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Outline

● HLS challenges for FPGAs

● How does HLS work?

● Design Flow

○ Typical HLS flow

○ C versus OpenCL HLS

○ HW and SW emulations

● Tuning hardware from high-level description: practical activities using Vitis

○ Loops, Data type, and Arithmetic 

○ Interfaces and memory organisation
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Objectives

● Give a broad view about HLS

● Understand the effects on hardware caused by data type, arithmetic, loops, 

interfaces and memory organisation inferred from software-like input

● Provide to the designers a set of good practices to improve the final hardware 

quality while minimising the implementation efforts

● Explore Vitis HLS to tune hardware from high level descriptions (input)
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HLS challenges for FPGAs

● FPGAs operate in a considerable low clock rate when compared to GPUs and 

CPUs from equivalent technologies

● FPGAs provide excellent performance when the spatial computing paradigm is 

well exploited

● FPGA devices are becoming larger and larger featuring a collection of 

hardcores and programmable resources - System-in-Package (SiP)
○ Intel® Agilex™ (10 nm)

○ Xilinx Versal™ ACAPs (7nm)

● The HLS challenge is to convert a software-like input into such hardware 

model
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HLS challenges for FPGAs

Sw-like constructions are quite far from hw models

● Loops need to be unrolled and its computation pipelined

● Data types need to be converted to better fit the customized computing and 

storage units 

● Spatial and temporal localities need to be exploited not for the hierarchical 

cache memory system, but for distributed RAM-Blocks and Registers

● Concurrency control mechanism exists in a much lower granularity 

● Hw resources are not as abundant as memory in software systems!
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How does HLS work?

6



How does HLS work?

Roughly speaking, an HLS-generated hardware is composed of:

● A data storage system (registers, on-chip RAMs, DDR3…)

● Logic to distribute inputs and collect outputs

● Functional Units (FU) that

perform simple operations

● A Finite State Machine (FSM) to

control everything
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How does HLS work?

The HLS is responsible for generating an execution timeline that is coordinated by 

the control FSM:

● Acquire inputs (e.g. loads)

● Activate FUs (e.g. add, mul)

● Collect results (e.g. store)
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How does HLS work?

However, resources are usually constrained! For example, consider:

● Only one load may be issued per clock cycle (same for stores)

● Addition takes 3 cycles to calculate

● Multiply takes 4 cycles to calculate

A valid scheduling

under these conditions:

9



How does HLS work?

This scheduling would require 3 FUs:

● 1 FU to execute the multiplication (orange)

● 2 FUs to execute the additions (green, lime and purple)

○ There are three additions, but only two are used in parallel
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How does HLS work?

Bubbles might occur due to constraints

● For example, two stores cannot be allocated to a same clock cycle

○ It is possible to move the operations so that we can solve the bubble?
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How does HLS work?

● Attempt 1: not possible (two stores in a same clock cycle)

● Attempt 2: not possible (two loads starting in a same clock cycle)
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How does HLS work?

The HLS compilation process is mainly characterised by two steps:

● Scheduling

○ Find out dependencies between operations in the software code

○ Attempt to find a parallel scheduling that respects the dependencies

○ Common scheduling algorithms: As-Soon-As-Possible/As-Late-As-Possible, System-of-

Difference Constraints (SDC)

● Binding

○ Decide the types (and amount) of FUs

○ Assign each scheduled operation to one of the physical resources (FUs, memory ports)
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How does HLS work?
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Design flow
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Typical HLS flow
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IP-level vs. System-level HLS
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SW emulation x HW emulation

● Emulation is key to speed-up the development of hardware systems

● SW emulation 

○ Code compiled to run in a CPU

○ Fast and can prove functionality 

○ No HW information is in place

● HW emulation

○ Code compiled to a hardware model, usually RTL

○ Model runs in simulation tools

○ Cycle-accurate precision: can prove logic functionality, give performance and 

resource estimations 

○ Not fast as SW emulation, but not slow as timing simulation
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Factors impacting productivity in HLS

● RTL synthesis demands long compilation time

● It is desirable to refine the design as much as possible at HLS (avoiding RTL 

synthesis) 

● Loops, Data type, and Arithmetic along with the compiler directives have 

significant impact on the hardware (size and performance)

● HLS compilers can also become a development time bottleneck 

● To efficiently use an HLS compiler it is necessary to understand it, so you can 

know which options to use and when to use them
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Our tutorial setup
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Our setup - Xilinx Vitis

Vitis is Xilinx’s umbrella framework that allows different FPGA development flows:

● Traditional RTL design

● HLS targeting IP generation

● HLS targeting system generation

In this tutorial we will use the last approach

● Vitis will generate the whole management system around the HLS-generated 

kernel

● The OpenCL API is used on the host side to dispatch and manage the FPGA 

kernels
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https://www.xilinx.com/products/design-tools/vitis.html



We will “target” the Xilinx Zynq UltraScale+ platform (ZCU104). Its core is an MPSoC:

● Processing System (PS): ARM processing units

● Programmable Logic (PL): FPGA component

Our setup - Target platform

22Source: https://www.xilinx.com/products/intellectual-property/zynq-ultra-ps-e.html



Operating System used:

● Ubuntu 20.04 LTS

Tools required:

● Xilinx Vitis 2020.2

● ZCU104 Embedded Base Platform

● ZynqMP Common Image Package

Our setup - Preparation
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Xilinx Vitis 2020.2

● Provides the full synthesis framework, from software to FPGA

● We will assume that Vitis is installed at /opt/xilinx

ZCU104 Embedded Base Platform

● Base files used by Vitis to generate the wrapper system around the HLS kernel

● Assuming here that these files are located at 

/opt/xilinx/platforms/xilinx_zcu104_base_202020_1/

Our setup - Preparation
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ZynqMP Common Image Package

● Used by Vitis to generate a bootable Linux image for the platform

● Provides a cross-compilation mechanism to compile the host code for the PS

● Assuming here that the package is located at 

/opt/xilinx/rootfs/xilinx-zynqmp-common-v2020.2/

● and that the cross-compilation environment is located at 

/opt/xilinx/petalinux

Refer to the simplified installation guide for more info!

