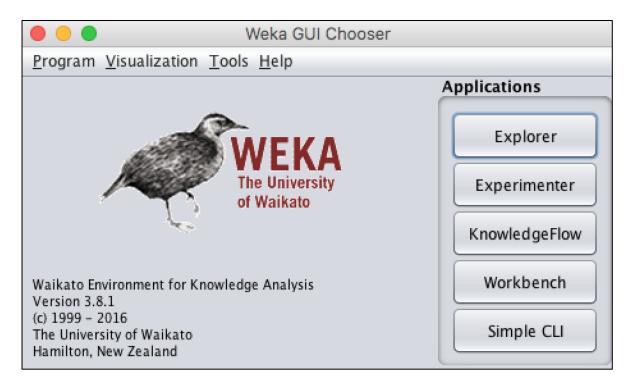


Ferramentas de Mineração de Dados

Prof^a: Solange Oliveira Rezende

Ferramentas


- Existem várias ferramentas para Mineração de Dados ou Textos
- Nesta aula:
 - Weka
 - Pré-processamento, Classificação, Agrupamento e Regras de Associação
 - Apriori
 - Regras de Associação
 - Torch
 - Pré-processamento, Agrupamento de Textos e Visualização
 - Outras ferramentas

Weka – Waikato Environment for Knowledge Analysis

- Software popular e código aberto de aprendizagem de máquina.
- Pode ser utilizado através da interface gráfica, linha de comando ou Java API.

Weka - Instalação

- Instalação simples.
- Versões para Windows, Linux e Mac.
- Site: https://www.cs.waikato.ac.nz/ml/weka/

Machine Learning Group at the University of Waikato

Project

Software

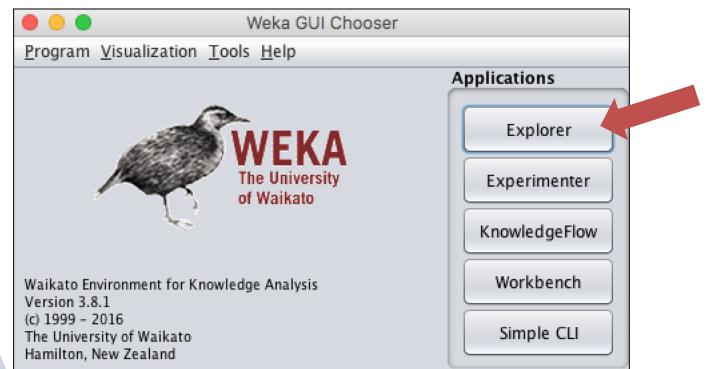
Book

Publications

People

Related

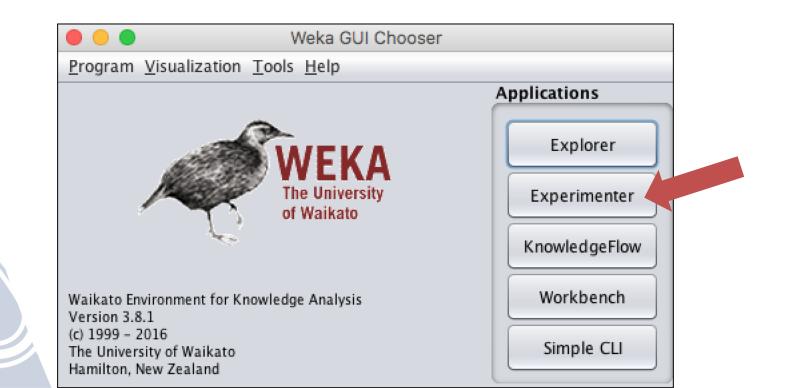
Weka 3: Data Mining Software in Java


Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.

