max.error [this method: n=32] = 7.06 x 10 -7 .

As we said above, these comparisons are not $30 meaningful. For instance,

it can be argued that the spline approach produces solutions defined over

the whole interval, as opposed to the discrete solutions furnished by

I'init,e  difference techniques. On the other hand, there is nothing to

prevent us from obtaining a posteriori an BccuraLe spli-ne interpolation
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I

i
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c

L

0.t’ OUT ciis~:Y’c’tc  CiULH . Once a definite fr\oal is state& l'or in::tance:  llf'ind

tin aLgorith.m  c-upablc of apprc)ximat-i.ng  the solution c)f.' tLlc di:t'l'erentiul

equation at any point of the interval [a,b] with absolute precision s",

then two different algorithms can be analyzed in terms of their costs to

achieve the desired goal. In order to obtain this, fair implementations

must be tested on the same installation and the true costs compared. It

is in this light that we have tried to produce careful, usable implemen-

tations of the techniques described in these notes, and that we include

here the actual computer programs with, and conditions under, which the

numerical results were obtained, with the hope that our experiments will

be reproducible and therei'ore future, better methods, can make accurate

claims. Also we expect that by making available these well-documented,

easy to use, subroutines, the public: will be served in an area which is

bc[:ging  for such material.

In the next Sec ion we present a computer printout of the programt'

used to obtain the numerical results of this Chapter.

- 11.6.6 A FORTRAN IV program for the 8O(h ) method of 11.6.3

In this Scrtion we present the FORTRAN IV subroutine DCBVP8 with

which we obtained th<: results of Section 11.6.4. Thi. s. subroutine calls

the unsymmetric tridiagonal linear systems solver subroutine TRISOL and

the subroutine WDCG that generates the necessary correction terms.

These two subroutines, the driver program an3 the subroutines defining

the equations, are also provided. UZDCG will be described in detail in

Chapter 3.



S(Jf3 ROUT I fJ E DC8VP8 04, F, DFY, X, Y)
It;lPLlClT REAL*8(A-H,O-2)
LOGICAL DEFCOR
DIMEtJSlOlJ  X(257),Y(257),A(257),B(257),C(257,,R(257),AA(50)

* 0 FU(257),DFU(257)
C ***~*+****+***+**+***~*************~*~***********~****~*****~******
C 8Tti ORDER F IIJ ITE DI FFEREtJCE  TWO P9ltJT ROWJDARY VALIJE PROBLEM

L C SOLVER FOR
C -Y"+F(X,Y)  = 0 , Y(X(l))=Y(I)  , Y(X(N+l))=Y(fJ+l)
C T H E  H**4 ORDER METHOD
C H**-2  *~-Y~I-1~+2*Y~I~-Y~I+l~~+~F~l-l~+l~*F~I~+F~l+l))/~~ = 0
C IS COUPLED WITH ONE LINEAR DEFERRED CORRECTION Iti! W?fW? ‘727 PRODUCE

L
C AN H+*8 ORDER METHOD.
C ****LIMITED TO N = (X(FJ+l)-X(l))/ti L E .  2 5 6
C TO PROCESS FINER MESHES CHANGE THE'DI~E~!SlON i;;;;MENTS
C IFJ ALL SUBROUTINES ACCORDINGLY.
C*****USEH PROVIDED DATA****+
C X(1) = LEFT END ABSCISA
C X(N+l) = RIGHT END ABSCISSA

c C Y(1) A N D  Y(IJ+l) : CORRESPONDING BOUtJDARY V4LIJES.
C N+ 1 IS THE NlJt#ER OF MESH POINTS tCOUNTlNG  T H E  END POltJTS.
C T H E Y  A R E  ASSUt4ED  T O  RE E V E N L Y  S P A C E D  RY H = (X(N*l)-X(l))/N
C F fi DFY ARE EXTERNAL USER PROVIDED SUBROUTINES THAT SHOULD PRODUCE
C THE MESH FUNCTIONS F(X(I),Y(I))  , DF/DY(X(I),Y(I)), l=Z,...,N, RESP.
C THEIR CALLING SEQUENCES MUST BE:
C F(kJ,X,Y,FU)
C DFY (FJ,X,Y,DFU)
C b/HERE FU(257),DFlJ(257) ARE THE OrjE-DIME:WOtJAL  ARRAYS TO RE
C FILLED WITH THE REQIJIRED MESH FUNCTIONS.L c ON OlJTPUT T H E  A R R A Y  Y  WILL CONTAIN  THE CWlPUTED  DISCRETE SOLUJ-ION.

NPl=fJ+l
H=(X(NPlbX(l))/fJ

i t1spti**2
c***¶fr* tJEXT S T A T E M E N T  IS ItJSTALLAT IOtJ D E P E N D E N T *****+***
c - IF THIS PROGRAM IS NOT USED ON AtJ lWl/360 CC)FlPUTER  IN REAL*8 PREC.

, C TtiE COfJSTAfJT  5.01).16  S H O U L D  BE REPLACFD  RY (APPROX  IMATELY)
C IWMACIWJE PRECISION I N ORDER TO AVOI D UNDUE C’fCL  IW IN THE
C fJf:C\iTON I TERAT I ON.

EPS=DMAXl(S.On-16,. 0001*tisQ*+4)
L n.EFCOR=.  F A L S E .

Cl=(Y (NPlbY(1)  )/fJ
D O  5  I=l,SO

L 5 AA(I)=O.DO
DO 10 b2,N
xm=x(l)+(l-l)*t~

10 Y(I)=Cl*(I-l)+Y(l)
HSQT)lZ=tiSQ/lZ
A1=5.*HSQ/6
ITfJEW=O

15 C A L L  F(fJ, X, Y, FIJI
RESN=O.
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DO 20 l=Z,fJ
R~I~=Y~I-l~-2*Y~l)+Y~l+l~~HS~Ol2~~FU~l~l~+l~.*FU~l~+FU~l+~~~
TE=DABS(R(l))
IF(TE .GT. RESN) RESN=TE
IF(RESN .LE. EPS) GO TO 500
CALL DFY(N,X,Y,DFiJ)
DO 30 l=Z,N
AtI-I)=Al*DFU(l)+Z.
B(I)=tlSQOlZ*DFU(I)-1.
C(I-lbHSQ012*DFU(I+l~-I.
NM l= tJ- 1
CALL TRISOL(A,B,C,R,N!~!l)
ITfJE\J= ITNEW+l
DO 40 l=Z,td
Y(l)=Y(I)+R(I)
IF(DEFCOR)  RETURN
IFWMIJ .LE. 10) GO TO 15

1
AA(7+1~:~0,84.D0
DEFCOR=.TRUE;
CALL UZDCG(1,4,4,  tJ, AA,FU,R, IERROR,.TRUE.)
DO 100 l=Z,fJ
R(I)=-HSQ*h(I)
GO TO 25
EtJD

i
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SlJBRr)UTIfJE  TRISOL(A,B,C,F,N)
IMPLICIT REAL*8(A-H,O-Z)
+**********+****+***~*******~****~******************~***~*~~*******
UNSYMMETRIC TRIDIAGONAL SYSTEM  SOLVER
A
F

: MAIN DIAGONAL; B : LOWER SURD.; C : UPPER SURD.
: RIGHT HAND SIDE.