Our setup - Preparation
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We will start with a simple “hello world” example that performs a vector add.

Two development approaches:

● Using Vitis GUI (Eclipse-based IDE)

● Using command line

Command line is more suitable for remote programming (e.g. via ssh). We will use 

that.

● Both command line and GUI development approaches produce the same 

results and can be (sort of) switched during development!

Hello world!
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We will abstract most details from the Vitis programming flow

● Xilinx provides many learning resources for their tools (a good start is 

https://github.com/Xilinx/Vitis-Tutorials)

We will use a skeleton project that simplifies all tasks using a single Makefile.

Hello world!
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https://github.com/Xilinx/Vitis-Tutorials


First step: clone the git repository:

Alternatively, you can access the link above

and download the repo as a zip file:

Hello world!
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$ git clone https://github.com/comododragon/fccm2021-tutorial

https://github.com/comododragon/fccm2021-tutorial
https://github.com/comododragon/fccm2021-tutorial


The host code uses the OpenCL API to dispatch the kernel and manage its buffers.

Hello world! - Host code

29More information about the OpenCL specification can be found at opencl.org



The kernel code is a simple vector-add loop wrapped on a C function

Hello world! - Kernel code
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But first, we must set up our environment as required by Vitis:

This script initialises the shell to the Vitis build environment.

Hello world! - Initial setup
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$ source ./setup.sh



Now we’re good to go! To build the skeleton project:

Where <TGT> may be sw_emu, hw_emu or hw:

● sw_emu: software emulation

● hw_emu: hardware emulation

● hw: full hardware synthesis

Hello world! - Build and run 101
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$ make build TARGET=<TGT>



So, let’s build and run the sw_emu:

QEMU will boot the SD card image 

(project/package.sw_emu/sd_card.img).

Then run the following command to run the host code on the emulated platform:

Hello world! - Trying the sw_emu
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$ make build TARGET=sw_emu
$ make run TARGET=sw_emu

$ cd /mnt/sd-mmcblk0p1/init_and_run.sh



The host software will prepare the buffers, execute the vector add on the PS side 

(since it is sw_emu), retrieve the results and validate. The message TEST_PASSED

should print on screen:

The emulation can be terminated by pressing CTRL+A and X.

Hello world! - Trying the sw_emu
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Found Platform
Platform Name: Xilinx
INFO: Reading vadd.xclbin
Loading: 'vadd.xclbin'
INFO: [SW-EM 09-0] Unable to find emconfig.json. Using default 
device.
Trying to program device[0]: xilinx_zcu104_base_202020_1
Device[0]: program successful!
TEST PASSED
INFO: host run completed.



The following commands are available for hw_emu and hw:

● Generate the whole system, from HLS to bootable SD image:

● Run only the HLS compiler, skip the rest:

● Open the reports generated by the command above:

$ make build TARGET=hw_emu

Hello world! - Trying the hw_emu
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$ make hls TARGET=hw_emu

$ make report TARGET=hw_emu



When HLS compilation is performed, we can have a more precise information about 

the final design:

Hello world! - Trying the hw_emu

36

Scheduling of one iteration



Useful HLS-generated information (also generated for hw projects):

● _x.hw_emu.xilinx_zcu104_base_202020_1/reports/vadd/hls_reports/vadd_csynth.rpt

○ Textual report with latency details and resource estimates

● _x.hw_emu.xilinx_zcu104_base_202020_1/vadd/vadd/vadd/solution/.autopilot/db/va

dd.verbose.rpt

○ An even more detailed (and hidden) textual report, including scheduling and 

binding information

● _x.hw_emu.xilinx_zcu104_base_202020_1/logs/vadd/vadd_vitis_hls.log

○ Log file generated during the HLS compilation. Detected issues are reported (e.g. 

failure to pipeline)

Hello world! - Post-build analysis
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The information on these reports are also available in *_summary files that can be 

opened using vitis_analyzer (run vitis_analyzer <FILE> to open the GUI):

● project/_x.hw_emu.xilinx_zcu104_base_202020_1/vadd.xo.compile_summary

○ Contains information related to the HLS scheduling and binding

○ Similar to vadd_csynth.rpt, but structured

● project/build_dir.hw_emu.xilinx_zcu104_base_202020_1/vadd.xclbin.link_summary

○ Contains more information on the system generated around the kernel

● project/vadd.xclbin.package_summary

○ Contains information about the final SD card image generation

Hello world! - Post-build analysis
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Projects generated in command line can be opened in the Vitis HLS IDE for a 

visual representation of the scheduling:

then, navigate to Solution > Open Schedule Viewer

Hello world! - Post-build analysis

39

$ vitis_hls -p project/_x.hw_emu.xilinx_zcu104_base_202020_1 

/vadd/vadd/vadd/



Hello world! - Generated scheduling
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Hello world! - Generated scheduling

41

Load first operand

Load second operand

Perform ADD

Store result



The vadd_csynth.rpt shows the latency information. Since the loop is not 

statically bounded, Vitis only shows the latency for a single iteration:
+---------+---------+----------+----------+-----+-----+---------+
|  Latency (cycles) |  Latency (absolute) |  Interval | Pipeline|
|   min   |   max   |    min   |    max   | min | max |   Type  |
+---------+---------+----------+----------+-----+-----+---------+
|        ?|        ?|         ?|         ?|    ?|    ?|     none|
+---------+---------+----------+----------+-----+-----+---------+
+-----------+---------+---------+----------+-----------+-----------+------+----------+
|           |  Latency (cycles) | Iteration|  Initiation Interval  | Trip |          |
| Loop Name |   min   |   max   |  Latency |  achieved |   target  | Count| Pipelined|
+-----------+---------+---------+----------+-----------+-----------+------+----------+
|- LOOP_4_1 |        ?|        ?|        75|          -|          -|     ?|        no|
+-----------+---------+---------+----------+-----------+-----------+------+----------+

Hello world! - Latency information
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We can use the LOOP_TRIPCOUNT pragma to suggest a trip count to Vitis

● Will not affect synthesis at all, only provide more latency information

● Pragma must be placed inside the associated loop’s scope

Pragmas are used to inform the compiler about desired optimisations or to provide 

more information (e.g. inform false dependencies).