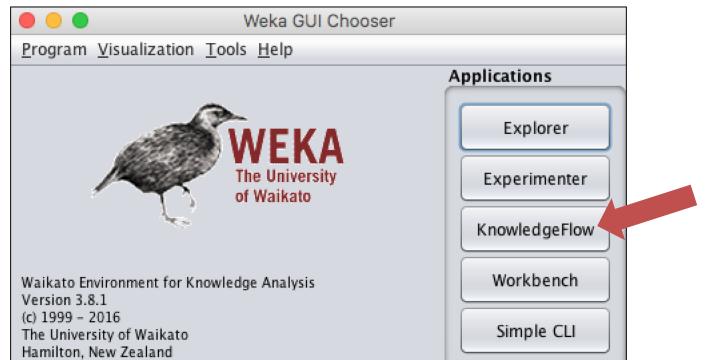
Found only on the islands of New Zealand, the Weka is a flightless bird with an inquisitive nature. The name is pronounced like **this**, and the bird sounds like **this**.

Weka is open source software issued under the GNU General Public License.

- Explorer (aplicação principal)
 - Explorar o conjunto de dados, visualizar dados, aplicar filtros;
 - Realizar classificação, agrupamento, regras de associação e seleção de atributos.

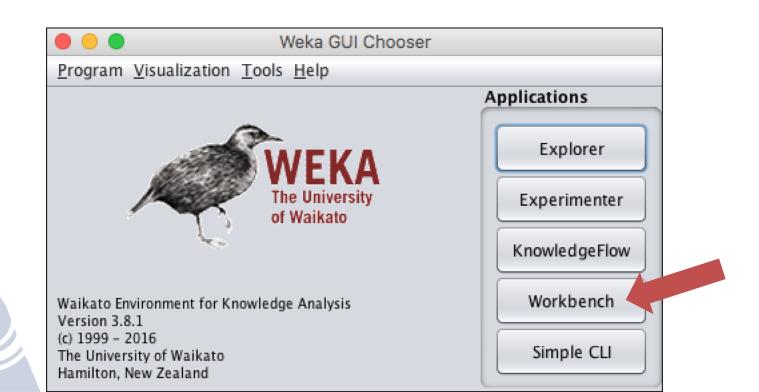


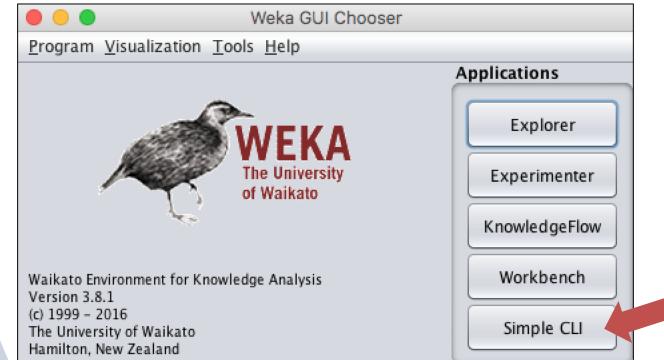
Experimenter


 Permite a avaliação de desempenho de algoritmos diferentes em base de dados diferentes.

KnowledgeFlow

 Permite construir o processo de aprendizado de máquina na forma de fluxograma, arrastando e configurando atividades. Essencialmente o mesmo que o Experimenter, porém com interface que permite arrastar e soltar.




Workbench

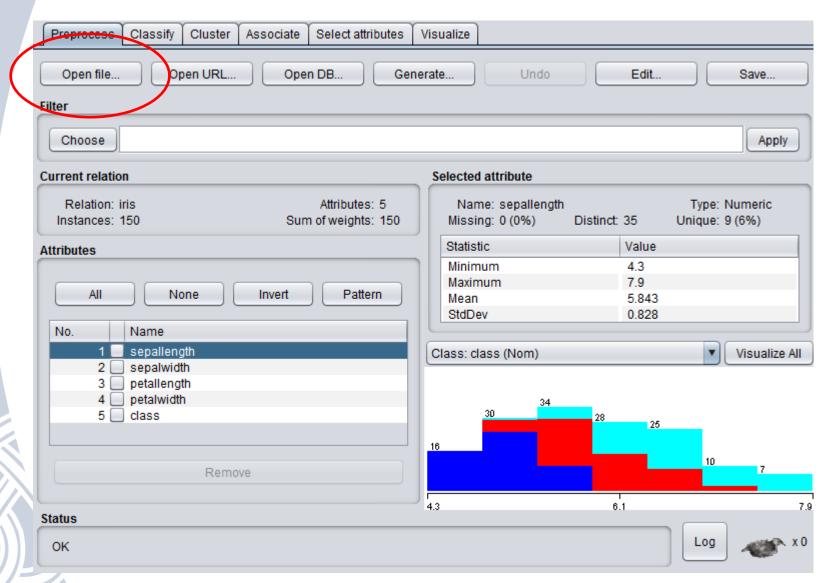
 Aplicação all-in-one que combina toda, porém o usuário é livre para configurar a interface.

