
Cadeia de transporte de Elétrons e Fosforilação Oxidativa

QBQ 0104 – Fisioterapia 2023

- Oxidação da glicólise, ácidos graxos e aminoácidos

acetilCoA

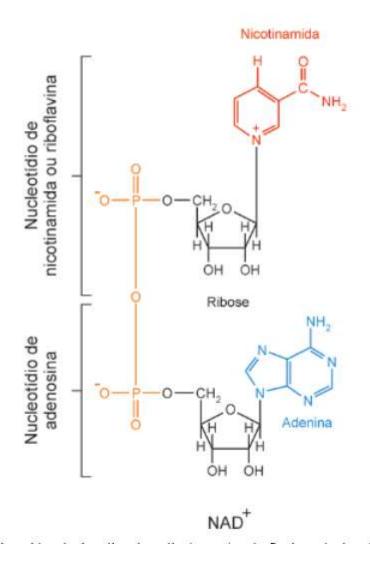
Ciclo de Krebs: oxidação máxima dos átomos de carbono e geração de coenzimas reduzidas NADH e FADH₂

Como o organismo conserva a energia?

Uma pequena fração da energia contida na molécula de glicose (e de lipídeos, aminoácidos) gera ATP; a maior parte da energia é conservada na forma de coenzimas reduzidas

Produção de ATP

Glicólise: saldo de 2 ATP


Ciclo de Krebs: 1 ATP e 1 GTP

Etapa/Reação	Mols de NADH	Mols de FADH ₂
Glicólise Gliceraldeído 3-fosfato → 1,3-Bisfosfoglicerato	2	_
Piruvato → Acetil-CoA	2	_
Ciclo de Krebs		
Isocitrato $\rightarrow \alpha$ -Cetoglutarato	2	_
$\alpha\text{-Cetoglutarato} \to \text{Succinil-CoA}$	2	_
Succinato → Fumarato	_	2
Malato → Oxaloacetato	2	_
Total	10	2

Coenzimas

NAD+: nicotinamida adenina dinucleotídio

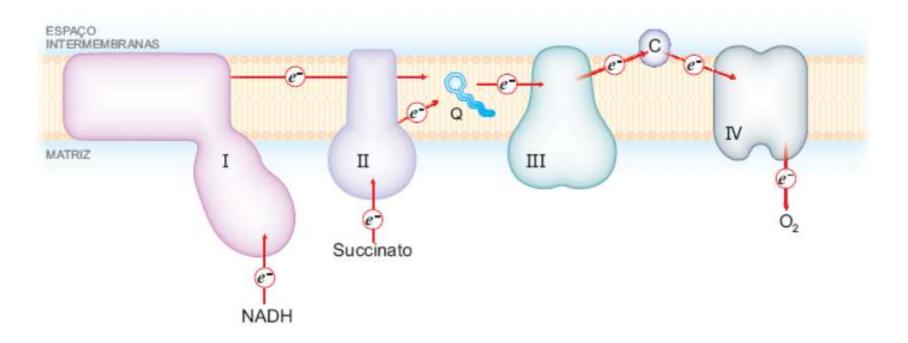
FAD: flavina adenina dinucleotídeo

Coenzimas

NAD⁺: nicotinamida adenina dinucleotídio – transferência de 2 elétrons e 1 próton do substrato. O outro próton é liberado para o meio

FAD: flavina adenina dinucleotídeo: 2 elétrons e 2 prótons do substrato.

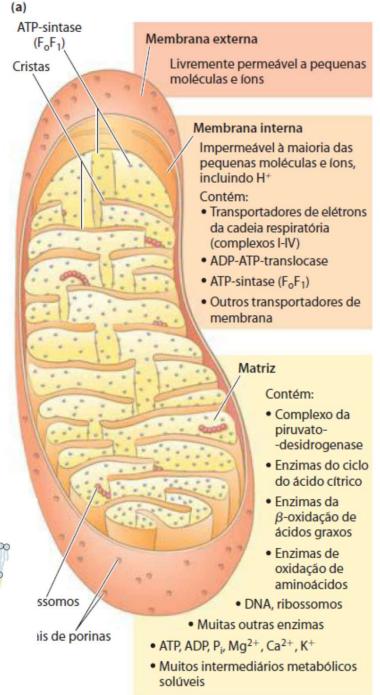
$$NAD^{+} + SH_{2} \longrightarrow NADH + H^{+} + S$$