Hello world! - Latency information
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More detailed latency information is now available considering a trip count from 0 

to 4096:
+---------+---------+-----------+----------+-----+--------+---------+
|  Latency (cycles) |  Latency (absolute)  |   Interval   | Pipeline|
|   min   |   max   |    min    |    max   | min |   max  |   Type  |
+---------+---------+-----------+----------+-----+--------+---------+
|        2|   307270|  13.334 ns|  2.049 ms|    3|  307271|     none|
+---------+---------+-----------+----------+-----+--------+---------+
+-----------+---------+---------+----------+-----------+-----------+----------+----------+
|           |  Latency (cycles) | Iteration|  Initiation Interval  |   Trip   |          |
| Loop Name |   min   |   max   |  Latency |  achieved |   target  |   Count  | Pipelined|
+-----------+---------+---------+----------+-----------+-----------+----------+----------+
|- LOOP_4_1 |        0|   307200|        75|          -|          -|  0 ~ 4096|        no| 
+-----------+---------+---------+----------+-----------+-----------+----------+----------+

Hello world! - Latency information
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Loops Pipeline
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Loops

● Loops generally contain the bulk of 

the computations. 

● Nested loops are common 

structures.

○ It is natural to optimize loops.

● Some important opt. for loops:

○ Loop pipeline

○ Loop unroll

○ Number of functional units

46

Digit Recognition benchmark from Rosetta [1]

[1] Zhou, Y., Gupta, U., Dai, S., Zhao, R., Srivastava, N., Jin, H., ... & Zhang, Z. (2018, February). Rosetta: A realistic high-level synthesis benchmark suite for 

software programmable fpgas. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (pp. 269-278).



Example: Loop Without Pipeline

47

Clock Cycle FU Add - Latency: X cycles

0*X temp0 = v[i]+coef

1*X acc0 = acc + temp

2*X temp1 = v[i]+coef

3*X acc1 = acc + temp

4*X temp2 = v[i]+coef

5*X acc2 = acc + temp

6*X temp3 = v[i]+coef

7*X acc3 = acc + temp

8*X temp4 = v[i]+coef

9*X acc4 = acc + temp



Example: Loop Without Pipeline

48

● Can we do it faster with 2 Addition 
FUs?
○ No.
○ Adding another FU saves the 

routing and multiplexing resources, 
but costs resources for another FU.

■ It is worthy in some cases!

add

acc

add

acc

add



Example: Loop With Pipeline
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Clock Cycle FU Add - Latency: X cycles

0*X temp0 = v[i]+coef

1*X acc0 = acc + temp

2*X temp1 = v[i]+coef

3*X acc1 = acc + temp

4*X temp2 = v[i]+coef

5*X acc2 = acc + temp

6*X temp3 = v[i]+coef

7*X acc3 = acc + temp

8*X temp4 = v[i]+coef

9*X acc4 = acc + temp



Example: Loop With Pipeline
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● Nothing changes with 1 FU.
● Can we do it faster with 2 Addition 

FUs?
○ Yes. 

Clock Cycle FU Add 0 FU Add 1

0*X temp0 = v[i]+coef

1*X temp1 = v[i]+coef acc0 = acc + temp

2*X temp2 = v[i]+coef acc1 = acc + temp

3*X temp3 = v[i]+coef acc2 = acc + temp

4*X temp4 = v[i]+coef acc3 = acc + temp

5*X acc4 = acc + temp



Example: Loop With Pipeline
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● Loop pipeline allows to explore 

instruction level parallelism 

between loop iterations.

● That is, it starts computing the 

next loop iteration before the 

previous ends.

● The speed-up depends on the 

number of FUs.

● Nothing changes with 1 FU.
● Can we do it faster with 2 Addition 

FUs?
○ Yes. 

Clock Cycle FU Add 0 FU Add 1

0*X temp0 = v[i]+coef

1*X temp1 = v[i]+coef acc0 = acc + temp

2*X temp2 = v[i]+coef acc1 = acc + temp

3*X temp3 = v[i]+coef acc2 = acc + temp

4*X temp4 = v[i]+coef acc3 = acc + temp

5*X acc4 = acc + temp



Example Results

52

No pipeline

Pipeline 1FU

Pipeline 2FUs



Understanding the Results
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● Trip Count:
○ How many iterations the loop has.

● Iteration Latency (IL):
○ How many clock cycles for 

completing 1 iteration of the loop.

● Initial Interval  (II):
○ How many clock cycles between 

starting two loop iterations.

● “Latency”:
○ The total number of clock cycles 

for completing all computations in 

the loop

○ “Latency” = IL + II * (trip count -1)

● A loop without pipeline:
○ II = IL



Making Loop Pipelines Worse
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● There are several code structures that make more difficult pipeline loops:
○ Loop carried dependencies: can constraint the minimal II, limiting the 

amount of parallelism even if FUs are available:
■ These dependencies are created when iterations use results produced in previous 

iterations.

■ Similar example with an intra-loop dependency added, using 2 FUs.



Making Loop Pipelines Worse
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● There are several code structures that make more difficult pipeline loops:
○ Loop carried dependencies.

○ Dependencies between specific elements of arrays: are hard to identify. 

More modern compilers give the designer the chance to remove such 

dependencies manually:



Making Loop Pipelines Worse
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● There are several code structures that make more difficult pipeline loops:
○ Loop carried dependencies.

○ Dependencies between specific elements of arrays.
■ Identifying and solving such dependencies is a current topic of research:

● Liu, J., Wickerson, J., Bayliss, S., & Constantinides, G. A. (2017). Polyhedral-based 

dynamic loop pipelining for high-level synthesis. IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, 37(9), 1802-1815.

● Zuo, W., Li, P., Chen, D., Pouchet, L. N., Zhong, S., & Cong, J. (2013, September). 

Improving polyhedral code generation for high-level synthesis. In 2013 International 

Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS) (pp. 