- Simple CLI
 - Permite utilizar o Weka através de linha de comando.

- Funcionalidades
 - Pré-processamento
 - Classificação
 - Regressão
 - Agrupamento
 - Regras de Associação
 - Visualização

Distribuído sob a licença GPL

- Os dados podem estar nos formatos: ARFF,
 CSV, entre outros.
- O formato de arquivo de dados próprio da ferramenta WEKA é o ARFF (Attribute-Relation File Format)

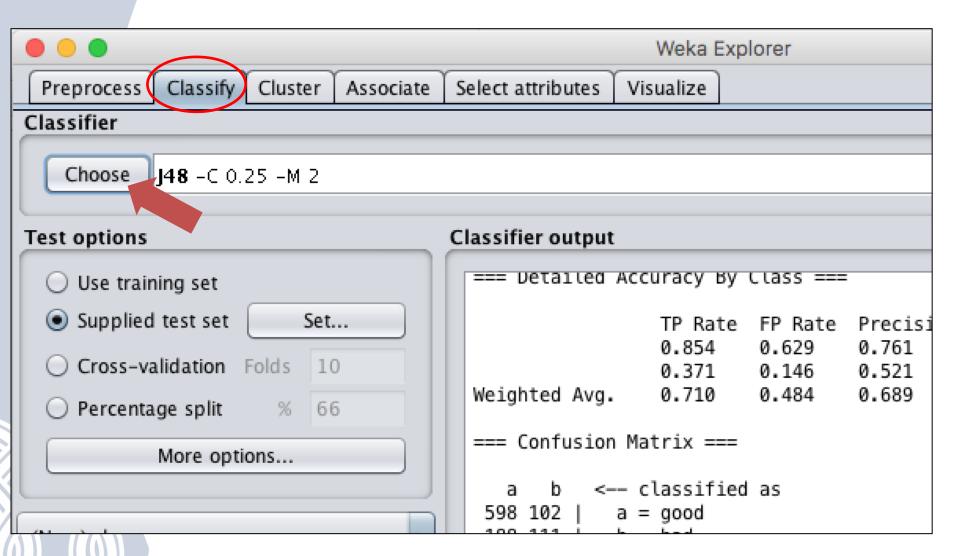

Weka – Exemplo de ARFF

- %Exemplo do formato ARFF
- @relation alunos_graduacao
- @attribute nome string
- @attribute idade numeric
- @attribute sex {fem,masc}
- @attribute notaP1 numeric
- @attribute class {aprovado,reprovado}
- @data
- Roberta, 25, fem, 10.0, aprovado
- Pedro, 20, masc, 8.0, aprovado
- Maria,22,fem,?,reprovado
- Joana, 25, fem, 9.0, aprovado

