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Electrical and Magnetic Properties

Charge movement, electric fields, and voltages play essential roles in the body.
The driving forces that induce such charge motion are complicated chemical
and biological processes that are only partially understood. The interplay of
the resulting charges and fields is physical in nature and is well understood.

We have addressed the importance of electricity in the body only briefly
in previous chapters. In Chap. 3 we examined the electromyograms (EMGs)
of muscle activity (Fig. 3.12), in Chap. 5 we saw that muscles are activated by
electrical stimuli and the release of Ca2+ ions, and in Chap. 8 we learned that
the polarization and depolarization of cell membranes in the heart provide the
signals for electrocardiograms (EKGs, ECGs). We now discuss such electrical
interactions in more depth as we focus on the electrical properties of the body,
the propagation of electrical signals in the axons of nerves, and electrical
potentials in the body (Table 12.1).

It is impossible to overemphasize the importance of this human “bioelec-
tricity.” The function of every cell depends on it. Every neuron in the brain,
every neuron transmitting any information within the body, every neuron
enabling skeletal, cardiac, and smooth muscles is yet another vital example.
This chapter is largely a discussion of the physics of the motion of positive and
negative ions in the blood and cells. We will be concerned with the motion of
these ions across membrane boundaries, as in neurons, but not the underlying
biology that controls these ion channels. Electric voltages measured at differ-
ent places in the body describe electrical activity, as is seen in Table 12.1. We
will emphasize the propagation of electrical signals in nerves and monitoring
the EKG signals from the heart.

Electric and magnetic fields are closely coupled in many areas of physics;
for example, electromagnetic waves (visible light, radio waves, X-rays, and so
on) consist of electric and magnetic fields oscillating in phase. Magnetic fields
appear when current flows. Although current flow is important in the body,
the resulting magnetic fields appear to be relatively unimportant and we will
address magnetism in the body only briefly in this chapter. For more details on
the electrical and magnetic properties of the body see [566, 579, 581, 586, 594].
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Table 12.1. Typical amplitude of bioelectric signals. (Using data from [567, 580])

bioelectric signal typical amplitude

electrocardiogram (EKG/ECG, heart) 1 mV
electroencephalogram (EEG, brain waves) 10–100 µV
electromyogram (EMG, muscle) 300 µV
transmembrane potential 100 mV
electro-oculogram (EOG, eye) 500 µV

12.1 Review of Electrical Properties

We first review the various elements of electrostatics and current flow needed
to understand electricity in the body, including the flow of an electrical pulse
along an axon.

The electric field at a distance r caused by a point charge q is given by
Coulomb’s Law:

E =
kqr
r3

=
kqr

r2
, (12.1)

where the vector from the charge to the point is r = rr and r is a unit vector
from that charge to the point of interest, as illustrated in Fig. 12.1a,b. The
constant k = 8.99 × 109 N-m2/C2 for a charge in vacuum, where C stands
for coulombs, and can also be expressed as 1/4πε0. In a medium of dielectric
constant ε (where ε = 1 in vacuum), k = 1/4πε0ε.

The potential of that charge is

V =
kq

r
. (12.2)

and, as here, the potential is usually defined to be zero as r approaches infinity.
The potential difference (or voltage) between two points “b” and “a” caused
by a field is

∆V = Vb − Va = −
∫ rb

ra

E · dr. (12.3)

This can also be expressed as

E = −∇V (12.4)

or in one-dimension as

E= −dV

dx
. (12.5)

If there are two charges q and −q in vacuum separated, say a distance d in
the d unit vector direction (so the vector between them is d), the electric field
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Fig. 12.1. The electric field vectors for (a) positive and (b) negative charges are
shown, along with those for (c) a dipole of two charges +q and −q, separated by
a distance d, so the magnitude of the dipole moment is P = qd. The direction of
the dipole moment is seen by the arrow within the dipole in (d). (d) also shows the
potential along the different radial directions shown for this dipole, and the 1/r2

decrease in each of these voltages

is the vector sum of the contributions from (12.1) and the electric potential
is still obtained using (12.3) (Fig. 12.1c,d). For r $ d, the expression for the
potential can be simplified to give

V =
kP.r
r3

, (12.6)

where P = qd is the electric dipole moment vector, which has magnitude
P = qd and points in the d direction. If the angle between the dipole vector
P and distance vector r is θ, then this equation becomes

V =
kP cos θ

r2
. (12.7)

Similarly, we can calculate the dipole moment for many charges separated
by various distances. Evaluation of the fields caused by such electric dipoles
is of particular value when there is no net charge in the collection of charges,
as is true most everywhere in the body.
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Fig. 12.2. Kirchhoff’s 1st Law, showing that the algebraic sum of the current flows
to a point must be zero (if charge is not accumulating or being depleted at that
point). (Note that least one of the current flows must be negative, i.e., it must point
outward)

Now let us consider a moving particle with charge q (in coulombs, C), the
current, I = dq/dt, associated with such a charge or charges (which is the
change in charge per unit time), and the associated current density, J = I/A
(which is the current flowing per unit area A). Charge is conserved, meaning
that it is neither created nor lost. It also means that the vector sum of all
currents entering a volume or a small volume element (such as a node) is zero
in steady state (Fig. 12.2). This conservation of current (and charge) is known
as Kirchhoff’s 1st Law

∑

n

In = 0. (12.8)

(The direction of current flow is important here, even thought the current is
being expressed as a scalar.)

When a current flows along a material with resistance R (in ohms, Ω)
(which we called Relect in other chapters), there is a voltage drop V (in volts V)
(which we called Velect in other chapters) across the material given by Ohm’s
Law (Fig. 12.3a)

V = IR. (12.9)

Fig. 12.3. (a) Ohm’s Law and (b) evaluating resistance R from resistivity ρ
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The resistance is an extensive property that depends on the intensive property
resistivity ρ of the material, and the cross-sectional area A and length L of
the structure (Fig. 12.3b)

R =
ρL

A
. (12.10)

For a cylinder with radius a, we have A = πa2 and R = ρL/πa2. More
generally, for a structure with uniform cross-section, the resistance R is pro-
portional to length and we can define a resistance per unit length

r =
R

L
=

ρ

A
, (12.11)

which equals ρ/πa2 for conduction along a cylinder. The conductance G (units
S (siemens), 1 S = 1 mho = 1/ohm = 1/Ω) is 1/R, the conductivity is σ = 1/ρ,
and the conductance per unit area g = G/A = 1/RA = 1/ρL. In the body,
charged ions, such as Na+, K+, Ca2+, Cl−, and negatively-charged proteins,
are the important carriers of charge. Electrons are the charge carriers in most
man-made electronic circuits.

A voltage or potential difference V can also develop between two struc-
tures, one with a charge +q and the other with charge −q, because of the
electric fields that run from one to the other. This voltage is

V =
q

C
, (12.12)

where C is the capacitance (in farads, F) of the system (called Celect in other
chapters). The capacitance C depends on the geometry of these two structures.
For example, they could be two parallel plates or two concentric cylinders
(Fig. 12.4), which is similar to the axon of a neuron.

Fig. 12.4. Capacitance for (a) parallel plates and (b) cylindrical shells
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Fig. 12.5. Kirchhoff’s 2nd Law, showing that the algebraic sum of the potential
drops (voltages) along a closed loop is zero

For two parallel plates with area A separated a distance b by an insulator
with dielectric constant κ, we see

Cparallel plates =
κε0A

b
. (12.13)

The charge density on each plate is σ = q/A.
The algebraic sum of all voltages along a closed loop circuit equals zero

(Fig. 12.5). This is known as Kirchhoff’s 2nd Law
∑

n

Vn = 0. (12.14)

12.2 Electrical Properties of Body Tissues

12.2.1 Electrical Conduction through Blood and Tissues

When voltage is applied across a metal, a current flows because electrons
move under the influence of an electric field. When a voltage is applied across
a solution containing positive and negative ions, current flows because both
ions move under the influence of the electric field. The conductivity σ of
a solution is the sum of the contributions to the current flow for each ion.
For low concentrations of these ions, this contribution is proportional to the
concentration ni for that ion, with a proportionality constant Λ0,i, so

σ =
∑

i

niΛ0,i. (12.15)

Table 12.2 gives Λ0,i, the molar conductance at infinite dilution for several
common ions, while Table 12.3 gives typical concentrations of common ions
in the blood and in cells. The resistance of a path can be determined using
ρ = 1/σ and R = ρL/A (12.10).

As with many materials, body tissues have dielectric properties, but still
have some conductivity, and therefore can be considered as leaky dielectrics.
The resistivity of body tissues is shown in Table 12.4 and Fig. 12.6.
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Table 12.2. The molar conductance at infinite dilution Λ0,i for different ions. (Using
data from [596])

ion Λ0,i (1/ohm-m-M)

H+ 34.9
OH− 19.8
Na+ 5.0
Cl− 7.6

Table 12.3. Ionic concentrations in blood and cell cytoplasm of unbound ions.
(Using data from [597])

ion blood
concentration

cytoplasm
concentration

ratio

Na+ 145 mM 12mM 12:1
K+ 4 mM 140mM 1:35
H+ 40 nM 100 nM 1:2.5
Mg2+ 1.5 mM 0.8 mM 1.9:1
Ca2+ 1.8 mM 100 nM 18:1
Cl− 115 mM 4mM 29:1
HCO−

3 25 mM 10mM 2.5:1

Table 12.4. Low frequency resistivity of some body tissues, in ohm-m (Ω-m). (Using
data from [567, 573, 586])

tissue resistivity

cerebrospinal fluid 0.650
blood plasma 0.7
whole blood 1.6 (Hct = 45%)
skeletal muscle
– longitudinal 1.25–3.45
– transverse 6.75–18.0
liver 7
lung
– inspired 17.0
– expired 8.0
neural tissue (as in brain)
– gray matter 2.8
– white matter 6.8
fat 20
bone >40
skin
– wet 105

– dry 107
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Fig. 12.6. Cross-section of the thorax, with the electrical resistivity of six types of
tissues. (From [586]. Used with permission)

12.3 Nerve Conduction

Figure 12.7 shows the structure of nerve cells or neurons with a nucleus,
dendrites that receive information across synapses, an axon, and the axon
terminals and synapses for signal transmission to other neurons. There are

Fig. 12.7. Structure of a neuron. (From [592])
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Fig. 12.8. The successive wrapping of Schwann cells about the axon of a neuron to
form the myelin sheath of a myelinated nerve. (From [592])

many such neuron axons in a nerve. Unmyelinated axons have no sheath
surrounding them. Myelinated axons have myelin sheaths in some regions,
which are separated by nodes of Ranvier (ron-vee-ay’). These sheaths are
formed by Schwann cells that are wrapped around the axon (Fig. 12.8),
with successive wrapped cells separated at a node of Ranvier (Fig. 12.7).
We will concentrate on how an electrical impulse travels along such
axons.