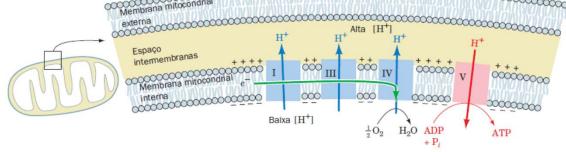

$$FAD + SH_{2} \longrightarrow FADH_{2} + S$$

$$NAD^{+} = C \longrightarrow NADH = C \longrightarrow NADH$$

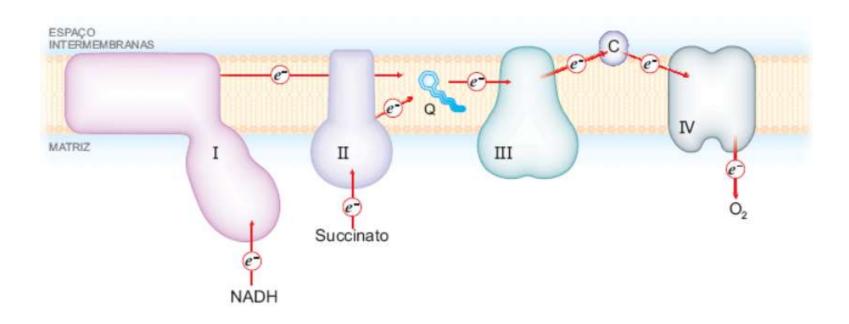
S= substrato

Reoxidação das Coenzimas


- Para voltar a participar das vias de degradação de nutrientes
- A energia da oxidação das coenzimas será acoplada à síntese de ATP.
- A oxidação das coenzimas pelo oxigênio, a "respiração celular" é feita pela cadeia de transporte de elétrons.
- Esta cadeia está acoplada a síntese de ATP: fosforilação oxidativa.



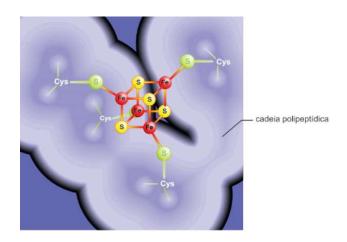
Os componentes da cadeia de transporte de elétrons organizamse em ordem crescente de potenciais de redução


	Par oxidado/reduzido	E°9 (volts)
	NAD+/NADH	-0,32
Complexo I	FMN/FMNH ₂	-0,30
	Centros Fe-S ox/red ¹	-0,38 a -0,27
	Fumarato/Succinato	+0,03
Complexo II	FAD/FADH ₂	-0,04
	Centros Fe-S ox/red	- 0,03 a 10,06
	Citocromo b ox/red	-0,08
	CuQ/CuQH ₂	+ 0,05
Complexo III	Herne b ₅₆₆ ox/red ²	-0,03
	Heme b 5620x/red	+0,03
	Centros Fe-S ox/red	+ 0,28
	Citocromo c 10x/red	+ 0,22
	Citocromoc ox/red	+0,24
Complexo IV	Citocromo a ox/red	+0,29
	Cu ²⁺ /Cu ¹⁺	+0,34
	Citocromo a 30x/red	+ 0,55
	0 ₃ /H ₂ 0	+ 0,82

As transferências de elétrons ocorrem na mitocôndria

As transferências de elétrons ocorrem na mitocôndria

4 complexos enzimáticos (I, II, III e IV).