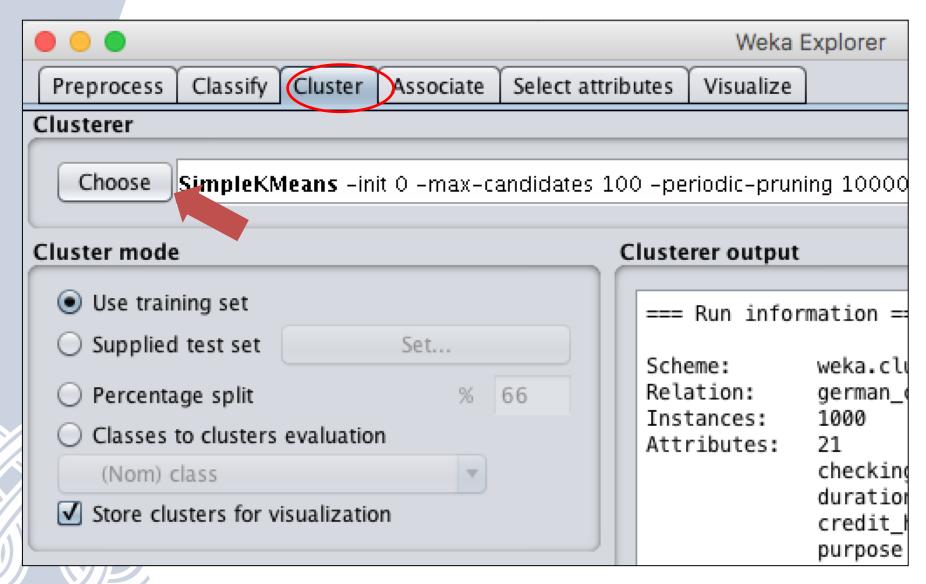
Weka - Carregamento dos Dados

Weka - Pré-processamento

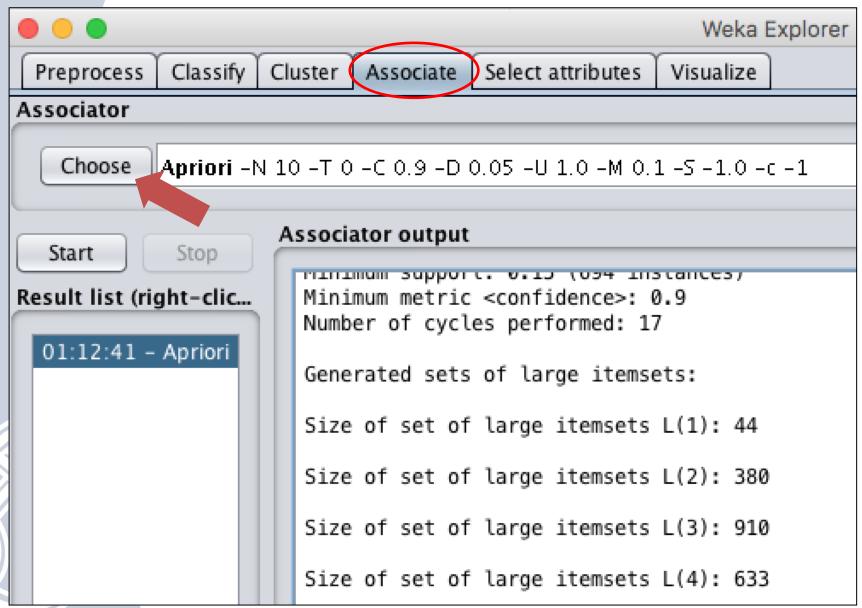
- As ferramentas de pré-processamento do Weka são chamadas de filtros
 - Discretização
 - Normalização
 - Seleção de atributos
 - Reamostragem