Approximately 2/3 of the axon fibers in the body are unmyelinated. They
have radii of 0.05–0.6 µm and a conduction speed of u (in m/s) ≈ 1.8

√
a,

where a is the radius of the axon (in µm). Myelinated fibers have outer radii
of 0.5–10 µm and a conduction speed of u (in m/s) ≈ 12(a + b) ≈ 17a, where
b is the myelin sheath thickness (in µm) (and a + b is the total axon radius).
The spacing between the nodes of Ranvier is ≈280a.

Neurons whose axons travel from sensing areas to the spinal cord are called
afferent neurons or input or sensory neurons. (They are “affected” by condi-
tions that are sensed.) Neurons whose axons leave the ventral surface of the
brain stem and the spinal cord to convey signals away from the central ner-
vous system are efferent neurons or motor neurons, and these neurons exercise
motor control. (They “effect” a change.) There are approximately 10 million
afferent neurons, 100 billion neurons in the brain with 100 trillion synapses,
and a half a million efferent neurons, so there are roughly 20 sensory neurons
for every motor neuron and several thousand central processing neurons for
every input or output neuron for processing. Bundles of these neuron axons
are called nerves outside of the brain and tracts inside the brain. Details about
the nervous system are given in [588].

There are approximately 1 − 2 × 106 optical nerves from the 1 − 2 × 108

rods and cones in our eyes, 20,000 nerves from the 30,000 hair cells in our
ears, 2,000 nerves from the 107 smell cells in our noses, 2,000 nerves from the
108 taste sensing cells in our tongues, 10,000 nerves from the 500,000 touch-
sensitive cells throughout our body, and many (but an uncertain number of)
nerves from the 3 × 106 pain cells throughout our body.
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Fig. 12.9. Ion concentrations (in mmol/L) in a typical mammalian axon nerve
cell (ni) and in the extracellular fluid surrounding it (no), and their ratios (ni/no).
(Based on [581])

12.3.1 Cell Membranes and Ion Distributions

The cell membrane divides the intracellular and extracellular regions, in neu-
rons and other cells. There are Na+, K +, Cl −, negatively-charged proteins,
and other charged species both in the neurons (intracellular) and in the ex-
tracellular medium. The concentrations of these ions are such that there is
charge neutrality (i.e., an equal number of positive and negative charges) in
both the intracellular and extracellular fluids. However, there are negative
charges on the inside of the cell membrane and positive charges on the out-
side of this membrane that produce a resting potential of −70 mV (Fig. 12.9).
This means that the intracellular medium is at −70 mV, when the extracellu-
lar potential is arbitrarily defined to be 0 V, as is the custom. Only potential
differences are significant, so we are not limiting the analysis by fixing the
extracellular potential. This resting potential is the usual potential difference
when there is no unusual neural activity. This is known as the polarized state.
(The propagation of an electrical signal would constitute this type of unusual
activity.)

While there is charge neutrality both inside and outside the membrane, the
concentrations of each ion are not equal inside and outside the cell, as we will
see. The differences in ion concentrations inside and outside the cell membrane
are due to a dynamic balance. When there are changes in the permeability of
the cell membrane to different charged species, there are transient net charge
imbalances that change the potential across the cell membrane. An increase
in the membrane potential from −70 mV, such as to the −60 mV seen in
Fig. 12.10, is known as depolarization, while a decrease from −70 mV to say
−80 mV is called hyperpolarization. Depolarization is due to the net flow of
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Fig. 12.10. The membrane resting potential of −70 mV (inside the membrane rel-
ative to the always fixed 0 mV outside) – the polarized state, along with potential
disturbances showing depolarization (voltage increases from the resting potential
value), repolarization (returns to the resting potential), and hyperpolarization (de-
creases from the resting potential)

positive charges into the cell or negative charges to regions outside the cell.
Hyperpolarization is due to the net flow of negative charges into the cell or
positive charges to outside the cell. Such changes in ion permeability are often
termed as changes in the ion channel.

Figure 12.9 also shows the concentrations of some of the important charged
species inside and outside the cell under resting (i.e., polarized) conditions.
We see that there are many more Na+ outside (145 mmol/L) than inside
(15 mmol/L) the cell, but many more K+ inside (150 mmol/L) than out-
side (5 mmol/L). Including miscellaneous positive ions outside the cell, there
are 165 mmol/L of positive ions both inside and outside the cell. Similarly,
there are many more Cl− outside (125 mmol/L) than inside (9 mmol/L) the
cell, but many more miscellaneous negative ions (including proteins) inside
(156 mmol/L) than outside (30 mmol/L). There are also 165 mmol/L of neg-
ative ions both inside and outside the cell.

There are several driving forces that determine the ionic concentra-
tions, in general, and these intracellular and extracellular concentrations, in
particular:

1. There is the natural tendency for concentrations to be uniform every-
where, so when there are concentration gradients across the cell membrane
there are flows of these species from the regions of higher concentration
to regions of lower concentrations, to equalize the intracellular and extra-
cellular concentrations. This is described by Fick’s First Law of Diffusion
(7.51), Jdiff = −Ddiff dn/dx, where Jdiff is the flux of ions in the x direc-
tion (the number of ions flowing across a unit area in a unit time), Ddiff

is the diffusion constant, n is the local concentration of ions, and dn/dx
is the local concentration gradient.
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2. Because the potential is negative inside the cell, we would expect positive
ions to enter the cell and be more dominant in the intracellular fluid than
the extracellular fluid and for there to be such concentration gradients;
this is true for K+ but not for Na+. Similarly, we expect negative ions
to leave the cell because of the resting potential and be more dominant
outside the cell than inside – and again for there to be concentration
gradients; this is true for Cl− but not for the negatively-charged proteins,
which form the bulk of the miscellaneous negative ions.
When charged species are in an electric field, they get accelerated and
eventually attain a steady-state drift velocity, vdrift, because of collisions
that act as a drag force. As shown in Problem 12.7, the drift velocity of a
given ion is

vdrift = µE, (12.16)

where µ is called the mobility and E is the electric field. The flux of ions
due to this electric field is

Jelect = nvdrift = nµE. (12.17)

3. The cell membrane permeability and active processes cause the ion con-
centrations on either side of the membrane to deviate from the values
expected from diffusion and the motion of charges in electric fields. The
cell membranes are permeable to K+ and Cl−, which explains why they
behave as expected. Proteins are never permeable to the cell membrane,
which is why the concentration of negative-protein ions is unexpectedly
high inside. The chemical mechanism called the Na+ pump (or the Na+-
K+ pump) actively transports 3Na+ from inside to outside the cell for
every 2K+ it transports from outside to inside the cell; this keeps Na+

outside the cell and K+ inside.

The high Na+ concentration outside the cell is the result of the Na+ pump
fighting against the driving electrical forces and the tendency to equalize con-
centrations (Fig. 12.11). The high K+ concentration inside the cell is the result
of the electric forces and the Na+ pump fighting against the tendency to equal-
ize concentrations. The high Cl− concentration outside the cell is the result of
the electrical forces fighting against the tendency to equalize concentrations.
The concentration of negative protein ions is unexpectedly high inside because
they are large and not permeable to the cell membrane.

Figure 12.12 depicts the directions of motion for charged and neutral mole-
cules for either the random thermal motion in diffusion or the directed effect
of an electric field. Figure 12.13 shows how a concentrated band of charged
and neutral molecules changes due to either diffusion or an electric field.

Ionic Distributions (Advanced Topic)

What are the expected ionic distributions due to the membrane potential?
First, let us consider the expected distributions for several steady state
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Fig. 12.11. Mechanisms for ion flow across a polarized cell membrane that deter-
mine the resting membrane potential

Fig. 12.12. The direction of motion for charged and neutral molecules due to (a)
diffusion (at a given instant) and (b) an electric field

Fig. 12.13. An initial band of charged and neutral molecules (in (a)) changes very
differently by the uniform thermal spreading in diffusion (in (b)) and the separation
caused by an electric field (in (c))
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conditions for a given ion. In steady state, the net flow of ions into any region
is zero, so Jdiff + Jelect = 0 and using (7.51) and (12.17) we see that

Ddiff
dn

dx
= nµE. (12.18)

(In steady state n does not depend on time, so the partial derivative in (7.51)
is not needed here.)

The diffusion coefficient, Ddiff , and mobility, µ, are actually closely re-
lated. Consider a cylinder of cross-sectional area A and length dx along the
x direction than contains a density n of ions of charge q. When an electric
field E is applied along the x direction, the ions in the cylinder feel a force
(nq)(Adx)E, where nq is the total charge per unit volume and Adx is the vol-
ume. The mechanical force on this cylinder is due to the difference between
the pressure × area on one side wall, AP (x), and that on the other side wall,
AP (x + dx) = A[P (x) + (dP/dx)dx], or −A(dP/dx)dx. The sum of these
forces is zero in steady state, so dP/dx = nqE. Using the ideal gas law (7.2)
P = nkBT (which is an approximation here and where n is now the number of
molecules per unit volume because kB is used instead of the gas constant R),
we see that dP/dx = kBT (dn/dx) or kBT (dn/dx) = nqE. Comparing this to
(12.18), gives the Einstein equation

µ =
qDdiff

kBT
, (12.19)

a result we will use soon.
Now let us consider the charge current due to two ions, one of charge

q (which we will say is >0), with density n+ and mobility µ+, and the
other of charge −q, with density n− and mobility µ−. (We will now define
the mobilities as being positive, so for this negative ion vdrift = −µ−E.)
If these are the only two ions, charge neutrality gives n+ = n− = n. The
particle flux of each is determined by the concentration gradient of each
and the motion of each in an electric field. The jflux charge flux (or cur-
rent density) is the ion charge × the ion flux. For the positive ion: jflux,+ =
q(Jdiff,+ + Jelect,+) = −qDdiff,+(dn/dx) + qnµ+E and for the negative ion
it is: jflux,− = −q(Jdiff,− + Jelect,−) = qDdiff,−(dn/dx) + qnµ−E, so the total
current density is

jflux = −q(Ddiff,+ − Ddiff,−)
dn

dx
+ qn(µ+ + µ−)E, (12.20)

which is known as the Nernst-Planck equation. This can also be written as

jflux = qn(µ+ + µ−)
(

E − Ddiff,+ − Ddiff,−
µ+ + µ−

d ln n

dx

)
, (12.21)

where we have expressed (dn/dx)/n as d lnn/dx. The prefactor on the right-
hand side is the conductivity, σ = qn(µ+ + µ−). (Also, the factor Λ0,i in
(12.15) clearly equals qiµi.)
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When there is no net current flow, we see