2 componentes móveis: coenzima Q (conecta complexos I e II ao III) e citocromo c (conecta complexo III ao IV)

Grupos prostéticos associados a subunidades proteicas

- Flavina mononucleotídio (FMN) - grupo prostético do complexo I

- Centros ferro-enxofre (Fe-S)

Cofatores dos complexos I, II e III

Componentes móveis da cadeia de transporte de elétrons

Ubiquinona ou Coenzima Q (CoQ ou Q)

Recebe total de 2 prótons e 2 elétrons

$$\begin{array}{c} CH_3O \\ CH_3O \\ CH_3O \\ CH_2-CH=C-CH_2)_{10}H \end{array}$$

$$\begin{array}{c} CH_3 \\ CH_3O \\ OH \\ C$$

Citocromos – proteínas transportadoras de elétrons que contém

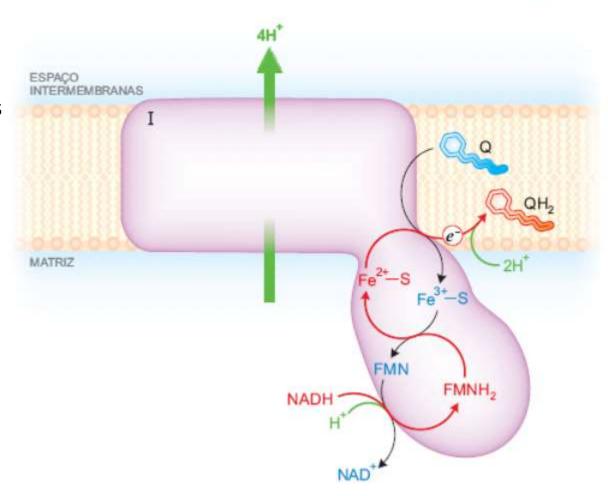
heme (e ferro)

Citocromo c:

conecta os complexos II e IV.

Citocromos
$$a$$
 e a_3 : $C_{17}H_{29}$ $C_{17}H_{2$

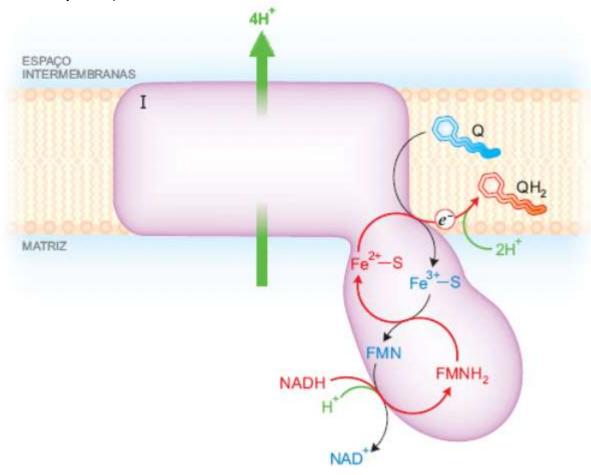
Complexo I


Também chamado como NADH-ubiquinona oxirredutase Oxida o NADH, Reduz a CoQ É uma bomba de prótons

$$NADH + H^+$$
 (matriz) + 4 H⁺ (matriz) + Q $\rightarrow NAD^+ + 4 H^+$ (espaço intermembranas) + QH_2

quatro prótons bombeados por dois elétrons transferidos (4H+/2é).

Elétrons do NADH para o FMN.

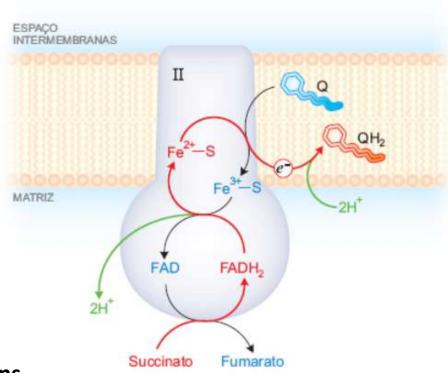

FMNH₂ são transferidos a centros Fe-S, e depois à CoQ (com retirada de 2 prótons da matriz), formando CoQH₂.

Complexo I – Origem do NADH

NADH é produto de várias reações do metabolismo. exemplos são as reações de oxidação de:

- gliceraldeído 3-fosfato (glicólise);
- piruvato (conversão piruvato → acetil-CoA);
- isocitrato, α -cetoglutarato e malato (ciclo de Krebs);
- β-hidroxiacil-CoA (ciclo de Lynen).