THE ITH EQUATIOFJ IS:
DESTROY ED AfJD REPLACED  BY SOLUT I ON.

I=1
Btl)*X(l-1)+A(l)*X(l)+C~l)*X(l+l~=F(l+l~

,...,N ; N CORRESPONDS TO (N-1) ItJ THE MAIN PRhRAtI.
********f******+******************~***************************~****
DIMENSION A(257),B(257,,C(257),F(257,
FACTORIZATIO!d
no 10 b2,N
IMl=l-1

C( IMl)=C( IMl)/A( IMl)
A( I )=A( I I-B( I )*C( HI11
F(ZbF(Z)/A(l)
DO 20 I=Z,N
F(l+l)=(F(l+I)-B(l)*F(I))/A(I)
BACK SOLUTION
Nt41=tJ-1
NPl=N+l
DO 30 l=l,NMl
IN=NPl-I
F(lt~J)=F(lN)-C(ltJ-l)*F(lt~+l)
RETIJRN
EtlD
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SIJRROUTINE U2DCIG(K,P,O,N,A,Y,S,  IFPROR,FVFN)
IMPLICIT REAL*8(A-H,O-I)
I NTFGER P, r!
1-W I CAL EVFN
WWNSION A( SO),Y(ZS7),S(257),C(50)
*****f**+**************++***+******+******~*~~******~*~***~~*****~****~~~~~
THIS 1 S AN UN I VFRSAL TWO POINT RWNDARY VALUE DEFFRRED C@RRFCTl ON
GENERATOR.
G I VEN THE ASYYPTOTI C EXPANS 1 WI

T(K) = SUM(A(,J)*(D**(J-l))Y/(J-l)!  * H**(J-1))
J = Q+l ,...,Q+P+K

AvD FUNCTION VALUES Y(l),...,Y(N+l),
UNIFORMLY H-SPACED MESH :

COPRESWND I !-II: TC) AN
X(l) = X(1) + (I-l)*Y

U2DCG W I L L  PRODUCE S(Z),...,S(N) : AN H**(I)+P*i?)
I = 1
ORD&*

N+l,

APPROXIMATION TO T(K) AT THF INTERIOR r,F?lD POINTS,
FOR FIXED INTEGEQS N,P,O, A PFSTQICTION ON K IS
*****+** *r******
ALSO P .GE. 1

K .LE. (Wl-fl)/P
0 .GE. 1

IEQROR =
K .r,E. 1

1 MEANS’THAT ONE OF iWSE CONnlTlONS HAVE BEEN VIOLATED
AND NO CORRECTION HAS SEEN CWWUTED.
A(1) , . . .,AW APE SET TO ZFRr) RY lJZDf?G.
IF THE EXPANSIT)N T(K) C’AS ONLY  EVEN DERIVATIVES THFN EVEN SHr)UtD
RF SET TO .TRUF. OTHFRWISF IT Sf-WUCD SF SET TO .FALSE,

FERRUARY 1973 **+***+++++*+++*+ VICTOQ PERFYRA
*************+*****~**~*~*~*~*~~*~****~**~*~~*~~~~***~~~~**~~*~~**~
I F  (K .GT. (N+l-W/P . O R .  P .

+ r,n TO 1 0 0
LT. 1 .O% fi .LT. 1 AR. K .LT. 1)

PO 20 l=l,‘!
A(l)=O.
KKl=Q+P*K
KK=KKl-1
KM I bKKl/Z
I ERROf?=
KMlW=KMlD-1
KINT=KKl
UNSYMMETR I C APPROX I MAT I ON.
IF(KMlD1 *LT.  2 )  G-0 TT! 1 0

LEFT BOUNDARY.

PO 5 l=Z,KMtDl
PALL COEGENfKKl, I,C,A)
ACUM= 0.
00 4 J=l,KKl
4(1UM=ACUM+C(J)*Y(tJ)
S( I bAClJM
CENTER, RANGE
IF(.tJOT. EVEN) CO TO 25
KlNT=KK
C A L L  CflEGEN(KlNT,KMlD,C,A)
YF=N+l-K t NT+KM I D
DO 40 bKMID,NF
AClW=r).
I l=I-KMIT,
DO 78 J=l,KINT
AC~JM=ACUb4+C  (3 1 *Y ( I I + 3)_ _

40 S( I)=ACUM
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RI WIT BOUlJDARY
IF(KMID1 .LT. 2) RETURrJ
KM IDPl=KEd  ID+l+KKl-K  INT
DO 50 I=KElIDPl,  KK
CALL COEGEIJ(KK1, I, C,A)
ACUM= 0 .
I I=N-KK
I l=tJ+l-KKl

DT) 4 8  J = l ,  KKl
AC~Jl~t=ACUf~l+C(J)*‘f(  I I+,J)
S(I+Il)=ACUM
RETURN
IERROR=l
RETURFJ
E N D
SIJRROUTINE  COEGEN(ti,  N P ,  C ,  B R )
IMPLICIT REAL*8(A-ti,O-Z)
DIFIFXSIOU C(501, RB(5O),ALF(50)
**********************************+*********************************
THIS lS A SLIGHTLY MODIFIED FORTRAN 4 VERSION OF THF ALGOL
P R O C E D U R E  P V A N D ,  P .  9 0 1  O F
“SOLUT  I OfJ OF VAMDERMONDE  S Y S T E M S  O F  E Q U A T  I O N S ”  B Y
A. NORCK AND V. PEREYRA. MATH. COMP. VOL. 24,PP.893-903 (1970),
WHERE A COMPLETE DESCRIPTION OF THE METHOD USED CAN BE FOUFJD,
TH I S ItWLEfJEf~TAT  IOtJ A S S U M E S  T H A T  THE ALF( l )  A R E  INTEGERS,
*t*****************+*************+***************~****~****
DO 1 I=l,N
C(I)=BB(l)
DO 11 l=l,N
ALF(  I )= I-fJP
fdtJ=  tJ- 1
DO 6 I=l,fdN
LL=N-I
DO 6 J=l,LL
K=tJ-,I+1
C(K)=C(K)-ALF(l)*C(K-1)
D O  8  I=l,  NtJ
K= tJ- I
XKlfl=l.DO/K
KM= I;+ 1
D O  8  J= Ktdl,  fJ
C(J)=C(J)*XKItJ
JMl=J- 1
C(,ffll)=C(JMl)-C(,J)
RETU RfJ
END
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MA IN PROGRAM FOR TESTING 8Tt4 ORDER METHOD FOR 2 PVRPR.
IMPLICIT REAL*8(A-H,O-2)
EXTERNAL F1, F2, F3, Fk, DFil, DFY3, DFY4
Dlb1ENSl0~ X(257),Y(257),lPROR(ln),YEX(257)
Pl=3,141592653589793DO
READ,(IPROR(I),I=~,~),JJ,N
DO 100 J=l,JJ
N=2+N
DO 100 Id,4
IF(IPROB(f) .GT. 0) GO TO (1,2,3,4),1
GO TO 100
X(1)=0.