E =
Ddiff,+ − Ddiff,−

µ+ + µ−

d ln n

dx
. (12.22)

So, the voltage between two points, such as from the inside (with subscript i)
of the membrane to the outside (with subscript o) is

∆V = Vi − Vo = −
∫ inside

outside
E dx (12.23)

= −Ddiff,+ − Ddiff,−
µ+ + µ−

∫ inside

outside

d ln n

dx
dx (12.24)

= −Ddiff,+ − Ddiff,−
µ+ + µ−

ln(ni/no). (12.25)

Using the Einstein relation, (12.19), we know that Ddiff = µkBT/q, and so

∆V = −kBT

q

µ+ − µ−
µ+ + µ−

ln(ni/no). (12.26)

This is the Nernst equation.
Let us apply this to a membrane that is impermeable to negative ions, so

µ− = 0 and

∆V = −kBT

q
ln(ni/no). (12.27)

Calling the charge q = Ze, where e is the magnitude of an elementary charge
(electron or proton), we see that

ni

no
= exp (−Ze(Vi − Vo)/kBT ) . (12.28)

This ratio is known as the Donnan ratio and this is known as Donnan equi-
librium. The ion densities are considered constant within both the inside and
outside regions.

This expression can also be derived by using the Maxwell–Boltzmann dis-
tribution, which gives the probability of a state being occupied, P (E, T ), if
it has an energy E and is in thermal equilibrium with the environment at
temperature T

P (E, T ) = A exp(−E/kBT ). (12.29)

The potential energy of the charge is E = ZeV . If a given species were in
thermal equilibrium we would expect that its concentration n would be pro-
portional to exp(−ZeVlocal/kBT ), where Vlocal is the local potential, or more
exactly

n = n∞ exp(−ZeVlocal/kBT ), (12.30)



728 12 Electrical and Magnetic Properties

where n∞ is the concentration very far away, where the potential is zero. In
particular, we would expect the ratio of the concentrations for each ion inside
and outside the cell gives (12.28).

This Donnan ratio includes the physics of the first two driving forces ex-
plained earlier, as well as the physics of thermal equilibration. For the resting
potential Vi − Vo = −70 mV at T = 310 K (core body temperature) and
Z = +1, we expect ni/no = 13.7 for this “Donnan” equilibrium; for Na+ this
ratio is 15/145 = 0.103 and for K+ it is 150/5 = 30. For Z = −1 we expect
ni/no = 1/13.7 = 0.073; for Cl− this ratio is 9/125 = 0.072 and for miscella-
neous singly negative charge ions it is 156/30 = 5.2. There is relatively good
agreement for K+ and Cl−, and great disagreement for Na+ and the Misc.−
for the reasons given earlier, such as the Na+ pump for Na+. (The agreement
is not perfect for K+ because the Na+ pump brings K+ into the cell.)

The theoretical Nernst potential VNernst is the potential that would lead
to the observed concentration ratios

(
ni

no

)

observed

= exp(−ZeVNernst/kBT ). (12.31)

For Na+ it is 61 mV, for K+ it is −91 mV, and for Cl− it is −70 mV.
When the Nernst equation (12.27) is generalized to include the effects

of many ions, such as Na+, K+, and Cl−, and membrane permeability, the
Goldman Voltage equation is obtained

∆V = −kBT

q
ln

pNanNa,i + pKnK,i + pClnCl,i

pNanNa,o + pKnK,o + pClnCl,o
, (12.32)

with membrane permeabilities p (and with the subscripts i for inside and o for
outside). For neurons and sensory cells the permeability for Cl− is so small
that it can often be neglected, and we find:

∆V = −kBT

q
ln

pNanNa,i + pKnK,i

pNanNa,o + pKnK,o
(12.33)

or

∆V = −kBT

q
ln

αnNa,i + nK,i

αnNa,o + nK,o
, (12.34)

with α = pNa/pK. Using the earlier concentrations and α = 0.02, this resting
potential difference is −75 mV, which is closer to the real resting potential
than VNernst = −91 mV for K+.

Poisson–Boltzmann Equation (Advanced Topic)

So far we have determined the concentration ratios for a given potential. A
more general problem, and one that is a bit beyond our scope, is to determine
the potential V by using (12.1) and (12.3) and the densities of charges in
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the region. In other words, we also need to couple the potential with the
distributions of ions.

By integrating the field over a surface a, such as a sphere, around the
charge q, Coulomb’s Law (12.1) becomes Gauss’ Law

∫
E · da =

1
ε0ε

q. (12.35)

This can be converted into the differential form

∇ · E =
1

ε0ε
ρ, (12.36)

where ρ is the charge density

ρ =
∑

i

Zieni. (12.37)

In one-dimension, this form of Gauss’ Law becomes

dE

dx
=

1
ε0ε

ρ. (12.38)

Using the relation between electric field and potential (12.4) and (12.5) these
become Poisson’s equation

∇2V = − 1
ε0ε

ρ, (12.39)

which in one-dimension becomes:

d2V

dx2
= − 1

ε0ε
ρ. (12.40)

Combining this with the Maxwell–Boltzmann relation (12.30) and with (12.37)
gives the Poisson–Boltzmann equation:

∇2V = − 1
ε0ε

∑

i

Zieni,0 exp(−ZieV/kBT ). (12.41)

Without these free and mobile charges in solution, the potential from a
charge Ze, such as an ion in solution, is given by (12.2), V = Ze/4πε0εr. These
mobile charges partially screen or shield the potential due to this charge, as
is seen by solving the Poisson–Boltzmann equation. When ZieV/kBT ' 1,
we can use exp(1 + x) ( 1 + x for | x | ' 1 to approximate the exponential
in (12.41) as 1 − ZieV/kBT . This gives

∇2V = − 1
ε0ε

∑

i

Zieni,0 +
1

ε0ε

∑

i

Z2
i e2ni,0V

kBT
. (12.42)
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In charge neutral regions the first term on the right-hand side sums to zero,
leaving

∇2V =
e2

ε0εkBT

(
∑

i

Z2
i ni,0

)
V (12.43)

or

∇2V = κ2V, (12.44)

where κ is the Debye–Huckel parameter given by

κ2 =
e2

ε0εkBT

∑

i

Z2
i ni,0 (12.45)

This is solved in three-dimensions (see Problem 12.8 and Appendix C) to
obtain the potential

V (r) =
Ze

4πε0εr
exp(−κr). (12.46)

This means the charge is shielded beyond the Debye–Huckel length given by
the radius 1/κ.

12.3.2 Types of Cell Membrane Excitations

There are two qualitatively different types of axon excitations: graded poten-
tials and action potentials.

Graded potentials (Fig. 12.14) are minor perturbations in the membrane
potential due to the binding of neurotransmitters, the stimulation of sensory

Fig. 12.14. The (subthreshold) graded potentials and (above threshold) action
potentials



12.3 Nerve Conduction 731

reception, or spontaneous ion leakage through the cell membrane. There is
no threshold needed to stimulate a graded potential. They last for 5 ms to
several min. Graded potentials can be either membrane depolarizations or
hyperpolarizations. Successive graded potentials can add to one another. They
propagate only short distances along the membrane before they decay.

Action potentials are qualitatively different from graded potentials in every
way (Fig. 12.14). They initially have relatively large depolarizations by ∼15–
20 mV above the resting value of −70 mV to a threshold of about ∼ −55 mV.
At this threshold potential the cell membrane opens up allowing Na+ trans-
port. The potential lasts for 1–5 ms, and it always involves depolarization of
the membrane. Each action potential opens the cell membrane, and they do
not add to one another. There is no decrease in potential along the entire
length of the neuron cell axon, as this action potential leads to propagation
of an electrical signal along the axon. We will analyze this quantitatively in
Sect. 12.3.3.

Figure 12.14 shows the time sequence of the action potential at one point
in the axon. After the threshold of ∼ −55 mV is reached, the voltage-gated
Na+ channels begin to open and Na+ rushes into the cell due to the nega-
tive potential. There is an overshoot of positive ions inside the cell and the
potential becomes positive, increasing to ∼20 mV. This causes positive ions,
such as K+, to leave the cell and the potential decreases below the threshold
potential to the resting potential (which is an overshoot). This electrical pulse
travels along the axon. Figure 12.15 shows the depolarization and repolariza-
tion and the flow of ions for cardiac muscle. The local motion of ions near the
membrane are shown in Fig. 12.16 during signal propagation.

12.3.3 Model of Electrical Conduction along an Axon

Neural axons can be treated as an electrical cable with passive parameters that
characterize it per unit length, with one striking exception. The resistance of
the fluids inside the axon, ri, outside the axon, ro, and of the axon membrane,
rm, can be characterized per unit length of the axon. The axon can also be
characterized by its capacitance per unit length, cm. The axon can then be
modeled by the electrical cable in Fig. 12.17 with repeating units. So far, this
description can explain only the decaying features of graded potentials. As
we will see, the propagation of action potentials along the axon requires the
additional current flow of ions across the axon membrane (see [569, 581, 582,
586]).

Properties of Neurons and Nerves

The parameters in Table 12.5 for unmyelinated and myelinated nerve axons
will help us understand the electrical properties of the axon as we would
any cable with a distributed resistance and capacitance. From Table 12.5, the
resistivity for an unmyelinated nerve is typically ρi = 0.5 ohm-m and the axon
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Fig. 12.15. The depolarization and repolarization of cardiac muscle, along with the
flows of Na+, Ca2+, and K+ ions. The inward flux of Na+ and Ca2+ increases the
potential and the outward flux of K+ decreases it. (Based on [585])

radius is a = 5×10−6 m, and so the resistivity inside the axon per unit length
along the axon is

ri =
ρi

πa2
=

0.5 ohm-m
π(5 × 10−6 m)2

= 6.4 × 109 ohm/m = 6.4 × 103 ohm/µm.