Complexo II ou succinato desidrogenase


ainda chamada *succinato-ubiquinona* oxirredutase

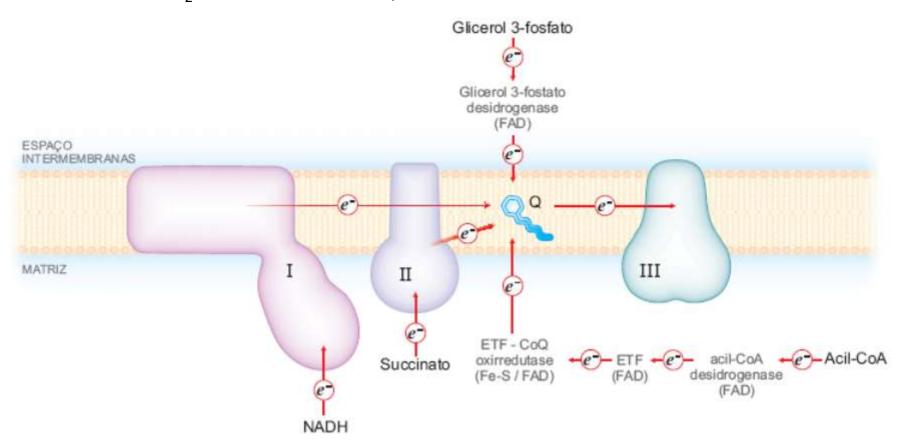
Participa do ciclo de Krebs e faz parte da cadeia respiratória.


catalisa a oxidação de succinato a fumarato, com redução de FAD a FADH₂ (ou seja, Os elétrons e os prótons do succinato são transferidos para o FAD, que se reduz a FADH₂).

A oxidação do FADH₂ ocorre acoplada à redução da coenzima Q a QH₂

 $\Delta G^{\prime \circ} = 0 \text{ kJ/mol}$

*O Complexo II não catalisa a extrusão de prótons

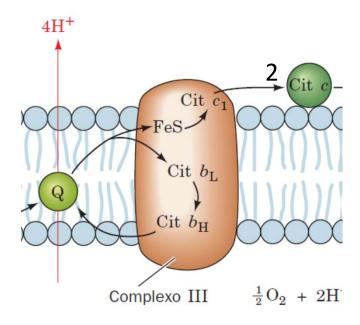


Ponto de convergência de elétrons: CoQ

recebe os elétrons provenientes dos complexos I e II.

outras vias de transferência de elétrons para a CoQ:

Vias que o substrato é oxidado por uma desidrogenase (uma flavoproteína), com redução de FAD a FADH₂ – metabolismo de lipídios



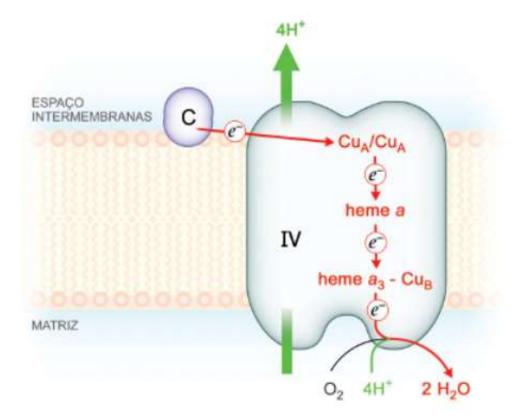
Complexo III

ou *citocromo bc*₁ ou *ubiquinona-citocromo c oxirredutase*, catalisa a transferência de elétrons da **ubiquinona (ou Coenzima Q) a 2 moléculas de citocromo** *c*, acompanhada de movimentação de prótons.

Ao oxidar a coenzima Q e reduzir o **citocromo** *c*, promove a retirada de dois prótons da matriz e o bombeamento de quatro prótons para o espaço intermembranas

Ciclo Q

QH₂ + 2 cit
$$c_1$$
 (oxidado) + 2H[±] \longrightarrow Q + 2 cit c_1 (reduzido) + 4H[±] (espaço Intermembranas)

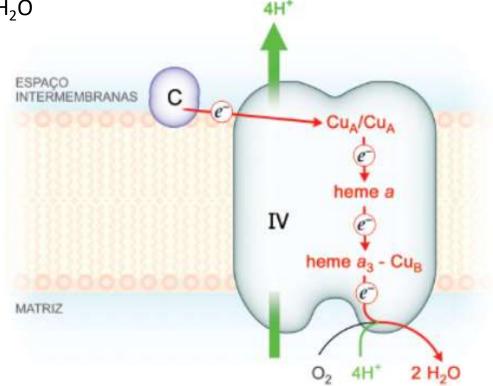

Complexo IV: redução do O₂ a H₂O

citocromo c oxidase, catalisa a passagem de elétrons do citocromo c para o oxigênio, combinada à extrusão de prótons.