1-10). IEEE.



Making Loop Pipelines Worse
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● There are several code structures that make more difficult pipeline loops:
○ Loop carried dependencies.

○ Dependencies between specific elements of arrays.

○ Dynamic code:

■ Unknowns during compilation time lead the compiler to be more conservative. 

■ Without knowing the offset, the compiler cannot infer the pipeline



Making Loop Pipelines Worse
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● There are several code structures that make more difficult pipeline loops:
○ Loop carried dependencies.

○ Dependencies between specific elements of arrays.

○ Non-static code:

○ Number of FUs bottlenecks:
■ Be sure to increase the number of FUs for all operations in the code, to avoid the 

creation of  bottlenecks.

■ Memory can also be a resource bottleneck.

2 ADDs, 1 SUB

2 ADDs, 2 SUBs



Loop Unroll
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Loop Unroll

Loop unrolling copies the instructions of the loop body, reducing the iterations 

accordingly.

Doing so, more opportunities for parallelism might be exposed.

The number of FUs must be adjusted.

60

Unroll factor = 2

Unroll factor = 2, nFU ADD = 1

Unroll factor = 2, nFU ADD = 2



Defining Pragmas Values
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Design Space Exploration

● How to define the values for the pragma which gives us hardware with the 

best area-speed trade-offs?

○ Loop pipeline II

○ Loop unroll factor

○ Memory partition factor

○ Number of FUs

● We call this design space exploration (DSE), which has been a research topic 

for years.
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Design Space Exploration

● How to define the values for the directives which gives us hardwares with the 

best area-speed trade-offs?

● DSE approaches synthesise or estimate the hardware usage and speed 

(metrics), and use a variety of models to try to predict the best combinations or 

reduce the number of synthesis. Some works on the topic:

○ Schafer, B. C., & Wang, Z. (2019). High-Level Synthesis Design Space Exploration: Past, Present, and Future. 

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(10), 2628-2639.

○ Ferretti, L., Ansaloni, G., & Pozzi, L. (2018, October). Lattice-traversing design space exploration for high level 

synthesis. In 2018 IEEE 36th International Conference on Computer Design (ICCD) (pp. 210-217). IEEE.

● HLS tools are always trying to develop their own DSE, using the knowledge 

they have on their own hardware/tools. 63



Practical examples - Loop Optimisations

64



What about this pragma?

Usually Vitis will automatically apply pipeline to loops.

We used “#pragma HLS PIPELINE off” to deactivate the automatic pipeline

Pipeline - Hello world!

65



If we remove the pragma, the loop will be automatically pipelined.

During hw_emu or hw build, the following message is printed:
INFO: [v++ 200-1470] Pipelining result: Target II=1, Final II=2, Depth=75

This indicates that the loop was pipelined with an initiation interval of 2:

Pipeline - Hello world!
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Iter 0

Iter 1

Iter 2



Pipeline - Hello world!
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Initiation interval of 1 is not possible, since this would require two reads to happen 

simultaneously:



Initiation interval of 1 is not possible, since this would require two reads to happen 

simultaneously:

Such scheduling is not possible, since the input arrays are in a single-ported off-

chip memory interface!

Vitis informs us about the problem during HLS:
WARNING: [v++ 200-885] Unable to schedule bus request on port 'gmem'
due to limited memory ports. Please consider using a memory core
with more ports or partitioning the array.

Pipeline - Hello world!
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The result of automatic pipeline is similar to providing the PIPELINE pragma as 

follows:

The compiler will attempt to minimise the initiation interval towards the defined II, 

however there is no guarantee of success.

Pipeline - Hello world!

69



The vadd_csynth.rpt now reports a latency including pipeline:
+---------+---------+-----------+-----------+-----+------+---------+
|  Latency (cycles) |   Latency (absolute)  |  Interval  | Pipeline|
|   min   |   max   |    min    |    max    | min |  max |   Type  |
+---------+---------+-----------+-----------+-----+------+---------+
|        2|     8334|  13.334 ns|  55.563 us|    3|  8335|     none|
+---------+---------+-----------+-----------+-----+------+---------+
+-----------+---------+---------+----------+-----------+-----------+----------+----------+
|           |  Latency (cycles) | Iteration|  Initiation Interval  |   Trip   |          |
| Loop Name |   min   |   max   |  Latency |  achieved |   target  |   Count  | Pipelined|
+-----------+---------+---------+----------+-----------+-----------+----------+----------+
|- LOOP_4_1 |        0|     8264|        75|          2|          1|  0 ~ 4096|       yes|
+-----------+---------+---------+----------+-----------+-----------+----------+----------+

Without pipeline: 307270 cycles

With pipeline: 8334 cycles

Pipeline - Hello world!
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However, sometimes the code itself imposes restrictions to pipeline:

Pipeline - Loop-carried dependencies
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The calculation of out[i] depends on out[i - 4]!



The read of out[i] at iteration i + 4 cannot be scheduled before the out[i] is 

calculated at iteration i. This imposes a restriction on the initiation interval.

Pipeline - Loop-carried dependencies
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in:

out:

Iteration i + 0:
for(int i = 4; i < size; i++)

out[4] = in[4] + out[0]



The read of out[i] at iteration i + 4 cannot be scheduled before the out[i] is 

calculated at iteration i. This imposes a restriction on the initiation interval.

Pipeline - Loop-carried dependencies
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in:

out:

Iteration i + 1:
for(int i = 4; i < size; i++)

out[5] = in[5] + out[1]



The read of out[i] at iteration i + 4 cannot be scheduled before the out[i] is 

calculated at iteration i. This imposes a restriction on the initiation interval.

Pipeline - Loop-carried dependencies
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in:

out:

Iteration i + 2:
for(int i = 4; i < size; i++)

out[6] = in[6] + out[2]



The read of out[i] at iteration i + 4 cannot be scheduled before the out[i] is 

calculated at iteration i. This imposes a restriction on the initiation interval.