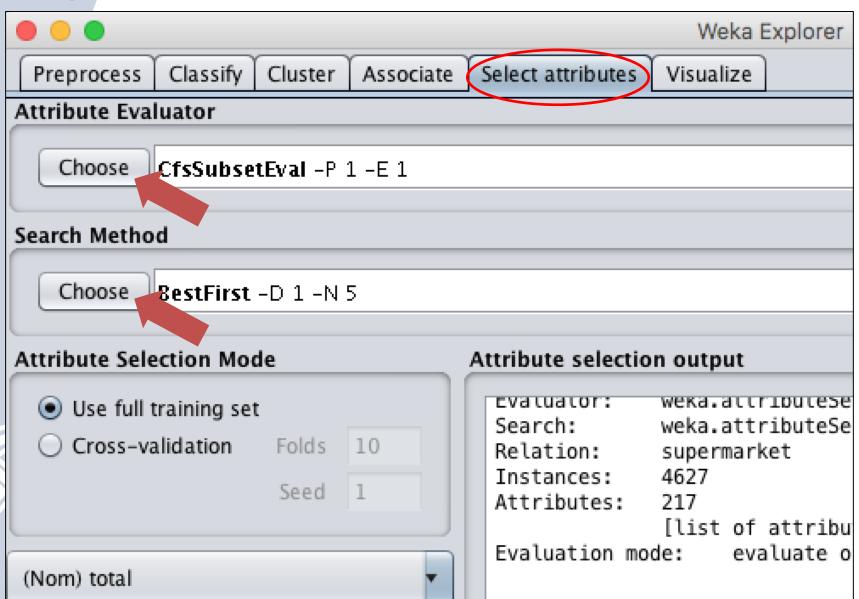
Weka – Pré-processamento



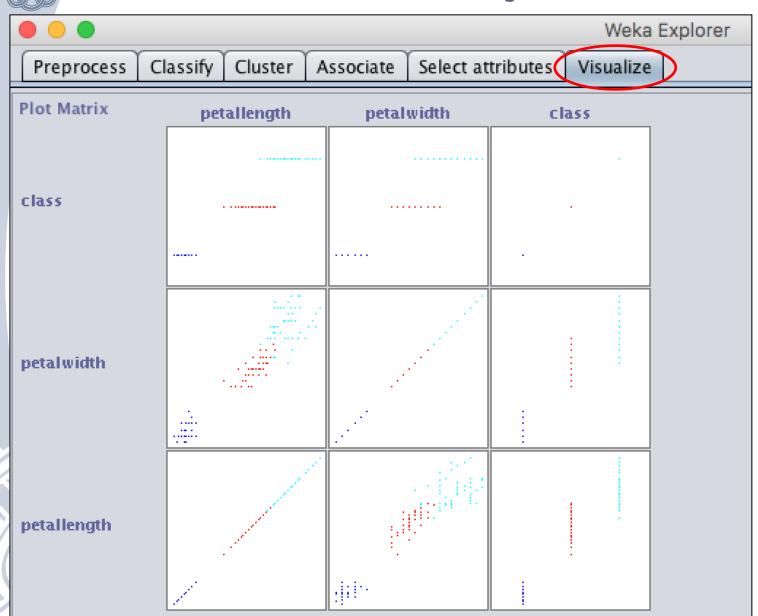
Weka - Classificação



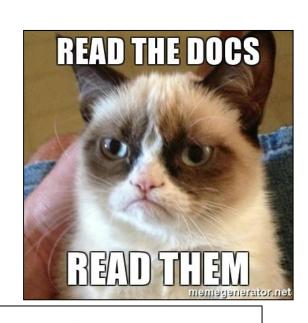
Weka - Agrupamento



Weka – Regras de Associação



Weka – Seleção de Atributos


Weka – Visualização dos Dados

Weka – Documentação

 https://www.cs.waikato.ac.nz/ ml/weka/documentation.html

Machine Learning Group at the University of Waikato

People

Related

Project Software Book Publications

Documentation

For an overview of the techniques implemented in Weka, and the software itself, you may want to consider taking a look at the **data mining book**. However, there is a large amount of freely available information as well. Weka has extensive help facilities built in and comes with a comprehensive manual.