X(N+l)=PI
Y(l)=O,
Y(N+l)=O.
PRINT,' PROBLEM I l N=',Id
CALL DCRVP8(IJ,  Fl,D;Yl,X,Y)
CALL EXACTl(YEX,X,N)
GO TO 10
X(1)=0.

X(N+l)=l.0
Y(l)=O.
Y m+n=o.
PRINT, ' PROBLEM 2 l N=’ N
CALL DCBVP8 (N, F2, Fi, X, Y;
CALL EXACT2(YEX,X,rJ)
GO TO 10
X(1)=0.

XW+1)=1.
Y(l)=l.
Y(N+l)=l.
PRINT, ' PROBLEM 3 l N=' fd
CALL DCRVPS(N,F3,DiY3,X;Y)
CALL EXACT3(YEX,X,N)
GO TO 10
X(1)=0.

X(N+l)=1.
Y(l)=O,
Y (N+l)=0.
PRINT,' PROfILEId 4 l N=' N
GALL DCRVP8(N,F4,D;Y4,X;Y)
CALL EXACT4(YEX,X,N)

ERRNOR=O.
DO 35 L=2,IJ
~RR=DAOS(Y~X(L>-Y(L))

IFtYEXtL) FQ. 0.) GO TO 35
ERR=ERR/DAiS(YEX(L)I

IF(ERR .GT, ERRtfOR) ERRNOR=ERR
PRINT,X(L),Y(L),YEX(L),EPR

CONT I NUE
PRINT,ERRNOR
CONTINUE

STOP
END
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SUBROUTINE Fl(FJ,X,Y,FU)
IMPLICIT REAL*8(A-H,O-2)
DIMENSION X(257),Y(257),FU(257)
Nl==tJ+l
DO 10 I=d,NI
Sl=DSlN(X(l))
FU(I)=Y(I)**3-SI*(I.+Sl*+2)
RETU RFJ
END
SURROUT t NE
IlJlPL I C IT

DFYl (N, X, Y, DFU)
REAL*8 (A-H, O-Z)

DlMNSlOfJ X(2571, Y(257), DFU(257)
Nl=N+ 1
DO 10 I=l,Nl
DFU( I )=3. +Y( I )**2
RETURN
EFJD
SUBROUTINE EXACTl(YEX,X,N)
IMPL I C IT REAL*8 (A-H, 0- 2)
DIMENSION YF3((257),X(257)
no 10 l=2, N
YEX(I )=DSIN(X(I))
RETURrJ
EtJD
SURROUT IFJE EXACT2 (YEX, X, N)
IMPL IC IT REAL+8 (A-H, O-2)
DlMENSIOtJ YEX(257),X(257)
C=1.336055694906  10800
CO2=.5*C
DLN2=-DLOG(2.  DO)
DO 10 1=2,/J
YEX(I )=DLN2+2.*DLOG(C/DCOS(C02*(X(1 )-.5)))
RETURN
END
SUBROUT I fJE F2 (tJ, X, Y, FU)
IWL IC IT REAL*8 (A-H, O-Z)
DIMENSION X(257),Y(257),  FU(257)
Nl=N+l
DO 10 I=l,Nl
FM I )=DEXP(Y (I ))
RETURN
END
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SIJBROUT I NE F3(N, X, Y, FU)
IMPL IC IT REAL*8(A-H,  O-t)
DIMENSIO!J  X(257),  Y (2571,  FU(257)
N14J+ 1
TWOPl=6.283185307179586DO
TPSQ=TWOP I *TWOP I
D O  10 Id,141

c

.--

r

t-

I

TPX=TWOPI*X(  I)
Sl=DSltJ(TPX)
EXPSI=DEXP(SI)

10
rc
F~J(l)=Y(l~*(I.+Y(l)*Y~l))+EXPSI*(fPSQ*(DC~S(TPX~**2-Sl)~
EXPSbEXPSI-1.1

RETURN
END
SIJRRT)lJTI  tJE DFYJ (FJ, X, Y, DFU)
IMPL I C IT REAL+8 (A-H, O-Z)
DIMENSION X(2571, Y(2571, DFU(257)
!Jl=IJ+ I
D O  1 0  l=l,Nl

i-

L

!

L

L

.

10 DF~J(I)=1.+3.-+Y(I)*Y(I)
RETURN
END
SIJRROUTIfJE EXACT3(YEX, X, rJ)
IMPL ICIT REAL*8 (A-H, O-Z)
DIMEIJSl01J YEX(2571, X(257)
TWOPI=6.283185307l79586DO
DO 10 b2,rJ

10 YEX(l)=DEXP(DSl!J(TWOPl*X(l~~~
RETIJRN
ElJD
StJRROUTI NE F4 (N, X, Y, FU)
IidPL IC IT REAL*8 (A-11,0-2)
DIMENSIOFJ X(257),Y(257),  FU(257)
Nl=N+l
D O  10 I=l,N1

w FU(I)=.S*(Y(I)+X(I)+1.)**3
RETIJRN
EN I)
SlJRROUT I NE DFY4 (fJ, X, Y, DFtJ)
IMPL IC IT REAL*8 (A-H, O- 2)
D.IFKMIOlJ  X(257),Y(257),DFU(257)
Nl=N+  1
D O  10 I=l,Nl

10 DFU(I)=1,5*(Y(I)+X(I)+1,)**2
RETURtJ
ErJD
SURROUT I IJE EXACT4 (Y EX, X, N)
IMPL IC IT REAL*8 (A-H, O-Z)
DIMEFJSIOFJ YEX(257),X(257)
DO 10 b2,N

10 YEX~l>=2./~2.-X~l~~-x~l~-l.
RETORN
EIJD
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II.67 Operation count

In this Section we shall make an operation count for the O(h8)

algorithm just described. First of all, each Newton iteration requires

(n-l) evaluations of the function f and its partial derivative f
Y l

All the other operations required are arithmetic or logical and our count

refers to the former. *'M" will stand for multiplications or divisions,

and "A" will stand for additions or subtractions. Integer operations

are not counted. We call nl = n-l , and we shall essentially keep only

the higher order terms in the total count.

The mazn steps in a Newton iteration are:

(a) Computation of residual: 5nlA + 3np

(b) Setting tridiagonal system: JnlA + 3yM

(c) Solution of tridiagonal system: 3nlA f 5nlM

(d) Updating of Y nA
1

(2.48) l2nlA i-llnlM/Newton  iteration

We won't count the operations involved in the computation of the

initial value Y" by linear interpolation since that can be considered

as a step common to all techniques of this type.

Finally we have to account for the work involved in computing the

correction. We have:

(a) 5 calls to the Vandermonde solver: 96A + 6&M (independent of n!)

(b) Calculation of S: 7nlA + 7yM

(c) Parts b), c), d) of Newton: 'j'nlA + 8nlM

14nlA +.@nlM .

Therefore, if' i Newton iterations are performed, then the total work will

be
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(2 049) TW = (l2i + 14)nlA + flli + 15)nlM .

Let us consider, for instance, Problem 2. For h = 1/32 , four

Newton iterations were required in order to decrease the residual below

1.55, -17, and the corrected 8O(h ) result had :A max. abs. error of

4 .08 , -15 at the grid points. Formula (2.49) tells us that the total

number of operations is then:

(2.50) TW(prob.2;def.corr.;n=32)  = 1922 A + 1829 M .