Pipeline - Loop-carried dependencies
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in:

out:

Iteration i + 3:
for(int i = 4; i < size; i++)

out[7] = in[7] + out[3]



The read of out[i] at iteration i + 4 cannot be scheduled before the out[i] is 

calculated at iteration i. This imposes a restriction on the initiation interval.

Pipeline - Loop-carried dependencies
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in:

out:

Iteration i + 4:
for(int i = 4; i < size; i++)

out[8] = in[8] + out[4]



Indeed, Vitis prints several warnings of failed pipelining attempts and keeps 

increasing the II:

The message above repeats for II = 2, 3, 4, 19, 27, 31, 33 and 34. The final II 

reached is 35:

Pipeline - Loop-carried dependencies

77

WARNING: [HLS 200-880] The II Violation in module 'example' 
(loop'LOOP_6_1'): Unable to enforce a carried dependency constraint (II = 
1,distance = 4, offset = 1) between bus response on port 'gmem' 
(example.cpp:9) and bus request on port 'gmem' (example.cpp:9).

INFO: [HLS 200-1470] Pipelining result : Target II = 1, Final II = 35, 
Depth = 142, loop 'LOOP_6_1'



There is no golden recipe for solving recurrence constraints. It could be a 

combination of:

● Use of on-chip buffers to reduce access to global memory

● Implicitly indicating false dependencies for the HLS compiler

● Code rewrite

Pipeline - Loop-carried dependencies

78



Another example of recurrence constraint, a simple histogram calculator:

Pipeline - Loop-carried dependencies

79



Another example of recurrence constraint, a simple histogram calculator:

Pipeline - Loop-carried dependencies

80

The histogram[image[i+1]] read at iteration i + 1 cannot be placed before 

the write at iteration i on histogram[image[i]].

There is no way of assuming that the indexes will be different

(i.e. image[i + 1] != image[i])



One solution: create a “cache” for histogram elements

● Keep the histogram count of a single pixel intensity on a register

Pipeline - Loop-carried dependencies

81



Pipeline - Loop-carried dependencies

82

Histogram array is small, we can

keep it completely on-chip

When pixel intensities differ, store 

cached value, retrieve the next 

histogram element and increment

Update only the cache value as long 

pixel intensities are the same

Histogram is transferred

to off-chip memory

Histogram element

“cache”



II dropped to 2!

● Main reason is the use of local memory

II = 1 is apparently not possible, since the store at iteration i+1 must be placed after 

the load at iteration i on the else block.

However, the else block guarantees that prevElem != currElem!

● Meaning that the read and write to/from the histogram can happen at the 

same time, since they will never point to the same place (efficiency)

● Read and write are independent memory ports

Pipeline - Loop-carried dependencies
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Vitis did not detect such false dependency. We can manually inform it to the 

compiler using a pragma:

Pipeline - Loop-carried dependencies
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● variable: defines which variable the dependency information is about

● intra/inter: defines if the dependency information is within a loop iteration or 

between one or more iterations

● RAW/WAR/WAW: type of dependence, Read-After-Write, Write-After-Read or 

Write-After-Write

● true/false: informs if the dependency is true or false

Pipeline - Loop-carried dependencies
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#pragma HLS DEPENDENCE variable=lHist intra RAW false



With this information, Vitis allocates the store and load operations to happen at the 

same clock cycle for different iterations (i.e. II = 1), since they will never point to the 

same place:

Please note that marking a true

dependency as false may generate

incorrect results!

Pipeline - Loop-carried dependencies

86
For more information: 

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_optimization_techniques.html#mxr1539734225660



Pipeline pragmas affect the loop body that they are inserted into.

● All sub-loops are fully unrolled

● If any sub-loop has a variable loop bound, pipeline is not possible

The pragma can also be inserted on the body of a function.

● In this case the function will execute multiple calls overlapped
○ If the function is not called as frequent as its initiation interval, stalls will happen!

Vitis has additional directives that can be used to modify the generated pipeline 

and mitigate issues such as stalling (e.g. pipeline rewind, pipeline flush). See 

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_optimization_tec

hniques.html#kcq1539734224846 for more information.

Pipeline - Final Remarks
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https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_optimization_techniques.html#kcq1539734224846


Consider our vadd example with no pipeline, now with unroll enabled:

Loop unrolling - Practical example

88



The circuit is capable of solving 4 iterations at once (slight reduction in latency)

Loop unrolling - Practical example

89

Baseline Pipeline Unroll

Latency 307270 8334 304421

LUTs 2186 1862 4291

FFs 1361 1391 2356

DSPs 0 0 0

BRAMs 2 2 2



What happens if the loop bound is not a multiple of the factor?

● Without any condition check, The generated circuit performs out-of-bounds 

calculations!

● With static loop bounds, Vitis analyses and inserts break conditions where 

needed

● When the loop bound is variable, a check must be performed after every 

replicated segment:

Loop unrolling - Practical example

90

Parallelism exploration is severely

impacted due to the irregular execution

flow.



The exit conditions can be removed to reduce the amount of operations and also 

to open more exploration possibilities with the use of skip_exit_check.

● In this case, the user must ensure that the runtime loop trip count is always a 

multiple of the factor.

Loop unrolling - Practical example
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In this case the resulting schedule is significantly simplified:

Loop unrolling - Practical example

92

Vitis detected that the 4 reads of each operand and the four writes could 

be packed to single 128-bit off-chip requests.

128-bit reads and writes!