(12.47)

The resistivity of the membrane is ρm = 1.6 × 107 ohm-m, the membrane
thickness is b = 6 × 10−9 m, and the cross-sectional area of the membrane
normal to the axon axis is A = 2πab. Therefore, the membrane resistivity per
unit length along the axon is

rm =
ρm

2πab
=

1.6 × 107 ohm-m
2π(5 × 10−6 m)(6 × 10−9 m)

(12.48)

= 8 × 1019 ohm/m = 8 × 1013 ohm/µm, (12.49)

This resistivity is so high that for a given voltage drop along the axon,
the current flow along the membrane is negligible compared to that in the
fluid.



12.3 Nerve Conduction 733

Fig. 12.16. The flow of ions across the membrane during action potential propa-
gation (a) at a given time and (b) at a later time

Fig. 12.17. Distributed circuit model of an axon, with resistance inside the axon
ri, membrane resistance rm and capacitance cm, and resistance outside the axon ro,
each per unit length
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Table 12.5. Typical parameters for unmyelinated and myelinated nerves. (From
[570, 571, 581])

unmyelinated myelinated

axon inner radius (m) a 5 × 10−6 5 × 10−6

membrane/myelin thickness (m) b 6 × 10−9 2 × 10−6

axoplasm resistivity (ohm-m) ρi 1.1 1.1
membrane dielectric constant (s/ohm-m) κε0 6.20 × 10−11 6.20 × 10−11

membrane/myelin resistivity (ohm-m) ρm 107 107

resistance per unit length of fluida r 6.37 × 109 6.37 × 109

(ohm/m)
conductivity/length axon membrane gm 1.25 × 104 3 × 10−7

(mho/m)
capacitance/length axon (F/m) cm 3 × 10−7 8 × 10−10

aFluid both inside and outside the axon.

The transverse resistance across the membrane is (ρmb)Atransverse, so the
conductance per unit area is

gm =
1

ρmb
, (12.50)

where conductance is the reciprocal of the resistance.
Because the axon radius a of an unmyelinated axon is much greater than

the membrane thickness b, the cylindrical membrane can be unrolled along its
length (much as in Fig. 8.23) and modeled very successfully as a plane parallel
capacitor, with plate separation b and area A = aL, where L is the length of
the axon unit. The material in the axon membrane has dielectric constant κ =
7, so with ε0 = 8.85×10−12 s/ohm-m, we see that κε0 = 6.20×10−11 s/ohm-m.
From (12.13), the capacitance per unit length of an unmyelinated axon is

Cparallel plates,per length = Cparallel plates/L = κε0a/b (12.51)

= (6.20 × 10−11s/ohm-m)(5 × 10−6m)/6 × 10−9m
(12.52)

= 3 × 10−7 F/m (12.53)

and that per unit area is

cparallel plates = Cparallel plates/La = κε0/b (12.54)

= (6.20 × 10−11s/ohm-m)/6 × 10−9 m (12.55)
= 0.01 F/m2. (12.56)

Using (12.12), q = CV and the charge density on the membrane walls is
σ = q/A = (C/A)/V . For a −70 mV voltage drop, we see that σ = (C/A)/V =
(0.01 F/m2)(70 mV) = 7 × 10−4 C/m2. Because an elementary charge is
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1.6×10−19 C, there are (7×10−4)(6.25×1018 elementary charges)/1012 µm2 =
4.4 × 103 elementary charges/µm2.

Does the flow of Na ions through the open ion channels appreciably affect
the total number of such ions in the axon? This open channel corresponds
to a voltage change from −70 to 30 mV or about 100 mV. Using the analysis
of the previous paragraph, this corresponds to a change in charge of 6 × 103

elementary charges/µm2. Consider a 1 µm long section of the axon. Its inner
area is 2π(5 µm)(1 µm) = 31 µm2, so 2 × 105 Na+ ions are transported
into this volume, because they each have one elementary charge. Before the
membrane opened there were 15 mmol/L of Na+ ions inside the membrane,
or [(15 × 6.02 × 1020)/1015 µm3][π(5 µm)2(1 µm)] = 7 × 108 Na+ ions in
this volume (and, similarly, 7 × 109 K+ ions inside this volume). This means
that this Na+ ion transport increases the density by only about 0.03%. (Large
changes in potentials are often caused by the transfer of very few charges!)

Model of Electrical Conduction in Axons (Advanced Topic)

Several things can happen when you apply a voltage to an axon of a neuron.
There can be current flow of charged ions associated with the resistance in
and about the axon; the voltage would drop with distance according to Ohm’s
Law and there would be dissipation of energy. There can be motion of charges
to and from axon membranes and changes in the electric field energy stored
between these charged surfaces, as characterized by their capacitance. There
can also be changes in the transport of charges through these axon membranes.

Consider a cylindrical “pillbox” as shown in Fig. 12.18 of radius a and
length δx, extending from x to x + δx along the axon and with the curved
cylinder surface within the cell membrane itself. The voltage at x is V (x) and
that at x + δx is V (x + δx). The current flowing (due to ions) within the
axoplasm – i.e., the medium inside the axon – into this volume is Ii(x) and
that leaving it is Ii(x + δx). There is a charge +q on the outer membrane of
the axon and a charge −q on the inner membrane wall. A physical model for
this is shown in Fig. 12.19.

Fig. 12.18. Longitudinal current in an axon, with a “pillbox” for examining current
flow, including the membrane current. (Based on [581])
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Fig. 12.19. A more physical model for the axon currents shown in Fig. 12.18. (From
[581])

We will apply Kirchhoff’s 1st Law (12.8) to this construct and sum all
currents entering this pillbox. There are current flows inside the axon Ii(x)
and −Ii(x + δx) entering the pillbox. There is also a current flow due to the
flow of ions across the cell membrane Im. We will say it is positive when
it leaves the axon (Fig. 12.18), so −Im enters it. The voltage across the cell
membrane V = q/Cm, where Cm is membrane capacitance. The time rate
of change of the voltage is related to another current Ic associated with the
change of charge on the cell membrane walls

dV

dt
=

dq/dt

Cm
=

Ic

Cm
(12.57)

or

Ic = Cm
dV

dt
. (12.58)

Ic flows to the outside, so −Ic = −Cm(dV/dt) flows into the axon. Kirchhoff’s
1st Law gives

Ii(x) − Ii(x + δx) − Im − Cm
dV

dt
= 0 (12.59)

or

Ii(x) − Ii(x + δx) − Im = Cm
dV

dt
. (12.60)

Using Ii(x + δx) ( Ii(x) + (dIi/dx)δx, we see that Ii(x) − Ii(x + δx) (
−(dIi/dx)δx and this equation becomes

−dIi

dx
δx − Im = Cm

dV

dt
. (12.61)

Using Ohm’s Law, the voltage drop across the pillbox is

V (x) − V (x + δx) = Ii(x)ri(δx), (12.62)
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where the resistance is Ri = riδx. Because V (x + δx) ( V (x) + (dV/dx)δx,
we see that V (x) − (V (x) + (dV/dx)δx) ( Ii(x)ri(δx) or

Ii(x) = − 1
ri

dV

dx
. (12.63)

Taking the first derivative of both sides gives dIi/dx = −(1/ri)d2V/dx2, and
(12.61) becomes

1
ri

d2V

dx2
(δx) − Im = Cm

dV

dt
. (12.64)

Dividing both sides by the membrane surface area is (2πa)(δx) gives

1
2πari

d2V

dx2
− Im

(2πa)δx
=

Cm

2πa(δx)
dV

dt
. (12.65)

With the membrane current density (membrane current per unit area) defined
as Jm = Im/(2πa(δx)) and the membrane capacitance per unit area expressed
as cm = Cm/(2πa(δx)), this becomes

1
2πari

d2V

dx2
− Jm = cm

dV

dt
(12.66)

or

cm
∂V (x, t)

∂t
= −Jm +

1
2πari

∂2V (x, t)
∂x2

. (12.67)

This has now been expressed in terms of partial derivatives with respect to
t and x, which means that the derivatives are taken with respect to t and
x, respectively, treating x and t as constants. Also, the voltage is explicitly
written as a function of x and t.

How do we treat active charge transport across the membrane? We model
the membrane current as being gi(V −Vi) for each ion, with gi the conductance
per unit area and Vi a characteristic voltage being parameters for the specific
ion. The total membrane current is

Jm =
∑

i

gi(V − Vi) = gNa(V − VNa) + gK(V − VK) + gL(V − VL), (12.68)

where we have included conduction by Na+ and K+ ions and by other
ions (leakage, L). This Hodgkin-Huxley model is depicted in Fig. 12.20. So
we find

cm
∂V (x, t)

∂t
= −

∑

i

gi(V (x, t) − Vi) +
1

2πari

∂2V (x, t)
∂x2

(12.69)
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Fig. 12.20. Equivalent circuit of the Hodgkin-Huxley model of the membrane cur-
rent, with variable resistors gi and voltage sources Vi. (Based on [581])

or for only one ion

cm
∂V (x, t)

∂t
= −gi(V (x, t) − Vi) +

1
2πari

∂2V (x, t)
∂x2

. (12.70)

This last equation is known as the Cable or Telegrapher’s equation because
it also describes the propagation of electrical signals along long cables, such
as submarine cables, as well as the propagation of such signals along axons
in neurons. Remember that although the voltage disturbance propagates long
distances, the charges move very little and in fact they move essentially only
across the membrane wall, which is normal to the direction of wave propa-
gation. (By the way, John Carew Eccles, Alan Lloyd Hodgkin, and Andrew
Fielding Huxley shared the Nobel Prize in Physiology or Medicine in 1963 for
their discoveries concerning the ionic mechanisms involved in excitation and
inhibition in the peripheral and central portions of the nerve cell membrane,
which are part of this Hodgkin-Huxley model.)

When this wave propagates at a speed u it travels as a pulse (Fig. 12.21)
with unchanging shape that has constant x − ut. (See the discussion of
sound wave propagation in Chap. 10.) It can then be shown that ∂2V/∂t2 =
u2∂2V/∂x2 or ∂2V/∂x2 = (1/u2)∂2V/∂t2 and so (12.70) can be written in
terms of only derivatives with respect to time. Including the three ions, we
see that:

1
2πariu2

∂2V

∂t2
− cm

∂V

∂t
= gNa(V −VNa)+gK(V −VK)+gL(V −VL) (12.71)

with typical neuron properties given in Table 12.5. More details can be found
in [581, 586].