Since the basic method is clearly O(h
4

) we can estimate what kind

of a mesh would give us equivalent accuracy (nQ56 is almost there, but

not quite). In fact we would need 790 points in order to achieve that

accuracy (provided that roundoff' does not ruin it first). From the num-

ber of Newton iterations required for the various mesh sizes shown in

Table 2 we can expect that again 4 iterations will be needed for n=790

1

t

1

and the operation count will be in this case:

(2.51)
4TW(prob.2;O(h )method;n=780) = 37440 A -I- 34.520 M .

We see comparing (2.50) and (2.51) that the 4
O(h ) method will

need approximately 20 times more arithmetic operations than the corrected

one. Also we must count the number of function evaluations. In this

problem fy - f - ey , but in order to make a general statement we shall

.count 2nl function evaluations per Newton step. Thus the O(h8)

method, with n=32 , requires FE = 330 $ while the 4
8 O(h ) method with

n=780 will require FE4 = 6248 , i.e. again about 20 times more work.

We should also mention that 25 times more srDrage will be needed for the

4
00-l > method to achieve the desired accuracy. However, all this compari-

son is unfair. After all we expect a bona fide high order method to
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perform better than a lower order one; therefore, except to emphasize this

fact in a specific case, we should look for stronger competitors.

&ccessive IJxtrapolations  (SE)

With minor modifications our program for deferred corrections can

be employed for performing an algorithm similar to the one described in

11.4. In fact, what we have done is to introduce the necessary changes

in the Main Program of p. 47 and " short-circuit" the correction step in

DCBVP8 by replacing the 5th statement of p. 43 by

IF(RE&DC.EPS) RETURN

Thus, Subroutines U2DCG and COEGEN are unnecessary. Since our

basic method has order 4 then, given ho , we call Y! , i=l,..., to the

(no-l) vectors obtained from the solutions Y These are to be,

of course , approximations to y*(a + kho) . We then form the successive

columns of the extrapolation triangle by:

4(j+l),j _ +I
i i-l

4(3+U _ 1 l

d

Observe that

yj+l
i - 'p$* = O(ho

2ji-b )

and only two orders of h are gained per extrapolation.

We report now the max. absolute error in Yz for the various prob-

lems and different initial meshes.
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L Problem 3 Problem 4

i

Problem 1

n0 error8 m

4 1.69, -9 -w-N

8 1.60,  -11 6.72

16 1.68, -13 6.57

32 3.31, -14 2.34

Problem 2

error
8 m

4.01, -I2 m-w-

1.64, -14 7.93

2.87, -16 5.84

8.01, -16 -w-m

Table 7

n0 error8

l+ 6.06, -5

8 8.14, -7

16 2.06, -9

32 7.51, -I2

64 1.38, -13

m

-M-w

6.22

8.63

8.10

5.77

error
8 m

2.97, -9 -w-m

1.45, -11 7.68

6.07, -14 7.90

6.24, -16 6.60

Thblc 8

n Computer Times
0 in sec. (all problems)

4 0.38

8 0.75

16 1.45

32 2.96

Table 9
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It is somewhat hard to choose a reasonable criterion of comparison

between these two methods. One that seems adequate is to choose two

results of similar accuracies and compute the work necessary to obtain

them. From Tables 3 and 8 we find that for Problem 3, DC with n-256

has an accuracy of 1.33, -13 , while SE with n =64 attains an accuracy
0

of 1.38, -13 . From Table 3 also we learn that 6 Newton iterations are

necessary to reduce the residuals to the necessary level for n=64, 128,

256 . Thus the total number of operations for DC is, according to (2.49):

(2.52) TW(prob.3;def.corr.;n956)  = 21930 A + 20655 M ,

For the SE procedure we recall that the basic problems for meshes

n=64, 128, 256 must be solved and their results combined linearly. This

last part requires 3noA + 6n M ,
0

and combining this figure with the work

required by the various Newton iterations we get

(2.53) TW(prob.3;Rich.ext.;no=64) = 32448~ + 29952~ .

The number of function evaluations is in each case:

(2.54) FE(DC) = 3598 ; FE(SE) = 5412 .

Finally, we must remark that DC gives its 8O(h ) solution at 256

e points while SE only gives it at 64 points. The computer time required

by SE for this problem was 1.79 sec., while DC took only 1.18 sec.

Thus we see that in this problem, for the same accuracy and 4 times more

detail, deferred corrections is 1.5 times faster than successive extra-

polations, both methods being of the same asymptotic order, Also observe

that Problem 3 is the most "difficult" of our set of test examples.

In the following Chapter, an Iterated Deferred Correction procedure

will be developed, and we will be able to carry out additional comparisons

with higher order successive extrapolations.
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Finally we would like to point that in higher dimensional problems

the effect of' mesh refining on the amount of work and storage is much more

dramatical, as it has been indicated in Pereyra [1967].

We include some sample results and the modified programs for SE.

b



c

F

i.

c

c”
A
0
cn
m
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h
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CJ-
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z:cccJ+

CUDI-OJ*
--faJM +
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VAl N PROGRAM FOR TESTING SUCCFSS I VE RICH. EXTRAPOL. FOR 2PRVP
FfW A GWEN BASIC MESH N, PRC)SCEMS FOR WHICH IPROR(I)=l ARE RiJN.
(&I-l 1 RI CHAI?I)SON EXTPAPOLATI WvS ARE PERFORMED.
fMPLlClT REAL*8(A-H,O-2)
FXTERNAL  F~,F~,F~,F~,OFY~JIFY~,~FY~
fJlMENSION X(257),Y(257), tPR~R(lo),Y~X(257),R(257,6),RFR(6,6)
Pl=f. 141592653589793DO
sEAn,(rPRoR(f),f=l,4),JJ,~f
Nl=N
WbN*2
DO 100 l-l,4
N=Nl
IF(IPROR(I) .EQ. 0) GO TO 100
DO 1 0 0 0  J=l,JJ
l'J=2*N
GO TO(1,2,3,4),  I
X(1)=0.

X(N+l)=PI
Y(l)=O.
Ym+l)~o.
CALL tWWP8(N,Fl,0FYl,X,Y)
CALL FXACTl(YEX,X,N)
CO TC) 10
xtn4.