The latency also has a significant decrease:

Loop unrolling - Practical example
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Baseline Pipeline Unroll Unroll 

(noexit)

Latency 307270 8334 304421 146433

LUTs 2186 1862 4291 2554

FFs 1361 1391 2356 1674

DSPs 0 0 0 0

BRAMs 2 2 2 8



The latency also has a significant decrease:

Loop unrolling - Practical example

94

Baseline Pipeline Unroll Unroll 

(noexit)

Latency 307270 8334 304421 146433

LUTs 2186 1862 4291 2554

FFs 1361 1391 2356 1674

DSPs 0 0 0 0

BRAMs 2 2 2 8

The main reasons are:
● Packed off-chip transactions automatically detected by Vitis
● Less loop condition test logic (trip count reduced from 4096 to 1024)



Let’s try a larger unroll factor and see how HLS reacts:

Loop unrolling - Practical example
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Vitis packs more loads and stores into the off-chip memory’s bandwidth (512 bits):

Loop unrolling - Practical example
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HLS takes longer as well. There is performance improvement:

Loop unrolling - Practical example
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Baseline Pipeline Unroll Unroll 

(noexit)

Unroll 

(large)

Latency 307270 8334 304421 146433 9505

LUTs 2186 1862 4291 2554 9329

FFs 1361 1391 2356 1674 11854

DSPs 0 0 0 0 0

BRAMs 2 2 2 8 30



By enabling pipeline, the partially-unrolled loop body will overlap multiple loop 
iterations. An initiation interval of 2 is reached:

Loop unrolling and pipeline - Best of both worlds
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INFO: [HLS 200-1470] Pipelining result : Target II = 1, Final II = 2, 
Depth = 143, loop 'VITIS_LOOP_4_1'



Loop unrolling and pipeline - Best of both worlds
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Iter. 0

Iter. 1

Iter. 2

Iter. 3

Iter. 4

Iter. 5

Iter. 6

Iter. 7

Iter. 8

Iter. 9

Iter. 10

Iter. 11



Wrapping up the loop explorations on vadd:

Loop optimisations - Summary
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Baseline Pipeline Unroll Unroll 

(noexit)

Unroll 

(large)

Pipe + 

unroll

Latency 307270 8334 304421 146433 9505 2190

LUTs 2186 1862 4291 2554 9329 1920

FFs 1361 1391 2356 1674 11854 1767

DSPs 0 0 0 0 0 0

BRAMs 2 2 2 8 30 8

Resource usage are estimates from Vitis.



Pipeline is a very efficient loop optimisation:
● When II is low, good performance is expected
● Does not necessarily incur in resource increase
● Code rewrite might be necessary to reduce the II
● Conservative dependency decisions taken by HLS can kill the design!

In general, unroll should not be used alone:
● Very useful to trigger the load/store data packing from the HLS
● Pipeline can further optimise by overlapping the design
● Resource usage is roughly proportional to unroll factor
● Large factors can incur in great resource usage
● And performance improvement is not guaranteed

Loop optimisations - Summary
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Memory Organisation
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Memories and More Memories

● Many memories and levels in a system with FPGAs

○ On-chip

○ Off-chip

● If the FPGA has an on-chip processor 

○ Shared memory

○ Processor cached memory

● If the board has an off-chip processor

○ Share off-chip memory (Processor or shared with the FPGA chip)

● If the FPGA board in on a host pc

○ Shared memory

○ Host memory

○ Other devices memories
103



Memories and More Memories

● Transferring data can easily become a bottleneck. Too easily.

● The architecture and available tools depend on the FPGA chip, Board, Vendor, 

HLS type, Host, …

● The Memories and data management is usually done by the designer.
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Example from: “High Level Design Languages for Intel FPGAs”, CNRS DAQ Seminar–Fréjus, November 2018, by 

francisco.perez@intel.com



On-Chip Memories

● On HLS, they are used to implement 
local arrays and buffers.
○ Larger memories are created by 

combining small BRAMS.
○ Each memory has a limited amount 

of ports.
○ Partitioning memories increase the 

overall throughput (requires more 
control hardware and code).
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Intel Cyclone V Example. Image from: 

https://www.intel.it/content/www/it/it/products/details/fpga/cyclone/v/features.html



Back to our first recurrence example, an II of 35 was reached due to the 
recurrence between out[i - DISTANCE] and out[i].

Using on-chip memory as buffer
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We can use a shift register to eliminate the out[i - DISTANCE] read
● Shift registers acts as FIFOs with the addition of being random-access
● In our case, we will make the shift register store the N = DISTANCE most recent values 

calculated of out

Vitis infers a shift register
when a pattern similar to
the following Is
detected:

Using on-chip memory as buffer

107



In our code:

Using on-chip memory as buffer
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In our code:

Using on-chip memory as buffer

109

The out[i - DISTANCE] read

was replaced by the

shiftReg[0] on-chip read



Using on-chip memory as buffer
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in:

out:

for(int i = 4; i < size; i++)
out[4] = in[4] + shiftReg[0]Iteration i + 0:



Using on-chip memory as buffer
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in:

out:

for(int i = 4; i < size; i++)
out[5] = in[5] + shiftReg[0]Iteration i + 1:



Using on-chip memory as buffer
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in:

out:

for(int i = 4; i < size; i++)
out[6] = in[6] + shiftReg[0]Iteration i + 2:



Using on-chip memory as buffer
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in:

out:

for(int i = 4; i < size; i++)
out[7] = in[7] + shiftReg[0]Iteration i + 3:



Using on-chip memory as buffer
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in:

out:

for(int i = 4; i < size; i++)
out[8] = in[8] + shiftReg[0]Iteration i + 4:



Our II dropped from 35 to 1:
+---------+---------+----------+-----------+-----+------+---------+
|  Latency (cycles) |  Latency (absolute)  |  Interval  | Pipeline|
|   min   |   max   |    min   |    max    | min |  max |   Type  |
+---------+---------+----------+-----------+-----+------+---------+
|        1|     4233|  6.667 ns|  28.221 us|    2|  4234|     none|
+---------+---------+----------+-----------+-----+------+---------+
+-----------+---------+---------+----------+-----------+-----------+----------
+----------+
|           |  Latency (cycles) | Iteration|  Initiation Interval  |   Trip   
|          |
| Loop Name |   min   |   max   |  Latency |  achieved |   target  |   Count  
| Pipelined|
+-----------+---------+---------+----------+-----------+-----------+----------
+----------+
|- LOOP_8_1 |        3|     4094|         4|          1|          1|  1 ~ 
4092|       yes|

Using on-chip memory as buffer
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Now consider a very simple stencil computation

● out[i] is calculated by summing the inputs in1 in the range i to i + STENCIL_SIZE - 1

in1 is read 16 times here!