Propagation Speed for Action Potentials

These equations must be solved numerically. Still we can gain some insight
concerning the speed of these electrical signals along the axon by using an
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Fig. 12.21. A snapshot of the (a) voltage and (b) axon current of the pulse prop-
agating along an axon; (c) current densities corresponding to the two terms on the
right-hand side of (12.67); (d) current charging or discharging of the membrane.
They are all calculated using (12.67). (From [581])

analytical method. Using (12.47), (12.50), and (12.54), we can rearrange
(12.70) to give

λ2 ∂2V (x, t)
∂x2

− V (x, t) − τ
∂V (x, t)

∂t
= −Vi, (12.72)

where

λ =
√

1
2πarigi

=

√
abρm

2ρi
(12.73)
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and

τ =
cm

gi
= κε0ρm. (12.74)

We see that λ has units of distance and τ has units of time in (12.72), so it is
not unreasonable to think that the conduction speed u is approximately

u ∼ λ

τ
=

√
ab

2ρiρm

1
κε0

. (12.75)

For an unmyelinated axon b ≈ 6 nm and so using the parameters in Table
12.5, we find

uunmyelinated ∼ 0.27
√

a, (12.76)

where u is in m/s and a is in µm. This is about 7× slower than observed,
namely 1.8

√
a.

For a myelinated axon, b ≈ 0.4a, so λ = 1, 350a and

umyelinated ∼ 2.2a, (12.77)

which is again about 7× slower than observed, namely 17a. This conduction
model with Hodgkin-Huxley-type conduction across the membrane is not ex-
pected to be very accurate because, unlike that of the bare membrane, the
conduction of the myelin sheath is independent of the voltage. Therefore, prop-
agation occurs in the sheath region with this term and there is some decay
until the signal reaches the next node of Ranvier. The signal is regenerated
at this sheath-free membrane and then propagates until the next regenera-
tion stage. If we instead assumed in the model of conduction in myelinated
axons that the conduction speed is umyelinated ∼ D/τ , where D ≈ 280a is the
distance between Ranvier nodes, the model conduction speed would be

umyelinated ∼ 0.45a, (12.78)

which is about 40× slower than observations.
The speed of nerve conduction can be measured by applying a stimulating

voltage pulse at one place on the body and using electrodes to sense the
time delay in the propagated pulse at another place on the body, as seen in
Fig. 12.22 [568].

Passive Spreading

When voltages are below the threshold of ∼ −55 mV, the graded potential–
voltage disturbance decays along the axon and in time. We can use this model
to understand this. This is equivalent to the distributed circuit model in
Fig. 12.17.
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Fig. 12.22. Measuring the conduction speed along the lower arm and hand of (a)
a motor nerve and (b) a sensory nerve, along with associated EMG signals. The
conduction speed of the motor nerve in (a) is 62.5 m/s, and the conduction speed of
the sensory nerve in (b) is 58.1 m/s (see Problem 12.18). (Based on [568])

Special Case: Only Resistance, No Capacitance, Infinitely Long Cable. If
membrane capacitance is neglected in the model (cm = 0 and so τ = 0),
then (12.72) becomes

λ2 ∂2V (x)
∂x2

− V (x) = −Vi (12.79)

and V does not depend on time. If at, say, x = 0, the voltage is held at
V = Vi + V0, the solution is

V (x) = Vi + V0 exp(−x/λ) for x > 0 (12.80)
= Vi + V0 exp(+x/λ) for x < 0, (12.81)

which can be proved by substitution. This means the subthreshold disturbance
decays over a characteristic distance λ, as seen in Fig. 12.23.

Special Case: Only Resistance, No Capacitance, Cable of Finite Length. If
the cable is semi-infinite or of finite length, the solution to (12.79) needs to
be modified [589]. Such solutions are shown in Fig. 12.24 and are examined
further in Problem 12.24 (for Vi = 0). Of particular importance for a cable
of finite length is exactly how the axon is terminated at either end, i.e., the
boundary conditions. Usually these boundary conditions are specified by giv-
ing the voltage V or the current flow (which is proportional to dV/dx) at the
end of the axon cable.

Special Case: Only Resistance, No Capacitance, Infinitely Long Cable. If in-
stead the axoplasm resistance is set equal to zero (such as by placing a wire
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Fig. 12.23. With no axon membrane capacitance, a voltage disturbance decays over
a characteristic distance λ. (From [581])

axially in the axon), then λ2(∂2V (x, t)/∂x2) = 0 and (12.72) becomes

τ
∂V (x, t)

∂t
+ V (x, t) = Vi. (12.82)

(As in Fig. 12.17, transverse resistance is still possible.) If at, say, t = 0, the
voltage were constrained to V = Vi + V0 and the constraint were released,
then for any x

V (t) = Vi + V0 exp(−t/τ) for t > 0. (12.83)

Fig. 12.24. Steady-state solutions to (12.79) for a (a) semi-infinite cable and (b)–
(e) cables of finite length L with different boundary conditions at the end, with
characteristic distance λ and V = V0 at x = 0. For curves (b1)–(b3), V (L) = 0
(voltage clamped to zero), for L = 0.5λ, λ, and 2.0λ. For curves (c1)–(c3), dV/dx =
0 (current clamped to zero) at x = L, for L = 0.5λ, λ, and 2.0λ. For curves (d1)
and (d2), the voltage is clamped to 0.9V0 and 1.1V0 at x = L, for L = λ. Also see
Problem 12.24. (Based on [589])
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Again, this can be proved by substitution. This means the subthreshold dis-
turbance decays in a characteristic time τ .

General Case, Infinitely Long Cable. We can find a more general solution by
substituting a trial solution

V (x, t) = Vi + w(x, t) exp(−t/τ), (12.84)

into (12.72). This leads to:

λ2

τ

∂2w(x, t)
∂x2

=
∂w(x, t)

∂t
. (12.85)

This is the diffusion equation (Fick’s Second Law of Diffusion, see (7.53); also
see Appendix C). The disturbance w spreads in a gaussian-like manner over
a distance λ in a time τ , approximately as

w(x, t) ∝ exp(−x2/2Ddifft), (12.86)

where the diffusion constant Ddiff = λ2/τ . This assumes an initial voltage
spike at x = 0. Using (12.84), the real voltage disturbance spreads as:

V (x, t) − Vi ∝ exp(−x2/2Ddifft) exp(−t/τ), (12.87)

which has an additional overall exponential decay in time with characteristic
time τ .

12.4 Ion Channels, Hair Cells, Balance, Taste, and Smell

The previous section addressed the conduction of signals in an axon. Equally
important is the actual generation of signals that are then conducted along
an axon to the brain. We saw in the previous section that controlling the
flow of ions across the cell membrane – by changes in the permeability of
membranes to ions by the opening or closing of ion channels – is important in
this conduction. It is also important in the generation of signals, as in sensing.

One interesting example is the excitation of hair cells, which is important
in several parts of the body. Figure 12.25 shows that the “hair” in a hair cell
is a hair bundle composed of an asymmetric series of 20–300 microvilli, which
become successively larger in one direction. At the end of the bundle there
is often one large cilium, which is called a kinocilium. When the hair bundle
moves toward the kinocilium, the membrane potential depolarizes relative to
the resting potential and when it moves away from it, the membrane hyper-
polarizes, as is seen in Fig. 12.26. There is no change in membrane potential
when the bundles moves perpendicular to the direction of increasingly large
microvilli. One possible explanation for this depolarization is that Na+ posi-
tive ion channels open when the hair bundle is displaced toward the kinocil-
ium. The elastic response of the hair cell comes from the microvilli themselves,
the elastic elements (gating springs) that pull on the ion channels, and the



744 12 Electrical and Magnetic Properties

Fig. 12.25. In one mechanism for hair cell response, the hair bundle moves to-
ward the kinocilium (hair with the bead) opening channels that are permeable to
Na+ (which is depolarization), as shown in (b). Resting activity is seen in (a) and
hyperpolarization in (c). (From [593])

channels themselves. The response of hair to forces was discussed in Chap. 10
(text and Problem 10.55).

These hair cells are important in the ear, contributing both to the gen-
eration of auditory signals in the cochlea that travel to the brain to enable
hearing and in the vestibular system in the ear that helps us maintain a sense

Fig. 12.26. Membrane potential vs. hair displacement (in position and angle).
Positive displacements are toward the kinocilium. (Based on [574, 583])
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Fig. 12.27. The sense of balance is seen by examining the pair of horizontal semicir-
cular canals, by looking at the head from above. When you turn your head clockwise
there is counterclockwise motion of the cochlear fluid that depolarizes the hair cells
in the semicircular canal in the right ear and hyperpolarizes them in the left ear.
(Based on [574])

of balance. Each ear has three semicircular canals that are approximately or-
thogonal to each other, which provide us with a sense of balance through a
sensing of the motion of fluid in them. Figure 12.27 shows how hair cells sense
one such motion, that of turning your head to the right. This is clockwise
looking from the top, as in the figure. The fluid in the two depicted horizontal
semicircular canals lags behind this motion (Newton’s First Law), and so it
moves counterclockwise relative to the hair cells. This causes a depolarization
of the hair cells in the right ear and a hyperpolarization of the hair cells in the
left ear. These semicircular canals contain hair cells that are bathed in a fluid,
the endolymph, which has high concentrations of K+ and low concentrations
of Na+ and Ca2+. Consequently, when the hair cells are stimulated, K+ enters
the cell through the channels during this depolarization. The hair cells in the
cochlea are also bathed by this endolymph fluid in the scala media so the con-
trol of K+ ion channels by the hair bundles is also important in hearing trans-
duction (where transduction is the conversion of one kind of signal or stimulus
into another by a cell, which in this case is the conversion of sound into an
electrical signal). (The perilymph fluid in the scala vestibuli and the scala
tympani is high in Na+ and low in K+, as are blood and cerebrospinal fluid.)

The importance of hair cells in the sense of touch (for hairy skin) was
discussed in Chap. 2. The sense of touch by Merkel receptors, Meissner cor-
puscles, Ruffini cylinders, and Pacinian corpuscles in both hair-free and hairy
skin arises from changes in the ion channels caused by applied pressure.

Taste bud sensors are found in clusters called taste buds on the tongue
and other places in the oral cavity. There are several mechanisms that activate
sensors of taste for sweet, sour, bitter, salty, and “umani,” all involving the
control of membrane ion channels. (Umani is the Japanese word for delicious.
In this context it describes the taste of monosodium glutamate and other
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amino acids.) The conceptually simplest is that for saltiness, which is detected
by a Na+ channel that depolarizes the detector cell.