X(N+l)=l.T)
Y(l)=O.
Y(M+l)=rI.
CALL DCRVP8(N,F2,F2,X,Y)
CALL FXACT2(YEX,X,N)
GO TO 10

X(1)=0.
X(N+lbl.
Y(lb1.
Y(N+l)=l.
CALL DCRVP8(N,F3,DFY3,X,Y)
CALL EXACT3(YEX,X,N)
GO TO 10

X(1)=0.
.X(N+l)=l.
Y(l)=O.
Y(N+l)=O.
CALL DCWP8(N,F4,!?FY4,X,Y)
CALL FXACT4(YEX,X,N)



II)

35

c

90
1000

t

18r,

it-

i

i

11

12

I3

1 4
15

1
c

190
200

300

1fM

FRRNOR=O,
P O  3 5  La2,N
~RR3nARS(YEX(L)-Y(L))
IFMRR ,GT. ERRNOR) FQPNf'IR=ERR
CONTINUF
RER(J,l)=EPRNOR
LST=2+*(J-1)
LL*LST+l
n o  9 0  L=2,wI
WL,JbY(LL)
LL=LL+LST

CONT I NCJE
wb(X(N+1)-X(l~ )/NO
P O  180 L=2,NO
X(L)=X(l)+(L-l)*Hr)
WINT,' PRORLEM',I
GO TO (11,12,13,X4),1
CALL EXACTl(YEX,X,NO)
GO TO 15
CALL  EXACT2(YEX,X,NO)
G O  T O  1 5
C A L L  EXACT3(YEX,X,NO)
C O  T O  1 5
CALL EXACT4(YFX,X,NO)

PO 200 J=2,JJ
110=4**3
nrv=l.n~/tc~-l.no)
PO 200 Il=J, J J
tR=JJ-Il+J
ERRNOR=fI,
PO 190 L=2,NO
WL, lR)~~lV~(~~*Q(L,lR)-R(L,l~-~))
~RQgnARs(R(L,lQ)-YEX(L,)
IF(EQQ .GT, FRRNOR) ERRNOP=EQf'
CONTINUE
QER(IR,J)=ERQNOQ
PQINT, ' RICHARDSON EXTRAPflLATION  M4X. FRQOR ON (;RID MO=',N(1
P O  3 0 0  Il=l,JJ
~QINT,U?EQ(II,J),J=i,llI
PRINT, '***~*+***************,*****~*'
CONTINIJE
STOP
FND

-58-
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StJRROUTlNE  DCRVP8(N,F,DFY,X,Y)
I M P L I C I T  REAL*f!(A+,O-2)

*
D I M E N S I O N  Xt257),Y1257),A(257),~~2S7~,C~257),R(257),AA~50)

,FU(257),DFU(257)
c
c1

**+**********~******+********************~**~*~*~~~**~*~****~*~*~~~
TWT, POINT ROtJNDAQY  VALUF PQOPLEM SOLVER FOR

c
c

-Y”+F(X,Y) = 0 , Y(X(l))=Ytl)  , Y(X(N+lI)=Y(N+lI
TYE Y**4 ORDER METHOD

c
c

H+*-2 *~-Y~l-l~+2*Y~l~-Y~l+l~~+~F~l~l)+l~~F~I~+F~l~l))/l2
IS USED

= 0

C **++LlMITED T O  N  = (X(N+l)-X(1)1/H ****+
c

.LE. 256

c
To PQOCFSS  FINER M E S H E S  Ct4ANGE THE DlMfNSlCbN  S T A T E M E N T S
IN ALL SIJRQDUT? NES ACCORD I NCLY.

$+****USER PROVIDED DATA*++++
c X(l) = L E F T  E N D  ARSCISA
c X(N+l) = QlGw!.  E N D  ARSCISSA
C Y(l) A N D  Y(N+I) :
c N+ 1

CORRFSPOND I NC:  RC)!JIS~AQY  VALtJES.

c
IS Tf-‘E NUMRER OF MESH POIYTS (CC?Ul\~TING  TNF END POINTS),

r
N M U S T  SF GQFATFR  O R  E Q U A L  THAN TbIO.

c
T H E Y  A R E  A S S U M E D  T O  RF E V E N L Y  S P A C E D  RY H = (X(N+l)-X(11)/N
F l

c
DFY APE EXTERNAL USFR PROVIDFD SURQOUTINES THAT SHOULD PRODUCE

c
THE MESS FUNCTIflNS FtX(l),Ytl)) ) DF/DY(X(I),Y(I)),  I=2,...,N, QFSP,
THE1  R CALLING SEQIJENCES MUST RF:

c
c

F(N,X,Y,FU)

c
DFY(N,X,Y,DFUI

c
!AJYERE FU(257),DFU(257) A R E  THF O N E - D I M E N S I O N A L  A R R A Y S  T O  RE

c
F  I  LLED W I T H  TME REq!IJl  R E D  I4ESH FtJNCtlONS.
ON OUTPUT THE APRAY Y WI LL CONTAIN THF COMPUTED 01 SCRFTE SOLUTIT)\~lr.
NPl=N+1
H=(X(NPI)-X(l)  )/fS
YS~.=FI+* 2

c*****
c

N E X T  STATEMENT IS I NSTALLATI r)N DEPENDEwT ***++****

c -
IF THIS PROGRAM IS NOT USED r)N AN I RM/36fI COpPtJTER IN REAL+8 PREC,

c
THF CONSTANT 5.Ob16 SpOULn  RF QEPLACFD RY (APPQ~Ix IMATELY)
lT)+MACHINE  PRECISIOPI

c NEWTON I T E R A T I O N ,
IN OQDER  TO AVCI I D UNDUE CYCLING lb4 THF

FPS=DMAX~(~.OD-~~,.O~I~~~*~!S~**~)
.Cl=(Y(NPl)-Y(l))/N
PO 10 b2,N
x( I I=xw+( I-l)*H

10 Ym=CI*(I-L)+Y(1)
HSn012=HSfl/12
Al=f.*HSfI/G
I TNEW=(!
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36
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40

do-

C A L L  F(N,X,Y,FtJ)
RESN=O,
P O  2 0  b2,N
r!(l)oy(l-l)-2*Y(I~+Y(I+1~-~S~O12*~F~~~l-1~+lO.~FII~l~+FU~I+l~~
TF=DABS(R(I))
IF(TE .GT. RESN)  RESN=TE
IFfRESN  .LE, FPS) RETIJRN
C A L L  DFY(N,X,Y,DFU)
DO 3 0  b2,N
A~!-l~~Al~DFl~~l~+2.
R(f)=HSC1012*DF1I(I)-l.
~~l-~)~~S~Ol2*~F~~tl+l~-l.
lF(N-2)35,35,36
QG?)PR(2)/A(l)
CO TQ 3 7
NMl=N-1
C A L L  TRISOL(A,R,C,R,NMl)
ITNEW=lTNEW+l
00 4 0  I - 2 , N
Y(I)=Y(I)+R(I)
IFtlTNEW  .LE. 10)  GO T O  1 5
ENP

i
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III. Computer implementation of iterated deferred corrections for
boundary value problems

The iterated deferred correction (IDC) algorithm described in

Chapter II, p. 27, requires the computation of the various correction

operators S k that approximate the sections of the local truncation

error. Given a known basic discretization Fh of order p , and the

kth segment of the asymptotic expansion for the local truncation error:

q+pk-1

(3.1) Tk(x) =
c

Y* (j)(x) hj
aj+l j! 3

where the coefficients a
3

are independent of h , we would like to have

a flexible, fast, and accurate algorithm capable of producing the weights

W s that define Sk (see (2.30)). In the next Section, we develop such

an algorithm, which can also be used for other applications. The fact

that the sum (3.1) starts from q # p has been added for even further

f'lexibility. There are situations in which the order p and the first

derivative appearing in the expansion do not coincide, in which case this

added flexibility will come in handy. Subroutine WDCG of p. 45 is a

- FORTRAN IV implementation of our dlgorithm.