(STENCIL_SIZE = 16)

Array partition

116



The pipeline generated has an II of STENCIL_SIZE = 16, constrained by the 16 reads 

performed at every top-loop iteration.

● In general stencils can be buffered in a sliding window fashion. We can use a similar 

approach as the last example and generate a shift register with 16 elements

Array partition

117

Only one off-chip read per

loop iteration



The II went from 16 to 145! Vitis reports several warnings about failed attempts to 

pipeline with lower II:

Right after, another useful warning is reported:

Array partition
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WARNING: [HLS 200-880] The II Violation in module 'stencil' (loop 'LOOP_12_2'): 
Unable to enforce a carried dependence constraint (II = 143, distance = 1, 
offset = 1) between 'store' operation (stencil.cpp:22) of variable 
'trunc_ln22_1', stencil.cpp:22 on array 'buffer', stencil.cpp:7 and 'load' 
operation (stencil.cpp:16) on array 'buffer', stencil.cpp:7.

WARNING: [HLS 200-885] Unable to schedule 'load' operation (stencil.cpp:16) on 
array 'buffer', stencil.cpp:7 due to limited memory ports. Please consider 
using a memory core with more ports or partitioning the array 'buffer'.



Vitis did not actually infer a shift register here. Instead, it inferred a dual-ported on-
chip memory for buffer. An II of 1 is not possible, since the shift procedure requires 
several loads and writes per loop iteration.

As warned by Vitis, partitioning the array buffer can increase parallelism and thus 
potentially reduce II.

Since buffer is small in size, we can perform a complete partitioning, where all 
elements are mapped to separate registers

● Every element can be accessed and written at the same clock cycle

Array partition
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We use #pragma HLS ARRAY_PARTITION to indicate that buffer should be 
completely partitioned into separate registers:

With the freedom to read and write to any element in buffer at every clock cycle, 
Vitis is finally able to schedule a pipeline with II of 1:

Array partition
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INFO: [HLS 200-1470] Pipelining result : Target II = 1, Final II = 1, 
Depth = 142, loop VITIS_LOOP_13_2'



Comparing the three approaches:

The buffered + partitioned solution is
faster AND also consumes less resources.

Our manual code modifications and
pragmas applied prepared a “terrain” where
the HLS compiler could easily schedule the
loop and generate a module with efficient
routing.
Important to note that in our case the
array is small, being suitable for complete
partitioning!

Array partition
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Resource usage are estimates from Vitis.

Baseline Buffered Buffered + 

Partitioned

Latency 16526 15708 1254

LUTs 39766 3099 2394

FFs 12890 1694 2799

DSPs 0 0 0

BRAMs 30 2 2



Data Types and Representations
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Data Types and Representations

● Data representation on hardware

○ Everything is an array of bits:

■ short short Int a = 5

■ short int b = 7

■ float c = 3.5

■ char d = ‘a’

123

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 1 1 0 0 0

0 0 1 1 0 0 0 1



● Data representation on hardware

○ Everything is an array of bits:

■ short short Int a = 5

■ short int b = 7

■ float c = 3.5

■ char d = ‘a’

Data Types and Representations
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0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 1 1 0 0 0

Data type is the meaning we 

give to the data.

0 0 1 1 0 0 0 1

Data representation is how the 

data stored in an array of bits is 

interpreted.



Data Types and Representations

● Data types:

○ Commonly found in high-level code, help the compiler (and the user) to understand 

how to treat the data.

● For Example:

○ int, float, double, char, etc.

● Data representation:

○ It is how the data is represented in a binary format. 

○ Usually only fixed or floating point.
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● Data representation on hardware

○ Everything is an array of bits:

■ short short Int a = 5

■ short int b = 7

■ float c = 3.5

■ char d = ‘a’

Data Types and Representations
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0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 1 1 0 0 0

Some information about the 

representation is usually 

encoded in the type.

0 0 1 1 0 0 0 1

Data representation is how the 

data is stored in an array of 

bits.



Fixed vs Floating Point Representations

● Both are used to represent Real values: 

● Floating Point:
○ Consider the number in scientific notation: 

○ Defined as the format “float M.E”

○ float8.4 a = -3.5

● Fixed Point:
○ A straightforward representation

○ Defined as the format “fixed P.Q”

○ fixed5.3 a = -3.5
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1 0 0 1 0 0 1 1 1 0 0 1

M bits for the 

mantissa

E bits for the 

exponent

1 0 0 1 1 1 0 0 0

P bits for 

integer part

Q bits for 

fractional part



● Data representation on hardware

○ Everything is an array of bits:

■ short short Int a = 5

■ short int b = 7

■ float c = 3.5

■ char d = ‘a’

Data Types and Representations
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0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 1 1 0 0 0

0 0 1 1 0 0 0 1

Data representation is how the 

data is stored in an array of 

bits.

However, we can use different 

representations for the same 

data type. For example, here 

we have the value “3.5” 

represented as a “4.4 fixed 

point”.



Fixed vs Floating Point Representations

● Both are used to represent Real values: 

129

Fixed-Point Floating Point

Pros

Arithmetic is the same as for int 

types. It uses less hardware, and it 

usually takes less clock cycles.

The precision adapts with the 

magnitude of the number, making it 

less prone to precision errors.

Can represent larger number.

Cons

The precision is fixed and needs to 

be tuned for the algorithms, which is 

not a trivial task.

It costs a considerable amount of 

hardware resources and clock cycles.



A Quick Example
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● The goal is to estimate how many bits a fixed-point representation need for 

not compromising the precision.

● If the minimum and maximum values for all inputs are known, and the code 

is completely static, the number of bits can be calculated and propagated 

through the code variables.

Conversion from Floating to Fixed Point
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variables Min value Max value q p

a -1.5 3.75 3 2

b 0 5 3 0

C = a+b max(qa, qb)+1 max(pa, pb)+1

D = a*b qa+qb pa+pb

for i=1:100

E *= a
…. a lot .... a lot 



Conversion from Floating to Fixed Point

● The goal is to estimate how many bits a fixed-point representation need for 

not compromising the precision.