The olfactory receptor region in the nose has an area of ∼1–2 cm2, with
∼12 million receptor cells. (There are ∼4 billion such cells in a German shep-
herd dog.) The sense of smell is activated by olfactory neurons, with the
opening of ion channels. In many such neurons, this allows Na+ to enter the
cell during depolarization, which induces an increase in the firing of action
potentials.

12.5 Electrical Properties of the Heart

The total charge of the heart is zero during the heart beat, but there are
dynamic separations between positive and negative charges. These create an
electric dipole that rotates as it becomes larger and then smaller in magnitude
during each cardiac cycle. The electric potential at different places on the skin
consequently changes with time during each cycle and this is what is sensed in
an electrocardiogram (EKG or ECG). These potential differences are typically
∼30–500 µV. Usually 12-lead scalar EKG measurements are made, which give
much information about the evolution of the cardiac dipole and sufficiently
valuable information concerning potential abnormalities in the heart. Vector
EKGs are taken less often; they can provide a more complete view of the
evolution of the heart dipole during a heart beat. A typical EKG is shown in
Fig. 12.28.

Fig. 12.28. A normal electrocardiogram (EKG/ECG), showing the P wave (atrial
depolarization), QRS complex (ventricular depolarization), and T wave (ventricular
repolarization) in a single cardiac cycle. Typically the scan proceeds with 25 mm/s
and the signal strength is plotted as 10 mm/mV. (Based on [586])
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From an electrical perspective, the heart can be described as an electric
dipole whose magnitude and direction varies in a cyclic manner, repeating
for each heart cycle. As for the axon described earlier in this chapter, the
positions of charges in the cardiac muscle cells change during cell depolariza-
tion in muscle contraction and repolarization. This constitutes a change in
the electric dipole moment of the individual cell. The electric fields due to all
such heart muscle cells add to produce voltage variations in the body that
are sensed by the EKG probes. The voltages vary with time indicating the
depolarization (contraction) of the right and left atria (called the P wave),
the depolarization (contraction) of the right and left ventricles during systole
(the QRS complex) – the repolarization of the atria is masked by this, and
the repolarization of the ventricles (the T wave). The time dependence can
indicate normal or abnormal firing of the heart muscle, and this could, in
principle, be determined from the voltage difference across two EKG probes.
Analysis of the voltages across several pairs of electrodes provides important
information that is used to spatially locate abnormalities in different parts of
the heart muscle, such as after a heart attack. The EKG probes measure the
electric potential (voltage) just below the skin. The resistance across the skin
is not significant because the EKG probes are connected to the skin with a
special contact jelly.

The difference in potential across the cell membrane of the cardiac muscle
cell changes during the depolarization and subsequent polarization of atrial
and ventricular heart muscles during each cycle, and this changes the electric
potential near the heart. Because the tissues and blood of the body contain
conductive ions, such changes in potential cause changes in currents and the
net results affect the electric potential very far from the heart. As such, the
cardiac muscle can be viewed as being placed in a volume conductor.

Why does this potential change with time, even for a single muscle cell?
Let us follow the motion of charges during a cycle. The field across the cell
membrane can be modeled locally as an electric dipole, with positive and
negative charges, of equal magnitude, separated by a distance (Fig. 12.1). The
electric field lines are shown for such a point dipole in Fig. 12.1.

A polarized cardiac muscle cell is a series of such dipoles as depicted in
Fig. 12.29a, with about −70 mV inside the cell relative to the outside, all
around the cell. No potential (which is really a baseline potential) is seen at
the electrode immediately to the right of the cell. As the depolarization wave
propagates from left to right, the potential on the right increases and reaches
a maximum when half the cell is depolarized, as in (c). As the depolarization
wave arrives at the right end, this voltage decreases to zero as in (e). This
is similar to the PQR wave in ventricular depolarization seen in the EKG
in Fig. 12.28. This is what would occur if the potential across the membrane
were zero after depolarization. Because it actually becomes slightly positive,
the potential in (e) should dip slightly negative, as seen for the PQR wave.
When the left side becomes repolarized, the potential becomes negative and
a negative pulse develops, as in (f)–(h). This is similar to the S ventricular
repolarization pulse in Fig. 12.28 except for its sign. Unlike that in Fig. 12.29h,
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Fig. 12.29. Potential to the right of a strip of myocardium immersed in a volume
conductor during (a)–(e) depolarization and (f)–(h) repolarization. The polarized
section is gray and the depolarized section is white. For real cardiac muscle, the
repolarization signal is positive, as is the depolarization signal (Fig. 12.28), because
in the human heart repolarization proceeds in the direction opposite from depolar-
ization, as shown on the bottom. (Based on [597])
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Fig. 12.30. Normal ventricular depolarization recorded by leads aVL and aVF,
showing the change in magnitude and counterclockwise rotation of the projection of
the cardiac dipole in the frontal plane. (Based on [584])

the second peak is positive because cardiac muscle repolarization proceeds in
the direction opposite from depolarization, as for the lowermost trace. Fur-
thermore, repolarization is a bit slower and more inhomogeneous than depo-
larization so the negative dip is broader (slower) and has a smaller magnitude
(wider) than the first peak.

Figure 12.29 also shows that the potential is qualitatively different at the
left and at the top of the cell during depolarization. This is why the EKG
electrodes placed at different positions sense different signals (and can pro-
vide different information). Furthermore, the electrode placed on the left in
Fig. 12.29 gives the negative of the signal of that placed on the right. (This
makes sense. Why?)

Each of the four cycles of atrial and ventricular depolarization and atrial
and ventricular repolarization does not occur simultaneously throughout the
heart, and each is sensed by an EKG and can be analyzed separately. The
evolution of the net cardiac electric dipole during ventricular depolarization
(QRS cycle) is shown for a normal heart in Fig. 12.30.

Clearly the magnitude and direction of the dipole change greatly during
each cycle. These are sensed by the exact placement of EKG electrodes, which
can provide important details about cardiac function and malfunction. The
location of the twelve leads for an EKG with a supine (lying down) person are
described in Table 12.6. Six are on the ribs, and six others are on the arms and
legs. Three of the latter have two leads (bipolar), one for monitoring and one
for reference, while the other nine are single leads (unipolar). Figures 12.31
and 12.32 show the nine locations in the table where the 12 EKG leads are
placed. Remember that voltage differences are being measured from one lead
to another.

The earlier discussion shows that the EKG voltage is positive when the
cardiac dipole points to the (positive side of the) EKG lead and negative when
it points away from it. This is clear from Fig. 12.1d. Figure 12.33 shows the
12 EKG signals from a normal heart. Figure 12.30 shows the relation between
the effective positioning of two of these bipolar leads, the evolution of the
cardiac dipole, and the signal recorded by these leads.
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Table 12.6. Position of electrodes in an EKG. See Figs. 12.31 and 12.32. (Using
information from [575])

lead electrode position

standard limb leads
(bipolar)

I right arm and left arm
II right arm and left leg
III left arm and left leg

augmented leads
(unipolar)

aVR right arm
aVL left arm
aVF left leg

chest leads
(unipolar)

V1 4th intercostal space, right side of sternum
V2 4th intercostal space, left side of sternum
V3 5th intercostal space, left side (between V2 and V4)
V4 5th intercostal space, left side (midclavicular line)
V5 5th intercostal space, left side (anterior axillary line)
V6 5th intercostal space, left side (midaxillary line)

Three of the EKG electrodes are placed on the right and left arms
and the left leg, and the voltages across the three pairs of these elec-
trodes are monitored (along with the signals from the other probes), and
are called I (VI = Vleft arm − Vright arm), II (VII = Vleft leg − Vright arm), and III

Fig. 12.31. Placement of the horizontal plane, precordial unipolar EKG electrodes.
Only 6 of the 12 leads in (b), V1–V6, are used in usual EKGs (solid circles, in the
region labeled by 5.ICR (5th intercostal space or region in the ribs) in (a)). The
additional dorsal leads V7–V9 are specifically used to detect a posterior myocardial
infarction. The additional right precordial leads, V3R–V6R (open circles, in the
region labeled by 4.ICR (4th intercostal space or region) in (a)), are specifically
used to detect a right ventricular myocardial infarction. (From [577])
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Fig. 12.32. Placement of the three unipolar and three bipolar front-plane limb
leads. Sometimes an electrode is positioned on the right leg (not shown) to serve as
an electrical ground. (From [577])

Fig. 12.33. Normal EKG patterns from the 12 electrodes. (From [577])
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Fig. 12.34. (a) The three leads I, II, and III are arranged as Einhoven’s triangle.
(b) The effective directions for the six frontal leads shown in (a) are translated
to form the triaxial reference system called Cabrera’s circle. The signed, vector
projection of the cardiac dipole onto these six directions gives the EKG signal for
these six frontal plane leads. (From [577])

(VIII = Vleft leg − Vleft arm), as in Table 12.6. These three electrodes act as if
they probe at the vertices of a triangle, which is usually called the Einhoven’s
triangle, as shown in Fig. 12.34a. Because the arms and legs do not have new
sources of electric fields and the tissue in each is a conductor, the probes on
the arms actually sense the same voltages as if they were instead placed on
the respective shoulders and the probe on the leg has the same voltage as if it
were placed on the bottom of the torso near the pubic area, and Einhoven’s
triangle is sometimes depicted for this smaller triangle. Using Kirchhoff’s 2nd
Law, (12.14), VI + VIII − VII = 0 (the minus sign in front of the last poten-
tial indicates a different sign convention around the circuit than for the first
two) or

VI + VIII = VII. (12.88)

Cabrera’s circle in Fig. 12.34b shows the effective positioning of the six frontal
plane leads, and this is used in Fig. 12.30.

Figure 12.34 shows how momentary cardiac dipoles in three-different di-
rections cause momentary potential differences in these three electrode pairs.
An appropriate sum of these three voltages, such as VI + VIII − VII, serves
as the electrical ground for measurements with each of the six chest probes.
Also, note that the difference in the signals from the aVL and aVF leads in
Fig. 12.30 should be similar to that from the III lead.