III.1 An automatic weight generator f'or numerical differentiation
and other applications

Given a smooth function y(x

points 1x1 , and an abscissa 5; ,

the number

m

> , an uniform mesh of: size h with

we are interested in approximating

II&

(3.2) L(y)(?) = c aj+l '(j$ hj
J*

j=O '
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c
L

-
by means of a linear combination of values of the function y(x) at some

of the mesh points:

m+l

c (3.3) M(Y) = c wsY(” s - r > >
s=l

where r is a given integer. The algorithm that we are about to describe

i-
can be easily adapted to the case of nonuniform meshes, but here we prefer

L
to present it in its simplest form.

We assume that the accuracy required is O(hmfl) . It is well known

L- (see Collate cl.9601, Ballester and Pereyra [1967]) that if y(x) has (m+l)

L
continuous derivatives then the approximation (3.3) exists if one takes

t = m + 1 different abscissas.

L
!

Proof: Let cys = (x
s-r - 3/h ' and let us expand M(y) in a Taylor

series around ';; :

NY) = 2 ws 2 + hj$ + 2 wsa; Y':; (E) ht

s=l j=O
.

s=l

(3.4) M(Y) = 5 (2 ws<) y(;;(x) hj + (5 ~~".L)~(~tjl) ht .

j=O s=l s=l

Our aim is to make the difference M(y) - L(y)(';;) as large an

order of h as possible. Matching terms with the same powers of h

generates the following conditions for the weights ws

t

c

.
(3.5) W d

ss= aj+l '
s=l
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In order to make the linear system (3.5) square we can impose as many as

t of these conditions, i.e. j=O,...,t-1 . If this system of linear equa-

tions can be solved then the resulting M(y) will have the property

(3 96) M(Y) = L(Y)(X) + d$. ht .
.

But system (3.5) is a Vandermonde system of equations and since

the cys are distinct it is non-singular.

Therefore, our problem of evaluating the appropriate weights w
S

has been reduced to solving systems of linear equations of the form:

(3 -7 > v(cy)_ Nw = a

where cYT = ( Q1>*-.,q $ zT = b,,*-,q 9 ET = b,,-•*,wJ

and V@) is the Vandermonde matrix:

(5 08) v(cy> =

1

11 . . . 1

5 cy2 l l l Qlt

2 2 2
9 cy2 l l l *t

. l . . . .

t-1 t-1
(5 l l l l at

l

I L,

.

It is well known that Vandermonde matrices are ill-conditioned

(cf. Gautschi [1962, 19653), and if one attempts to use a standard Gaus-

sian elimination code on this type of problem, failure occurs even for

very modest sizes. Great loss of accuracy is also common, even for t=5 .

Fortunately, there are techniques for solving this and similar kinds of

problems that not only are more accurate and stable, but that also
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take much less arithmetic operations to produce the desired result. Nat-

urally, they take advantage of the special structure of the matrix V(z)

(see Ballester and Pereyra [1967], Bjijrck and Pereyra [lgO], Galimberti

and Pereyra [lgO, lg/l] and Pereyra and Scherer [lg3] for more details,

generalizations and other applications).

In Bjzrck and Pereyra [190], a method for solving the transpose

(dual) problem

(3.9) VT(a) a = fN 0.8

is developed. A matrix interpretation of the method permits then the

consideration of the direct problem (3.7) with little difficulty. For

problem (3.9), advantage is taken of the fact that if we think of the

elements of the vector f as values of a certain function, then the

equations (3.7) are just the conditions of interpolation by a polynomial

of degree (t-l), and therefore, the solution a will have as components

the coefficients of the unique interpolation polynomial:

t-1

P(x) =
c

S
a
s+lX l

s=o

The Newton form of the interpolation polynomial P(x) is obtained
L

if one considers the new basis given by the polynomials

k
(3.10) $(x> = 1 , C&(x) = TT (x - a ) , k=l,...,t-1i .

i=l

With this basis, we have

L

t-1

(3.11) P(x) E
c Cks(x) 3
k=O

c



i
!

L.

c

L

c-

-65 -

where the coefficients
'k

are the divided differences constructed with

the function values f and the abscissas CY :

‘k = fry, l . . ,

%+l '1 k=O ,...,t-1 .

It is well known that these divided differences can be obtained

recursively by

(3*12)  f[cyj_9,.*o,~j+ll =
fCQ

j-k+l�  l l � )aj+l 1 - fbj-k ,*~*,cujl

@j+l - ajBk 3

k=O ,.,.,t-2 ; j=k+l,...,t-1  .

Once we have computed the vector c of divided differences then a

Homer-like scheme permits to evaluate (3.11). In fact, we can compute

(3*13) 9t,lb) = c t-1 ' qkcx) = tx - @k-+l>qk+l(x) + 'k 3 k=t-2,***,0 3

and then clearly,

clo(�) = p(⌧) l

Let

qk(x) = ait{ + a/$x + . . . + aik)xt-lMk ,

(t-1)
‘j+l = ‘j 5 j=O ,...,Ll .

If we replace these expressions in (3.15) we obtain a simple recursion for

the coefficients od
aj > k=t-2&3,...,0

04a. =a ck+')
3 j 9 j 1=

3.. l ?

k ; t

(3.14) ailk;: = c
k

- cyk+la./kkl) Y

04a. (k+l)
3 - mk+laj+l , j=k+2,...,t-1  .

Recursions (3.12) and (3.14) furnish the solution to problem (3.9).

Let us consider the lower bidiagonal matrices of order t ,
Lkc )a! f defined by
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36 )CY ii =l;
Lk( )cy i+l,i = o , i=l,...,k ;

(3.15)

Lk( )CY -j+l,i = ma Y i=k+l,...,t-1  .

We shall call

and Dk to the diagonal matrices;

(3.16) D
k = diag (1 ,-",l,(%Q - @,),.*&!t - at k $1 'a -

With this notation it is easy to see that recursions (3.l.2) and (3.14) can

be represented in matrix form as:

( >0
s = NY ,cf 04

(3.17)
y k=O,...,t-2

(k)Y g , k=t-2,...,o .

Calling UT , LT to the lower and upper unit triangular matrices

(9.18) UT = D;12Mt ,...D-+jw ' 0 0'
LT 7: LTLT T

0 1'" I;t-2

then we see that (3.17) can be expressed as

(3.19) c = UTf-' E = LTc .

Since ,& = v-Tf -T
Y we have then V = LTUT Y or

(3-w v-l = a , v = L’l.fl Y

and we have found a factorization in bidiagonal factors of the unique tri-

angular matrices furnishing the UL decomposition of the inverse Vander-

monde matrix V-l . With this factorization we can easily write a recursive

algorithm for solving the problem of our more immediate interest, i.e. the



primal or dircct Vandermonde system (3.8). %n fact, we have

(3.21) x = V-'(cY)~ = UL_a = (MTn-l...~t 2Di12)(L
0 0 . ..L )at-2 o-'

from where we can easily derive a recurrence to compute w . Subroutine

COEGEN (see p. 46) is a FORTRAN IV implementation of this recurrence, while

in [ 51 Algol 60 implementations of both Vandermonde solvers and some

variations can be found.