A redução de uma molécula de O₂ a duas moléculas de H₂O requer sua associação a quatro elétrons e quatro prótons.

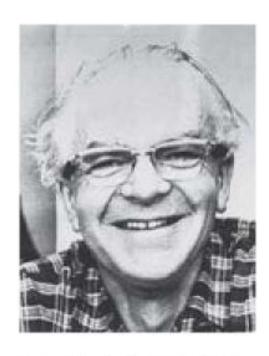
Em cada ciclo catalítico, 4 prótons são utilizados como substrato para a formação de água e 4 prótons são bombeados para o espaço intermembranas.

Complexo IV contribui para a formação do gradiente de prótons.



Complexo IV: redução do O₂ a H₂O

4 cit c^{2+} + 4H⁺ (matriz) + O₂ + 4H⁺ (matriz) \rightarrow 4 cit c^{3+} + 2H₂O + 4H⁺ (espaço intermembranas)


Complexo IV- 95% de todo o oxigênio consumido pelo organismo humano

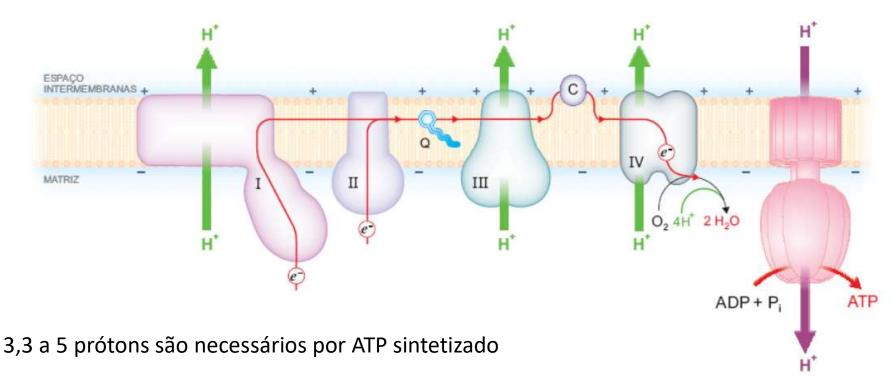
Pode produzir até 300 mL diários de H₂O

Fosforilação Oxidativa – hipótese quimiosmótica

Nobel de Química, 1978

Peter Mitchell, 1920–1992

A energia eletroquímica proveniente da diferença de concentração de prótons e separação de cargas pela membrana interna da mitocôndria - a força próton-motriz – promove a síntese de ATP, quando os prótons passam por um poro na ATP sintase.