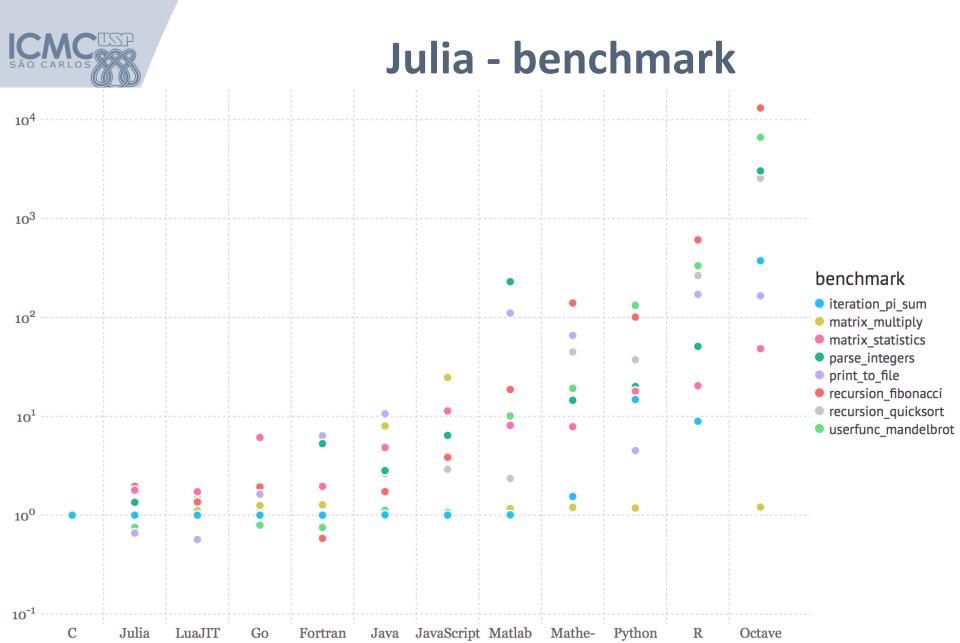
Linguagens mais utilizadas

- R (http://www.r-project.org/)
 - dplyr, plyr e data.table (manipulação de dados)
 - stringr (manipulação de strings)
 - zoo (time-series)
 - ggvis, lattice e ggplot2 (gráficos)
 - caret (Machine Learning)Site para download e manuais:
- Python (<u>https://www.python.org</u>)
 - SciPy / NumPy (computação científica)
 - Pandas (manipulação de dados)
 - Matplotlib (gráficos)
 - Scikit-learn (Machine Learning)

Python ou R?

- R ou Python para análise de dados?
 - http://www.cienciaedados.com/r-ou-python-paraanalise-de-dados/
- Discussão dos prós e contras de cada um:
 - https://www.kdnuggets.com/2015/05/r-vs-pythondata-science.html
- Infográfico interessante:
 - https://www.datacamp.com/community/tutorials/ r-or-python-for-data-analysis

Exemplo – Mineração de Tweets



Julia?

- Julia é uma linguagem open-source de alto nível e alta performance para computação numérica.
 - Compilada just-in-time (JIT);
 - Sintaxe simples (parecida com Python);
 - Tipagem dinâmica (também permite especificar o tipo);
 - Bibliotecas do Python, C e Fortran podem ser utilizadas;
 - Permite metaprogramação;
 - Gerenciamento automático de memória.

Link : http://julialang.org/

matica

Apriori

- Implementação do algoritmo Apriori em linguagem C desenvolvida por Cristian Borgelt
- Encontra
 - regras de associação
 - itemsets frequentes
 - itemsets máximos
 - itemsets fechados

Apriori

 Página para download e instruções para execução:

http://www.borgelt.net/apriori.html

- Também é disponibilizado no site uma interface gráfica para visualização de regras desenvolvida em linguagem Java, o ARView
- Outras ferramentas também são disponibilizadas

Apriori – Formato de Entrada

transacoes 💥

cafe pao manteiga leite cerveja pao manteiga cafe pao manteiga leite cafe pao manteiga cerveja menteiga pao feijao arroz feijao arroz

Apriori - Execução

Exemplo de linha de comando

./apriori -tr -o -c70.0 -s30.0 transacoes saida

Exemplo do arquivo de saída

manteiga <- cafe (30, 100) cafe <- manteiga (40, 75) pao <- cafe (30, 100) pao <- manteiga (40, 100) manteiga <- pao (50, 80)