This EKG can provide important details about cardiac function and mal-
function, and the location of the malfunction. This includes (1) the heart rate,
(2) arrhythmia, (3) axis (giving the direction and magnitude of activity for
atrial and ventricular contractions), (4) hypertrophy (which is an increase in
the left or right ventricular muscle mass), (5) enlargement (which is an in-
crease in the volume of the left or right atria chambers), and (6) infarction.
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Fig. 12.35. Evolution of the cardiac dipole during ventricular depolarization
after a lateral wall cardiac infarction, along with the EKG from lead aVL.
The larger-than-normal Q wave occurs because the site of the infarction (black)
should be depolarizing and contributing a positive signal in (c). (Based on
[584])

In arrhythmias, there can be a variable rhythm, a rhythm that is either too
fast (tachycardia, >100 beats/min; but >250 beats/min – flutter or fibrilla-
tion – it can be life-threatening in the ventricles) or too slow (bradycardia,
<60 beats per min, except it can be lower in trained athletes), and devia-
tions from a 1:1 ratio of atrial and ventricular contractions, as described more
in Chap. 8.

During a myocardial infarction part of the cardiac muscle is damaged and
within a few hours these muscle cells usually die and then do not depolarize
and repolarize. The absence of electrical signals from a given part of the left
ventricle is seen in the EKG in Fig. 12.35. The dipole vector during depolariza-
tion points away from the black region of the infarction in step 3; if that black
region were active it would then depolarize and the dipole would be pointing
in the opposite direction. This is seen as an enhanced Q-wave. The formation
of scarring in this damaged region can still be seen after recovery (Fig. 12.36).

Fig. 12.36. EKG evolution during and after an acute Q-wave myocardial infarction.
(Based on [584])
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Fig. 12.37. EKG signals from the 12 leads (left) 2 h after an anteroseptal myocardial
infarction an (right) 4 h later, after thrombolysis. (From [577])

In general, large Q waves in the I and aVL traces indicate a lateral infarction,
in the V1, V2, V3, or V4 traces an anterior infarction, and in the II, III, and
aVF traces an inferior infarction. A large R wave in the V1 and V2 traces
indicates a posterior infarction.

Figure 12.37 shows all 12 EKG traces 2 h after an anteroseptal myocar-
dial infarction (i.e., one with features of both anterior and (interventricular)
septal myocardial infarctions) and 4 h after the infarction has been treated by
thrombolysis (treatment to break up blood clots); there is no pathological Q
wave in this case, but elevated ST waves at 2 h and a normal ST segment 4 h
later, but negative T in some traces. (Compare both to the normal traces in
Fig. 12.33.)

Information from these scalar measurements can be projected onto dif-
ferent body planes and provide information about the evolution of the car-
diac dipole vectors in a process called vectorcardiography. Figure 12.38 shows
the QRS vector evolution in a vectorcardiogram and its projections on the
frontal and horizontal planes. For more on EKGs and diagnosis using EKGs
see [572, 577, 584, 586, 587, 590, 591, 596, 597].
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Fig. 12.38. A ventricular vectorcardiogram, showing the evolution of the QRS vec-
tor along its loop, along with its projections on the frontal and horizontal planes.
The frontal projection gives the frontal plane EKG derived from the frontal plane
leads, which need little correction; whereas the horizontal projection must be cor-
rected to obtain the scalar EKG obtained directly from the precordial leads. (From
[577])

12.6 Electrical Signals in the Brain

Electrical signals are also important in other parts of the body, as shown
in Table 12.1, such as the electroencephalograms (EEGs) of brain waves in
Fig. 12.39. In contrast to the very regular EKG patterns, the EEG signal is
irregular, but it has identifiable rhythmic patterns: alpha waves (frequency of
8–13 Hz; awake, restful state), beta waves (14–25 Hz; alert wakefulness, extra

Fig. 12.39. Schematic of changes in brain waves during different stages of wakeful-
ness and sleep. (Based on [580, 593])



756 12 Electrical and Magnetic Properties

Table 12.7. Effect of currents (in mA) on the human body (for about 1 s). (Using
data from [595])

effect DC AC
(60Hz)

slight sensation at contact point 0.6 0.3
perception threshold 3.5 0.7
shock
– not painful, no loss of muscular control 6 1.2
– painful, no loss of muscular control 41 6
– painful, let-go threshold 51 10.5
– painful, severe effects: muscular contractions, 60 15

breathing difficulty
– possible ventricular fibrillation (loss of normal 500 100

heart rhythm)

All values are approximate.

activation, tension), theta waves (4–7 Hz, mostly in children, also adults with
emotional stress and with many brain disorders), and delta waves (<3.5 Hz;
deep sleep) [586].

12.7 Effects of Electric Shock

External electrical currents running in the body can cause damage by inter-
fering with normal bodily function – such as by preventing your otherwise
operational skeletal and cardiac muscles from functioning normally – and by
destroying tissues by thermal heating (Table 12.7). Muscles are controlled by
a series of electrical impulses sent by the brain. External AC currents (60 Hz)
above 10 mA or so override these signals and prevent you from exercising
control over your muscles. You can barely control your muscles at 10 mA and
barely “let go” of an object. At higher currents your muscles are under external
control, possibly leading to breathing and circulatory difficulties. Ventricular
fibrillation occurs from 100 mA to 4 A and paralysis occurs, along with severe
burns (and death), over 4 A. For weak shocks, the sensation of shock varies as
the 3.5 power of the applied 60 Hz voltage (Stevens’ Law (1.6), Table 1.15),
so the perception of electric shock is very superlinear with stimulus.

The skin is a very important barrier to current flow (I). The resistance (R)
through dry skin is roughly 100,000–600,000 ohms and through wet skin it is
only about 1,000 ohms. If the skin barrier is overcome, the resistance drops (so
there is more current flow per unit voltage, as per Ohm’s Law). Figure 12.40
shows that the internal body resistance is low, approximately 400–600 ohms
from head to foot and 100 ohms from ear to ear. The amount of current that
can flow in the body induced by a voltage source (V ) is limited by two factors
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Fig. 12.40. Body segment resistance (in ohms), ignoring skin contribution. As
shown, 500 ohms is the contribution from one finger. (Based on [579])

(1) Ohm’s Law says the current will be I = V/R. (2) The current is sometimes
limited by the voltage source itself.

Let us assume the skin barrier has been broken so the effective body resis-
tance is about 500 ohms. (Please do not attempt this!!!) The 120 V AC from a
wall outlet will produce a current of 240 mA, which is over twice that needed
to cause death through ventricular fibrillation. Circuit breakers typically trip
at 15 A, so this flow through the body will be uninterrupted by the circuit
breaker. How about DC sources? The current induced by the often-used 9 V
battery is 18 mA, which can cause a shock. (You can easily draw this current
from such a battery.) The voltage across a car battery is 12 V with 400–600 A
(cranking amps), so it can shock you even worse (Problem 12.5).

12.8 Magnetic Properties

The magnetic fields in the body are due to electric currents and are extremely
weak. Typical magnetic fields in the body that can be measured are shown in
Table 12.8, and are all much weaker than the 5×10−5 T (0.5 Gauss) magnetic
field of the earth. (For comparison, the maximum human-made magnetic fields
approach 100 T.)

12.8.1 Magnetic Field from an Axon

The Biot-Savart Law determines the magnetic field from currents. Consider a
continuous current I flowing along the infinitely long z-axis. Using the Biot-
Savart Law, one can show that a distance R away the magnetic field B has a
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Table 12.8. Typical amplitude of biomagnetic signals. (Using data from [567])

biomagnetic signal typical amplitude (pT)

magnetocardiogram (MCG) 50
fetal MCG 1–10
magnetoencephalogram 1
evoked fields 0.1
magnetomyogram 10
magneto-oculogram 10
Earth’s field 50 × 106

magnitude

B =
µ0I

2πR
(12.89)

and is in the radial direction, according to the usual right hand rule.
This analysis does not exactly apply to signals along a neural axon. A

voltage pulse traveling along an axon is a pulse and not a continuous current.
It is in a medium that is fairly conductive. Also, there are several directions
of the current flow, along the axon, transverse to the membrane, etc. Still, let
us estimate the field strength just as the pulse passes by, and model it as a
continuous current. The current along the axon is the most important. Using
(12.63) Ii(x) = −(1/ri)dV/dx, we estimate the magnitude of this current to
be

I ∼ 1
ri

V

λ
. (12.90)

Therefore, the magnetic field magnitude 1 mm away from the axon is approx-
imately

B ∼ µ0V

2πRriλ
(12.91)

=
(4π × 10−7 T-m/A)(0.1 V)

2π(0.001 m)(6.4 × 109 ohm/m)(3.8 × 10−4 m)
= 8 pT, (12.92)

with λ = 3.8 × 10−4 m. This value is consistent with the low values in Table
12.8. (This estimate is reasonable even though some of the assumptions are
not perfect.)

12.8.2 Magnetic Sense

Humans (apparently) cannot sense magnetic fields, but magnetic fields do
help several animals sense direction (as with a compass) and/or location due
to the presence of 50-nm diameter magnetite (Fe3O4) particles in their bod-
ies. (These particles are sometimes arranged in chains.) For example, this
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magnetic sense is very strong in pigeons, who have 10–20 nT sensitivity, and
dolphins, who have <2 µT sensitivity [565]. The magnetic sense mechanism
may involve a torque that is induced on this particle system by the field and
this in turn may induce a torque on intracellular filaments; this movement
of the filaments triggers a sensory neuron. (Electric fields induce a torque on
an electric dipole, as is easily seen by examining the Coulomb forces on the
individual charges in the electric dipole. Similarly, magnetic fields induce a
torque on a magnetic moment. This analogy is valid even though there are no
magnetic charges.)

12.9 Electromagnetic Waves

Radio waves, microwaves, infrared radiation, visible light, ultraviolet light,
X-rays, and gamma rays are all electromagnetic waves. Each propagates at
the same speed of light c in vacuum. Each has a frequency of oscillation ν and
wavelength λ related by c = λν (11.2). For each, this oscillation consists of
electric and magnetic fields sinusoidally oscillating in phase in vacuum. They
differ only in their frequency (and consequently wavelength), which increases
(decreases) in going from one of these regimes to the next. We discussed visible
light at length in Chap. 11.

The penetration of electromagnetic radiation through the body is some-
times of interest. The attenuation factor for such radiation plotted in Fig. 12.41
is αlight from Beer’s Law, (10.18),

I(z) = I(z = 0) exp(−αlightz). (12.93)

Attenuation consists of losses from absorption and scattering, and is clearly
very dependent on frequency. This figure shows trends, but not all details.
For example, the attenuation factor in the microwave is due to nonresonant
processes. The body absorbs microwave radiation at 2.45 GHz used in mi-
crowave ovens much more strongly than indicated there because of the strong
resonant absorption by water at this frequency. (This is why this frequency is
used in microwave ovens.)