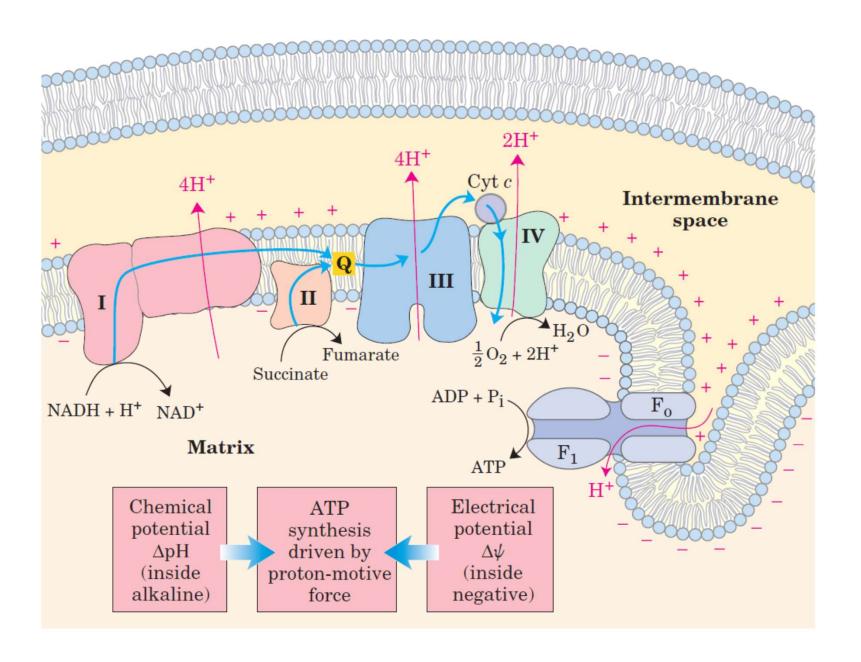

Fosforilação Oxidativa

O transporte de H⁺ contra gradiente (endergônico) é acoplado a transferência de elétrons (exergônica)

Forma-se um gradiente de prótons (pH) e um gradiente elétrico (diferença de cargas)

A energia conservada no gradiente eletroquímico é a força próton-motriz

A membrana interna da mitocôndria é impermeável, exceto na ATP sintase


ATP sintase e a síntese de ATP

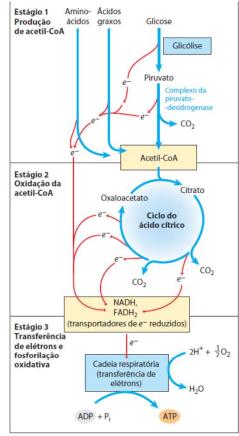
Possui 2 componentes: Fator de acoplamento 1 (F_1) - periférico F_0 pois se liga a oligomicina (inibidor da ATP sintase) — inserida na membrana

a ATP sintase converte a energia eletroquímica armazenada no gradiente de prótons em energia mecânica, que é utilizada para gerar energia química sob a forma de ATP.

Síntese de ATP

A estequiometria da Fosforilação Oxidativa

4 prótons são necessários por ATP sintetizado


Para cada NADH, **4H**⁺ Complexo I, 4H⁺ Complexo III e 2 H⁺ Complexo IV Razão P/O (phosphate incorporado no ATP/Oxigênio) = 2,5 ATPS

Total para NADH: 10 prótons bombeados

Para cada FADH₂, 4H⁺ Complexo III e 2 H⁺ Complexo IV Razão P/O (phosphate/Oxigênio) = 1,5 ATPS

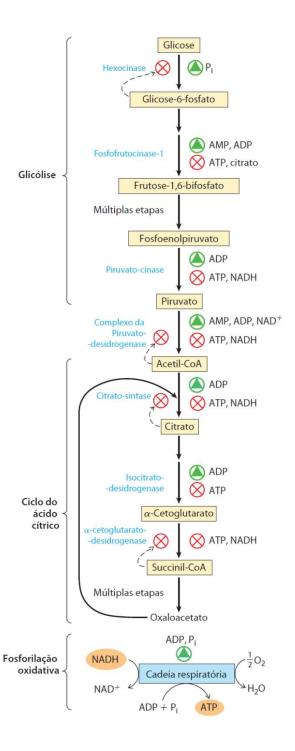
Total para FADH₂: 6 prótons bombeados

Produção de ATP a partir da oxidação completa da glicose

TABELA 19-5 Produção de ATP a partir da oxidação completa da glicose

Processo	Produto direto	ATP final
Glicólise	2 NADH (citosólico) 2 ATP	3 ou 5* 2
Oxidação do piruvato (dois por glicose)	2 NADH (matriz mitocondrial)	5
Oxidação da acetil-CoA no ciclo do ácido cítrico (duas por glicose)	6 NADH (matriz mitocondrial) 2 FADH ₂ 2 ATP ou 2 GTP	15 3 2
Produção total por glicose		30 ou 32

^{*}O número depende do sistema de lançadeira a transferir equivalentes redutores para a mitocôndria.