In the present implementation the user has to provide the size of

the system N , the integer location of x , NP , with respect to the

,
t-

nodes used in (-3.3). We assume here that x is actually a grid point.

i

I
L

With this information COEGEN generates the vector cy , whose components

are integers: Q
i

= i - NP . Therefore the elements different from 1 in

=k+l,the diagonal matrices Dk (see (3.16)) are simply: CY
S - *s-k-l

which amounts to the small modification we mentioned above. The right

i
i

hand side of the system must be supplied in the array BB , while the

solution to the system will be found upon output in the array C . In our

application COEGEN -is called by tt10 subroutine U2DCG that we pass to

de:; cri.be .

.

III.2 A Universal 2-point boundary value Deferred Correction Generator

As we said before the gist to an effective implementation of iter-

ated deferred corrections lies in being able to obtain the correction operators

Sk approximating the expansions (2.30) or 11.6.3. The correction operators we

are going to develop are of the general form (3.3), and therefore the subrou-

tine COEGEN will be an impol,tant component in our algorithm. Other types

of corrections are possible as we have pointed out in [j&l. See also Denny
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L
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L

I

and Landis [lg2]. The word Universal in the title of this Section refers

to the fact that we hope that the generality of the subroutine U2DCG will

be able to cope with a variety of different boundary value problems and

various discretizations. For instance, we have seen already for the

simple problem (1.1) two different discretizations which in turn produce

different asymptotic expansions (cf. (2.29) and 11.6.3, p. 30). The

theory developed in Chapter II, which carries over to many other situa-

tions, and our comments above are the reasons for the choice of the form

(3.1) as the type of general expansions we would like to approximate.

In a two point boundary value problem, where approximations to an

expansion of the form (3.1) are necessary at all the interior grid points

of an uniform grid, we are faced with various standard problems:

(a) The order of the approximation must be 00-lq+pk) at

each point.

(b) We like to use as centered formulas as possible since

they have the smallest truncation constants and smaller

weights. In the "center" of the interval we can do this

without difficulties, but as soon as we get closer to the

boundaries we need to use unsymmetric formulas.

These tasks are fulfilled by the subroutine UZDCG which is listed on p. 45

of these notes.

The user needs to know what kind of an expansion he wants to approx-

imate, i.e. he has to provide the coefficients a
3

in (j.l), for

ii = q, . . ..q+pk-1 (setting to zero those for which the corresponding

derivative does not appear; observe that due to programming language

limitations, the coefficient,
&j

corresponds to the (j-l) derivative).
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Thcl other two parameters required ar(: the order p of the basic method

from which the expansion came, and the correction  step k which is desired.

The number of interior nodal points plus one, N , is also required, and

finally the grid function (array) Y , which will be used in formulas like

(3.3) must also be provided. It is assumed that Y is an O(hq+P*(k-1))

order approximation to y"(x) l On output, the correction mesh function

Sk(Y) is produced in the array S . The integer variable IERROR will be

equal to 1 and no correction will by computed in case some of the following

assumptions are violated,

(3.22) K < (N+l-Q)/P ; P , Q , K > 1 .-

The condition P , Q , K > 1 is pretty obvious; the first condition is a

constraint motivated by the fact that a minimum number of grid points are

necessary to achieve a given accuracy for a certain derivative. Thus in

order to obtain the required accuracy we need q + pk points. Since we

count with N+l grid points and p and q are given then that imposes

a condition on k , Of course, if our expansion consists only of even

derivatives then we can have sufficiently accurate symmetric formulas
a

with only q -I- pk - 1 points, aL least in the center range. This case

is indicated to the subroutine by setting the logical parameter hVEN to

*TRUE., otherwise this parameter should be set to .FALSE. .
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,t .rrl.3 Asympt t'o ic error estimation by deferred corrections
-

The procedure of' Section 11.6.3 was actually a way of obtaining an

asymptotic error estimate for the basic o(h4) solution. It turns out

that a similar technique can be employed in general to estimate the error

in an iterated deferred correction algorithm. We shall give now an ex-

planation associated with the O(h4) method of 11.6.3, but this result,

as most of the others , carries over to much more general situations (cf.

C391).

For k=l,... let

-- 4*

(3.23) Tk(X) = a
j

with
j=4

L
(3.24) aj =

j odd ,

j even .

c

4*@+1)

Let sk([phY*)(x.) =1
c

Wsif Cxi-ri+s' '1-r +s) )
s=l i

c
i

I
i

- where the displacement r
i will be dependent upon the position of x

i
in

the interval [a,b] (cf. 111.2). The weights w
si are chosen so that

.(3*25) s
k
(yck-')) = Tk(x) + O(h4*(k+1)) ,

i
where the discrete function Y (k-1) satisfies

! (3.26) Gh(y(k-l$ = s
k-l

(yck-")) Y

and

(3.27) ek,l = '
(k-l)

- qhY* = O(h4k) ,
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Theorem 3.1. Let 4
k-l be the solution to the linear problem

(3.28) G;(Y("-l) )A = Sk l(Y(k-2)) - s
k
(yck-‘)) .

Then

(3 l 29) Ak-l = ekwl + O(h4*(k+1))

( i.e.: 'k-1 is an asymptotic error estimator for y(k-l)) .

Proof: Since Gh('PhY*)  = Tk(x) + 0(h4*(k+1)) , We obtain
2 combining this

relationship with (3.26):

G (~(~-l)
h ) - Gh('PhY*) = s

k-l
(dk-*)) - T

kX
( ) + O(h4*(k+1)) .

But from (3.25) and the Mean Value Theorem we can deduce that

O(h8k) + r,d(y(k-l))(y(k-l) - cp y*)
h = SkMl(Y(k-*)) -

- s,(y(W ) + O(h4x(k+1)) >

or, since 8k 2 4*(k+l) for k > 1 ,

G’(y(k-l))(y(k-l)  _ cp  yx)

h h = s
k-l

($+2) ) - Sk(Yck-l) ) + O(h4*('+l))
.

a
Subtracting this last expression f'rom (-3.28) we obtain -t'inally

G'(Yck-l))  [Ah k-l -
- ek l] = O(h4*(k+1))

3

and since
Gh is stable, so is

Gd and the result follows. II
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III.4 A variable order, variable (uniform) step, two point boundary
value problem solver, based on deferred corrections

In this Section, we address ourselves to the following task:

"Given problem (Ll), (2.1), n 2 5 , and lO++ machine precision < 6 ,

find a discrete solution on an uniform mesh with at least (n-+1) points and

maximum absolute error less than equal to s .I'

We won't claim that our algorithm is optimal with respect to the

solution of this problem, but we shall try to show that it has some good

points as compared with other available techniques. In fact, the algorithm

will be designed in the style of an adaptive scheme, except that the mesh

will be automatically refined over the whole interval. A more complicated

algorithm could be designed, such that local refinements are performed in

order to follow better the local variations of the exact solution. In

fact, the vector Ak of Theorem 3.1 provides an excellent tool for that

more complicated task since it measures the error at each individual mesh

point. We prefer to reserve this type of approach for situations in which

the use of non-uniform meshes is unavoidable, like in the case of multipoint

- boundary value problems, or problems with isolated, interior discontinuities

(interfaces) (see Keller (1969, 1972)).