12.10 Summary

Electrical processes are essential to the operation of the body and have proved
to be very important in medical diagnostics. Electrical conduction is impor-
tant in most parts of the body. Models of the propagation of electrical sig-
nals in nerves can explain the physical basis of perhaps the most important
mechanism of regulation in the body. Electrical processes are integral to cell
operation, including to the physics of cell membranes. The electrical nature of
the heart has led to the use of EKGs as a diagnostic that can be interpreted
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Fig. 12.41. Attenuation of electromagnetic radiation in human tissue, due to ab-
sorption and scattering. (From [576]. Courtesy of Robert A. Freitas Jr., Nanomedi-
cine, Vol. 1 (1999), http://www.nanomedicine.com)

by using simple models of the dipole nature of the heart. Electrical signals
in other parts of the body are also used in diagnostics. Naturally occurring
magnetic signals are relatively less important in the body.

Problems

Conductance, Transmission, and Potentials

12.1. Use Table 12.4 to compare the conductivity in a cell and in blood.

12.2. Estimate the electrical resistance of the blood in a 50-cm long, 3-mm
diameter artery.

12.3. There are two common relations for the resistivity of blood as a func-
tion of the hematocrit Hct: ρ = 0.537 exp(0.025Hct) and ρ = 0.586(1 +
0.0125Hct)/(1 − 0.01Hct), which is called the Maxwell–Fricke equation [586].
How do they differ in the range of Hct from 10%–60%, and specifically at the
normal value of 45%?

12.4. During an accident, 120 V AC from a wall socket connects your body
to electrical ground, from hand to hand:
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(a) If the resistance across the body is 500 ohms, what is the current flow?
(b) Is this dangerous?
(c) If the region from hand to hand can be modeled as a cylinder of constant
diameter (equal to the diameter of the upper arm) and length (from finger tip
to finger tip) of your own body, and all material is assumed to be uniform,
estimate the electrical resistivity of the body tissue.
(d) How much power is dissipated in this section? (Calculate both the total
power and the power per unit volume.) (Remember that the power dissipated
is P = IV and Ohm’s Law is V = IR. Assume here and below that the power
is the same as that for a DC voltage source.)
(d) What is the heat capacity of this cylindrical section? Assume the average
specific heat of the body.
(e) Ignoring heat flow, how much would the temperature of this section in-
crease per unit time?
(f) How long would it take to denature the proteins in this cylindrical section?
(See the information provided in Chap. 13.)

12.5. Compare the amount of current that could be drawn from a car battery
in an electrical shock to the maximum amount of current that could be drawn
from it. What does this mean? Why is the shock worse than that from a 9-V
battery?

12.6. What ranges of electromagnetic radiation can penetrate through your
(a) eyelid, (b) finger, and (c) chest?

12.7. An ion of mass m and charge q moves at a speed v under the influence
of an electric field E. It suffers a drag force that relaxes its speed with a
characteristic time τ :
(a) Show that force balance on the charge gives: mdv/dt = −mv/τ + qE.
(b) Show that in steady state, the ion moves at the drift velocity (which is
really the drift speed here), vdrift = qEτ/m = µE, where µ = qτ/m is called
the mobility.

12.8. (advanced problem) Show that the potential of a charge Ze shielded
by mobile charges is given by V (r) = (Ze/4πε0εr) exp(−κr), where κ =√

(e2/ε0εkBT )
∑

i Z2
i ni,0. Do this by substituting this solution for V (r) into

the Poisson–Boltzmann equation (12.41), which can be expressed in three-
dimensions as:

1
r

d2(rV )
dr2

= − 1
ε0ε

∑

i

Zieni,0 exp(−ZieV/kBT ) (12.94)

for this spherically symmetric potential. Assume the region is electrically neu-
tral and that ZieV/kBT ' 1. (Hint: See Appendix C.)

12.9. (advanced problem) Repeat Problem (12.8), this time solving the
Poisson–Boltzmann equation under the stated conditions in one-dimension.
How does this solution differ from the spherically-symmetric three-dimensional
solution?
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12.10. In her famous 1973 rendition of the song “Killing Me Softly With
His Song,” Roberta Flack sang, “He sang as if he knew me in all my dark
despair. And then he looked right through me as if I wasn’t there.” [578] If
this were literally true, electromagnetic radiation would have to be able to be
transmitted through her body. Over what wavelength ranges would that be
possible? (Of course, there would also have to be a source of such radiation
and his eyes would have to be sensitive to those wavelengths.) (By the way,
this song was written by Norman Gimbel and Charles Fox for Lori Lieberman,
who sang it in 1971, and it was sung in the 2001 movie, “About a Boy.” A
modified version was also released by the Fugees in 1996, however without the
cited lyrics.)

Neuron Transmission and Membranes

12.11. Which of the four mechanisms involved in ion transport in an axon
membrane shown in Fig. 12.11 contribute to the negative charge inside the
cell and which to the positive charge?

12.12. The capacitance of a cylinder of length L, inner radius a, and outer ra-
dius a + b, with electrodes separated by material with dielectric constant κ, is
Ccylinder = 2πκε0L/ ln(1+b/a). Show that unfolding the cylinder and treating
it as a parallel plate capacitor is an excellent approximation for unmyelinated
axons, but not for myelinated axons.

12.13. (a) Estimate the effective dielectric constant κ of myelin, by suitably
weighting the averages of the dielectric constants of its components. These
water, lipid, and polar components have κ = 80, 2.2, and 50, respectively,
and have effective thicknesses t of 2.2, 4.2, and 10.8 nm, respectively, in the
repeated 17.1 nm bilipid layered structure in the myelin [581]. These can be
considered as capacitances in series, so

κeff =
ttotal

twater/κwater + tlipid/κlipid + tpolar/κpolar
. (12.95)

(b) How does this answer help explain why κ = 7 is reasonable for the axon
membrane?

12.14. (advanced problem) Derive the relation in Problem 12.13(a).

12.15. Compare the numerical values of the graded potential decay length λ
for typical unmyelinated and myelinated axons.

12.16. It is assumed that the spatial decay of the graded potential in myeli-
nated axons is slow enough that there is little decay before the signal reaches
the next node of Ranvier for regeneration. Is this assumption valid?
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12.17. Some pain receptors transmit signals on myelinated axons in neu-
rons with conduction speeds up to 30 m/s and others are transmitted on
very slow unmyelinated axons with speeds of 2 m/s and lower. How long
does it take such receptors on your finger tips to be transmitted to your
brain?

12.18. Show that the conduction speeds as given in the caption of Fig. 12.22
are consistent with the EMGs given in the figure.

12.19. Determine the characteristic time τ for unmyelinated and myelinated
axons.

12.20. Use substitution to show that (12.80) is the solution to (12.79).

12.21. Use substitution to show that (12.83) is the solution to (12.82).

12.22. Show that substituting (12.84) into (12.72) gives (12.85).

12.23. (advanced problem) Use substitution to show that each of the following
is a solution to the voltage along an axon cable in steady state (12.79) for
Vi = 0:

V (x) = A1 exp(x/λ) + A2 exp(−x/λ), (12.96)
V (x) = B1 cosh(x/λ) + B2 sinh(x/λ), (12.97)
V (x) = C1 cosh((x − L)/λ) + C2 sinh((x − L)/λ). (12.98)

12.24. (advanced problem) Use substitution and evaluation at the boundaries
to show that each of the following is a solution to the voltage along an axon
cable (for x ≥ 0) in steady state (12.79) as in Fig. 12.24, for Vi = 0 as the
boundary condition V (x = 0) = V0 and [589]:
(a) An semi-infinitely long cable (Fig. 12.24a):

V (x) = V0 exp(−x/λ), (12.99)

(b) A cable of length L and the boundary condition that V = 0 at x = L
(which means the voltage is clamped at zero at the end of the cable, which is
a short-circuit boundary condition) (Fig. 12.24b2):

V (x) = V0
sinh((L − x)/λ)

sinh(L/λ)
. (12.100)

(c) A cable of length L and the boundary condition that dV/dx = 0 at x = L
(which means zero core current at the end of the cable, which is an open-circuit
boundary condition) (Fig. 12.24c2):

V (x) = V0
cosh((L − x)/λ)

cosh(L/λ)
. (12.101)

(d) A cable of length L and the boundary condition that V = VL at x = L
(which means the voltage is clamped at V = VL at the end of the cable)
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(Fig. 12.24d):

V (x) =
V0 sinh((L − x)/λ) + VL sinh(x/λ)

sinh(L/λ)
. (12.102)

12.25. Sketch V in (12.83) vs. t. (Label t = τ .)

12.26. Sketch V in (12.87) vs. t and also vs. x. (Label t = τ and x =
√

Ddifft,
in the respective sketches.)

EKGs

12.27. By a series of diagrams similar to Fig. 12.29, show that the repolariza-
tion waves traveling to the left and right, respectively, produce signals that
are the negative of each other.

12.28. Find the heart rate from the EKGs in Fig. 12.33. Each big box is 0.2
s wide.

12.29. Show that the integration of the cardiac dipole electric field gives a
potential that is positive at a point the dipole points to, negative at a point
the dipole points away from, and zero at a point where the dipole points in a
transverse direction.

12.30. Assume that in (A)–(D) in Fig. 12.42 the cardiac dipole is initially zero,
increases to the maximum dipole vector shown, and then decreases to zero,
always in the direction shown. (This is not what normally happens. Why?)
Match each dipole in (A)–(D) to the EKGs (a)–(d) for the EKG Type I lead
shown.

12.31. Assume the same dipole dependencies as in Problem 12.30. Sketch the
EKGs for EKG leads II and III for cases (A)–(D) in Fig. 12.42.

Fig. 12.42. Examples of cardiac dipoles and EKG lead I. (Based on [584].) For
Problems 12.30–12.32
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12.32. Explain why the sequence of cardiac dipole evolution is normally (D),
(C), (B), (A) for the dipoles shown in Fig. 12.42.

12.33. (a) Use the normal sequence of cardiac dipole evolution to sketch the
evolution of the EKG signal for EKG leads I, II, and III.
(b) The three lead potentials should always sum to zero. Confirm that your
EKGs do so.

12.34. Compare the EKGs in Fig. 12.37 – taken at two times after a heart
attack – with each other and then with the normal traces in Fig. 12.33.