Regulação Integrada / Controle respiratório

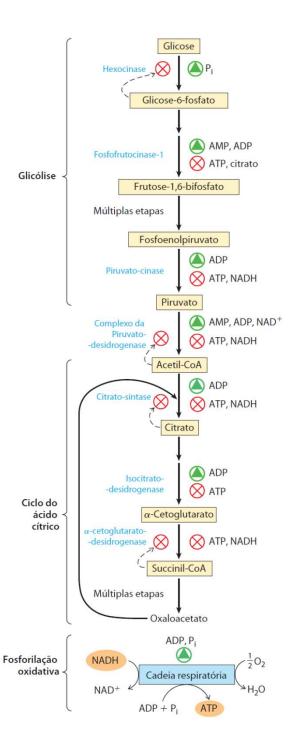
Uma mulher adulta típica requer cerca de 1.500 a 1.800 kcal (6.300 a 7.500 kJ) de energia metabólica por dia.

Isso corresponde à energia livre da hidrólise de mais **de 200 moles** de ATP a ADP e P_i.

Ainda assim, a quantidade total de ATP presente no organismo em um dado momento é **0,1** mol;

obviamente, esse escasso suprimento de ATP deve ser continuamente reciclado

Regulação Integrada / Controle respiratório


Regulado pela concentração de ADP

Células consumindo energia:

Mais ADP ativa a ATP sintase, resultando em diminuição do potencial eletroquímico graças à passagem de H+ através da enzima, de volta à matriz mitocondrial.

As bombas de prótons (Complexos I, III e IV) são estimuladas e a cadeia de transporte de elétrons é, consequentemente, acelerada.

A velocidade das vias que produzem coenzimas reduzidas é também regulada pela disponibilidade de ADP.

A transferência de elétrons pode ser bloqueada por inibidores específicos

Inibidores	Complexo
Barbituratos (hipnóticos)	
Rotenona (inseticida)	ľ
Malonato (inibidor da succinato desidrogenase)	
Antimicina A (antibiótico)	Ш
Cianeto (CN ⁻), monóxido de carbono (CO), azida (N ³ -)	IV

Além disso, Oligomicina bloqueia a porção Fo da ATP sintase

Desacopladores

são capazes de dissociar o transporte de elétrons da fosforilação oxidativa;

• 2,4-dinitrofenol (DNP, de dinitrophenol)

a produção de ATP para; o transporte de elétrons, pode prosseguir, não mais controlado pela concentração de ADP.

DNP pode atravessar membranas e, por ser um ácido fraco, associa-se a prótons no espaço intermembranas (onde a concentração de H+ é maior), liberando-os na matriz.

Impede a formação do gradiente de prótons e a energia que seria usada na síntese de ATP é dissipada como calor.

Exercícios – 2 slides!

- 1) Esquematizar a sequência dos compostos da cadeia de transporte de elétrons, indicando os transportadores de elétrons e o bombeamento de prótons para o espaço inermembranas.
- 2) Indicar o número de ATP sintetizados para cada NADH e FADH2 oxidados. Por que o número é diferente?
- 3) Diferenciar desacoplador de inibidor de fosforilação oxidativa. Citar exemplos de desacoplador/ inibidores.
- 4) Descrever os mecanismos de controle respiratório e as condições em que atuam.

Exercícios – 2 slides!

5)Uma suspensão de mitocôndrias foi incubada em diferentes condições, medindo-se a formação de NAD+, o consumo de oxigênio, a produção de ATP e a diferença de pH entre o interior e o exterior da organela. Os resultados encontrados estão apresentados tabela seguinte, em que (+) indica que houve produção de NAD+ ou ATP e consumo de O2 e (–), que não houve.

Verificar se é possível e justificar:

- a1)oxidação de NADH sem síntese de ATP;
- a2)oxidação de NADH sem consumo de oxigênio;
- a3)consumo de oxigênio sem síntese de ATP;
- a4)consumo de oxigênio sem formação de gradiente de H+;
- a5)consumo de oxigênio sem oxidação de NADH.

Tubo	Condição	NAD+	Consumo de O ₂	Produção de ATP	ΔрН
1	com NADH	+	+	+	1,4
2	com NADH e droga X	+	+	_	0
3	sem NADH	-	-	_	0
4	com NADH e pH externo mantido constante	+	+	_	0
5	sem NADH, com DpH	-		+	1,4