Apriori – Parâmetros de Execução

Davâmatra	Descrisão	Dadrão
Parâmetro	Descrição	Padrão
-t#	tipo de alvo	S
	(s: itemsets frequentes, c: fechados, m: máximos,	
	g: geradores, r: regras de associação)	
-m#	número mínimo de itens por conjunto/regra	1
-n#	número máximo de itens por conjunto/regra	sem limite
-s#	suporte mínimo para um conjunto/regra	10%
-S#	suporte máximo para um conjunto/regra	100%
	(positivo: porcentagem, negativo: número absoluto)	
-0	uso da definição de suporte da regra original	cabeça e corpo
-c#	confiança mínima de uma regra	80%
-e#	medida de avaliação adicional	nenhum
-a#	modo de agregação para medida de avaliação	nenhum
-d#	limiar para medida de avaliação adicionada	10%
-i#	melhora mínima de medida de avaliação	sem limite
-Z	ignora avaliação abaixo do suporte esperado	avaliar todos
-p#	(tamanho mínimo para) poda com avaliação	sem poda
	(< 0: para frente ("fraco"), > 0 para frente ("forte"),	
	= 0: poda para traz)	
-q#	ordenar itens considerando a frequência	2
	(1: ascendente, -1: descendente, 0: não ordenar,	
	2: ascendente, -2: descendente considerando a soma do tamanho	
	das transações)	
	, ,	

Apriori – Parâmetros de Execução

Parâmetro	Descrição	Padrão
-u#	filtrar itens não usados das transações	0.01
,,	(0: não filtra itens,	
	<0: fração de itens removidos para filtragem,	
	>0: considera taxas de vezes de execução)	
-X	não podar com extensões perfeitas	podar
-у	poda a-posteriori de conjuntos de itens	
-T	não organizar transações com árvores de prefixo	
-Z	imprimir estatísticas dos conjuntos de itens	
-k#	separador de itens para saída	11 11
-I#	sinal de implicação das regras de associação	< -
-v#	formato da informação de saída dos conjuntos/regras	(%S)
-I#	ordenar itens na saída pelo tamanho	sem ordenar
	(< 0: descendente, > 0: ascendente)	
-r#	separador de registros/transações	\ <i>n</i>
-f#	separadores de itens/campos	\t
-C#	caracteres de comentários	\#
-!	imprimir informação de opção adicional	-
infile	arquivo de transações	[obrigatório]
outfile	arquivo de saída	[opcional]
appfile	arquivo definindo itens selecionados	[opcional]

Torch

- Conjunto de ferramentas para
 - Pré-processamento
 - Agrupamento de Textos (vários algoritmos)
 - Classificação Hierárquica e Visualização de Hierarquias de Tópicos
- Desenvolvida por Ricardo Marcacini LABIC-ICMC-USP

Página principal da Torch:

http://sites.labic.icmc.usp.br/torch/

Torch - JPreText

- Ferramenta para pré-processamento de textos
- Principais funcionalidades:
 - Remoção de stopwords
 - Stemming
 - Criação da bag-of-words
- Download e instruções de uso:

http://sites.labic.icmc.usp.br/torch/msd2011/j
pretext/

Torch - JPreText

- Entrada: diretório com um documento em cada arquivo (.txt)
 - "nome_classe.ID_ARQUIVO.txt"
- Caso a classe de cada arquivo seja conhecida, ela pode ser usada para avaliação dos agrupamentos gerados pela Torch
- Execução:

java -Xmx2G -cp jpretext.jar pretext.Main ./config.ini

Torch - JPreText

Arquivo de configurações (config.ini):

#Text Collection (e.g. Reuters)

Text Source: ./MinhaColecaoDeTextos

Preprocessing

Stemming language options are English, Portuguese or None

Stem Language: Portuguese

Max. Keywords: 20

Stopwords File: ./stopwords.txt

Term Selection using Document Frequency

Min. DF: 2

Term weighting can ben TF or TFIDF

Term Weighting: TFIDF

Normalization: Yes

Output

CSV Data File: MinhaColecaoDeTextos.csv

Torch – TopHClust

- Algoritmo para agrupamento hierárquico (Bisecting K-means)
- Página para download e instruções:

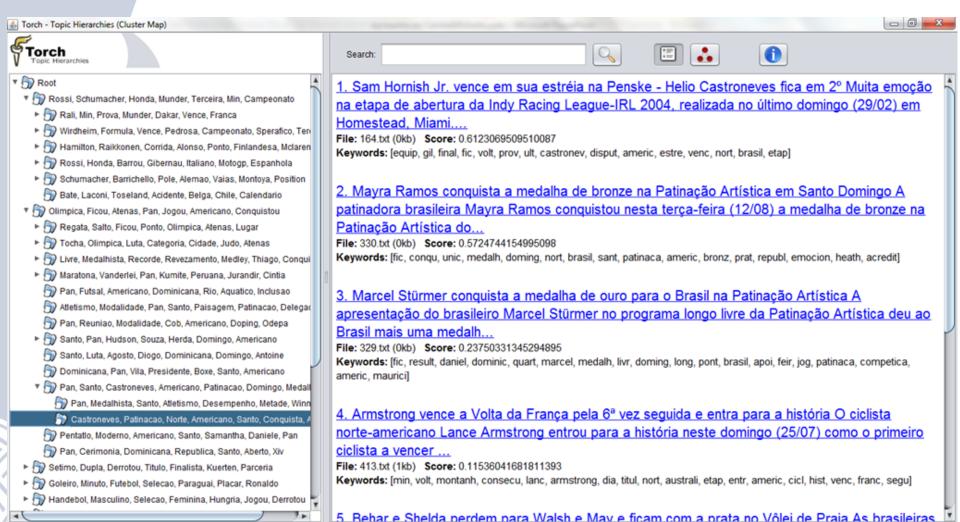
http://sites.labic.icmc.usp.br/torch/msd2011/tophclust/

Execução:

java -cp tophclust.jar cluster.XSectingKmeans ./config.ini

Torch - ClusterMap

- Classificação Hierárquica e Visualização de coleções em uma hierarquia de tópicos
- Download e instruções:


http://sites.labic.icmc.usp.br/torch/msd2011/clustermap/

Execução:

java -Xmx1G -cp clustermap.jar torch.clustermap.Explorer ./config.ini

Torch - ClusterMap

Orange

- Uma ferramenta para visualização e análise de dados tanto para usuários iniciantes quanto especialistas
- Componentes para aprendizado de máquina e consequentemente mineração de dados
- Permite selecionar dados de treino e teste visualmente
- Requer Python instalado
- Download http://orange.biolab.si/download/

Tanagra

- Ferramenta para mineração de dados de proposito acadêmico
- Métodos para analise exploratória de dados, aprendizado estatístico e aprendizado de máquina
- Projeto open-source
- Download: http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html

- C4.5
 - Implementação do algoritmo C4.5 de Ross
 Quinlan
 - Inclui procedimento para amostragem na etapa de avaliação do algoritmo
 - Download: http://www.rulequest.com/Personal/

- MCL++
 - Biblioteca de classes em C++ para aprendizado de máquina
 - supervisionado
 - Domínio público
 - Download: http://www.sgi.com/tech/mlc/

MineSet

- Provê 5 ferramentas para exploração visual de dados e para resultados de mineração de dados
- Facilita o entendimento de grandes quantidades de dados
- Download:

http://wwww.dcc.uchile.cl/~rbaeza/cursos/visu
al/sg/index.html

Clementine

- Suíte comercial popular para mineração de dados
- Embarcado em vários sistemas de mineração de dados
- Download: http://www.spss.com/clementine

Knime

- Desenvolvido em Java e assim como o Weka, sua biblioteca pode ser facilmente incorporada em outros códigos
- Permite denir um uxo de dados
- Download: http://www.knime.org

Keel

- Ferramenta open-source desenvolvida em Java
- Desenvolvido para fins de pesquisa e educação
- Implementa algoritmos evolutivos, fuzzy e demais algoritmos para regressão, classificação, agrupamento, etc.
- Análise de resultados utilizando testes de significância estatística
- Inclui técnicas para pré-processamento dos dados
- Download: http://www.keel.es/

Cluto

- Software de agrupamento para conjuntos dados de alta dimensionalidade
- Análise de características dos grupos
- Disponibiliza uma interface gráfica e uma interface web
- Download:

http://glaros.dtc.umn.edu/gkhome/views/cluto

Agradecimentos

- Material desenvolvido com ajuda de
 - Rafael Geraldeli Rossi
 - Roberta Akemi Sinoara
 - Camila Vaccari Sundermann
 - Felipe Coutinho