Our strategy will be based on the Lterated geferred Corrections (IDC)

algorithm of II. 6.2, for the O(h4) discretization (2.36). We know from

III.2 that for a given n there is a natural limitation on the number of

corrections that can be performed. Also, from past numerical experience

(and common sense), we know that for a given problem and mesh size there

are also limitations on the number of corrections that will do us good.

i
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Unfortunately, while the first limitation can be exactly predicted (i.e.

k < (n+l - 1+)/b) , the second one is problem and machine dependent.

On the other hand, it turns out that the asymptotic error estimation

L
procedure of' III.3 provides a fine, reliable tool for detecting on line

L

L-

,
t-

the behavior of the corrections. Thus 3 11 $11 2 iIA,-,ll is a clear indicator

that the (k+l)th correction will not improve our solution (and also that

ak is not a reliable estimator for e )
k

. This phenomenon is obviously

connected with what in the past has been known as "the growth of high

order differences", which served as a signal-to the pencil and paper num-

erical analyst to cut his series of differences (see also [26,27]). We see then

that without having to construct, store and computer inspect a table of differ-

ences we can still extract the useful inf'ormation inherently contained in the

L procedure. As a matter of fact, we use in our program the more strict test

If this condition is violated we halve the mesh since we are not obtaining

a sufficient reward for our pains.

A flow chart and a FORTRAN IV program for the algorithm follow. We
_1

emphasize here that by changing appropriately some boxes in the program, one

can solve other problems with this same logical arrangement. Subroutine

IDCBVP calls Subroutines TRISOL and U2DCG, which have been listed earlier in

these notes.
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Flow Chart f'or Variable Order, Variable (Uniform) Step,

Deferred Correction Solver

Initialize Y(I)
for Newton as
linear comb. of

boundary
values

..
Initialize Y(1)

on new grid from

ITNEW=O
c

+

~--
ERRgLD t +CO
K+O

H+(X(N+l)-X(l))/N
EPS: MAX. RES. FOR

NEWTON
KMAXt(N+l-4)/4
ERREV t ..F'ALSE.

F t 1.0

ERREV = .TRuE.

Compute Sk(Y k-1))

F t 0.1

I
N = 2*N

t I b

Compute residual
- and its norm:
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III.5 Numerical results

We give in this Section numerical results corresponding to the

four test problems of 11.6.4, and for a boundary layer type equation sug-

gested by Sam Schecter (Stanford Research Institute). The new test prob-

lem is linear:

Problem 5:

-y/j - 3ey = 0
(e + x )

y(-a) = -* 3 Y(a)  = -YW j e 3 a > 0 l

Solution:

Y(X) = * .

For e -3 0 , y(x) -3 sign x which has a jump discontinuity at x =o.

For small 6 , this is a fairly hard problem to solve with finite dif-

ferences.
L

In Table 10 we have collected various statistics about IDCBVP for

Problems i , i==l,...,$ . For all problems we have started with N = 8 ,

and requested a final max.abs.error tolerance of EPS 3: 10-l' . Problem

5 parameters were 6 = 10 -4
, a = 0.1 .



L 2 5.5, -15 5.2, -15 16

c 5 3.8, -13 6.1, -13 256

-7%

Problem

Final Final
Estimated True

Error ErrC3r
Final Number
of Points

1 7.0, -17 2.8, -15 32

3 9.0, -16 j.2, -14 128

4 2.2, -14 2 5l - 3 -14 32

Table 10

‘i

1
1

We see from these results that the automatic step adjustment follows

closely the difficulties of the problem (recall earlier results for Problem

3). In order to have a better feeling for the actual flow of the computa-

tion for each problem we give in Table 11 some additional jnformation.

For each problem we list under the mesh size the number of nonlinear sys-

tems of that size that have been solved and the total number of Newton

corrections employed (in parentheses).

Prob. No. Points 8 16 32 64 28 256

1 1 (5) 3 (4) 3 (4) --- --- ---

2 1 (3) 3 (4) --- --- --- I--

3 1 (5) 2 (5) 3 (6) 4 (7) 3 (4) ---

4 1 (3) 3 (5) 3 (4) --- --- ---

5 1 (1) 2 (2) 3 (3) 3 (3) 4 (4) 4 (4)

Table 11
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To give some idea of the behavior of the asymptotic error estimator

we show the detailed evolution for a bad case: Problem 3, in Table 12.

N

8
16

32

64

128

k

0

0

1
0

1

2

0

1

2

3
0

1

2

Estimated
Error

8.3, -2

9.6, -4

1.4, -3
6.4, -5

2.1, -7

1.2, -6

4.0, -6

7.8, -10
3.86, -11
3.@, -I2

2.5, -7

2.5, -12

9.0, -16

Exact
Error

2.0, -2

1.1, -3

1.4, -3

6.4, -5

7.1, -7

8.6, -7

4.0, -6

8.0, -10

4.3, -11

4.4, -2.2

2.5, -7

2.5, -12

3.2, -14

Table l-2

In the following Table, we give some information about the perfor-
s

mance of successive extrapolations on the same problems. The basic grid

size is N = 8 . We indicate the final grid size and number of extrapol-

ations needed to reach accuracies similar to those in Table 10 for IDC ,

or if that was not possible for N < 256 , then we show the best accuracy

attained on the diagonal of the Richardson triangle. The number of

Newton iterations is taken from Tables l-4, pp. 35-36.
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Accuracy Finer
Problem

Number of
Attained Mesh

Number of Newton
Extrapolations Iterations

1 3.2, -14 128 4 7,7,7,7,8

2 2.5, -16 64 3 4,4>4,4

3 1.4, -13 256 5 6,6,6,6,6,6

4 3-6, -15 64 3 4,5,5,5

5 1.6, -7 256 5 linear problems

Table 13

Using Lemma 2.7 of p. 20 we could have actually implemented an

asymptotic error estimator for the successive extrapolations method and

developed an automatic error monitoring and stopping procedure. Though

we cannot vouch for its success (since we didn't have the time to do it),

past experience and the similarities with the asymptotic behavior of IDC

indicate that it is probably a good idea. Making believe that we have

done such a thing (and that the asymptotic predictions were accurate),

we now indicate the best results in the whole Richardson triangles (not

only in the diagonal) for each problem. Rows and columns are numbered

from 1. The column (i,j) of Table 14 indicates the position of the best

result in the Richardson triangle.

Problem

1
2

3
4

5

Best Result

6.6, -15
1.9, -16

1.3, -13

5.8, -16

_ 3.2, -9

Table 14

(iJ>

(5 3 >

(433)

(633)

(5,5)

(693)
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We see that, with the exception of Problem 4, the best results

are not located on the diagonal of' the Richardson triangle. These results

indicate that the error monitoring should be carried out on all the elements

of the Richardson triangle.

Moral: FINITE DIFFEIRENCES: ARE YOU REALLY DEAD?

c
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1.

2.

3,

4.

5 .

6.

7.
i

8.

9.

e

1 0 .

11.

12 .

13 l

14.
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