● If the minimum and maximum values for all inputs are known, and the code 

is completely static, the number of bits can be calculated and propagated 

through the code variables.

○ Loops may make the propagation impractical, since the number of required bits 

increase too much.
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Conversion from Floating to Fixed Point

● The goal is to estimate how many bits a fixed-point representation need for 

not compromising the precision.

● More general approaches are a topic of research.

○ Saldanha, L., & Lysecky, R. (2009). Float-to-fixed and fixed-to-float hardware converters for rapid 

hardware/software partitioning of floating point software applications to static and dynamic fixed 

point coprocessors. Design Automation for Embedded Systems, 13(3), 139-157.

○ Aamodt, T. M., & Chow, P. (2008). Compile-time and instruction-set methods for improving 

floating-to fixed-point conversion accuracy. ACM Transactions on Embedded Computing Systems 

(TECS), 7(3), 1-27.

○ Hopkins, M., Mikaitis, M., Lester, D. R., & Furber, S. (2020). Stochastic rounding and reduced-

precision fixed-point arithmetic for solving neural ordinary differential equations. Philosophical 

Transactions of the Royal Society A, 378(2166), 20190052.
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DSPs for Floating Point processing
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DSPs are another way to save hardware resources for floating point arithmetic. 

They are hard builded on modern FPGAs!



Creating Customised Floating Point FUs

● FloPoCo allows the creation of customised floating point units which are more 

efficient then combining basic floating points operations.

○ E.g.  

● It helps to satisfy the design constraints using floating point, but requires some 

extra effort on designing.

● http://flopoco.gforge.inria.fr/
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De Dinechin, F., Pasca, B., & Normale, E. (2011). Custom arithmetic datapath design for FPGAs using the FloPoCo core 

generator. Design & Test of Computers, IEEE, 28(4), 18-27.

http://flopoco.gforge.inria.fr/


Back to our simple pipelined vadd with II = 2. Could we go II = 1?

Let’s suppose that our input values do not exceed 16 bits.
● We could pack the operands in1[i] and in2[i] in a single int element of 32 bits 

and only perform one memory read per iteration.

Arbitrary precision data types - Practical example
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Due to the flexible nature of FPGAs, HLS allows us to specify variable types with 
arbitrary precision.
● Generated hardware becomes more compact, since all related computations 

are designed to work with that specific bit-width
● Suitable for highly-quantised machine learning applications

Vitis provides two C++ templates -- ap_int<N> and ap_fixed<N> -- to support 
integer and fixed-point arbitrary precision types.

Arbitrary precision data types - Practical example
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Arbitrary precision data types - Practical example
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Arbitrary precision data types - Practical example
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Only one load and one store

per loop iteration!



Arbitrary precision data types - Practical example
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The add FU is adjusted to work on 16-bit instead of 32

(could be other “unorthodox” values as well)



Compared to our other vadd results:

II of 1 is reached!

Good performance, low
resource usage

We could reduce the latency
even more by unrolling the
loop

Arbitrary precision data types - Practical example
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Baseline Pipeline Unroll 

(large)

Pipe + 

unroll

Pipe + 

16-bit

Latency 307270 8334 9505 2190 4238

LUTs 2186 1862 9329 1920 1789

FFs 1361 1391 11854 1767 1174

DSPs 0 0 0 0 0

BRAMs 2 2 30 8 2

Resource usage are estimates from Vitis.



Dataflow optimisation
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Types of Parallelism

143

● Parallelism can be explored in many level, specially when considering not only 

the FPGA chip:

○ Instruction/Data Parallelism.

■ Processing instructions concurrently because they are not dependent.

■ Loop pipeline is an way to explore instruction level parallelism.

■ This type of parallelism is within a module/kernel.

○ Task Parallelism

■ Separate modules executing in parallel. Can be multiple instances of the same module.

○ Pipeline Parallelism

■ Separate modules with dependencies running in a pipeline manner.



Task Parallelism
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● Dataflow processing is similar to “pipelining instructions in a loop”. Here, the 

operands can be:

○ Functions

○ Loops (HLS documentation might be deceiving)

Image from: 

https://xilinx.github.io/Vitis-

Tutorials/2020-1/docs/convolution-

tutorial/dataflow.html



Vitis also provides a dataflow feature, where the control system of a group of 
subroutines is removed and the computation flow is totally data driven

● Inputs and outputs of the subroutines are connected using FIFOs or similar structures.

Consider the following code:

performAdd, performSub and
performDiv are non-inlined
subroutines

Dataflow optimisation
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Dataflow optimisation
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Without dataflow, the subroutines are serially executed

Reported latencies:
performAdd: 8266
performSub: 4098
performDiv: 4167
Final: 16536



For a successful dataflow scheduling, Vitis recommends to write the dataflow 
regions in a “canonical” form, for example:

● For dataflow within loops, the index variable should increase monotonically
● Feedback from one subroutine to a previous one should be avoided
● Conditional subroutine execution can also affect performance

In our case, code rewrite was required so that each subroutine communicated 
using a stream interface instead of temporary buffers like tmp1 and tmp2.

● Vitis provides an hls::stream<> C++ construct that works similarly to usual C++ streams 
(e.g. std::cout)

See https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_optimization_techniques.html#bmx1539734225930 for more 
details

Dataflow optimisation
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https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_optimization_techniques.html#bmx1539734225930


Dataflow optimisation
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+---------+-----------+----------+
|  Latency|   Latency | Pipeline |
| (cycles)| (absolute)|   Type   |
+---------+-----------+----------+
|     8339|  55.596 us|  dataflow|
+---------+-----------+----------+
+---------------+------------+---------+-----------+---------+
|               |            |  Latency|   Latency | Pipeline|
|    Instance   |   Module   | (cycles)| (absolute)|   Type  |
+---------------+------------+---------+-----------+---------+
|readData3_U0   |readData3   |     8266|  55.109 us|     none|
|writeData_U0   |writeData   |     4167|  27.781 us|     none|
|performDiv_U0  |performDiv  |     4100|  27.335 us|     none|
|performAdd_U0  |performAdd  |     4098|  27.321 us|     none|
|performSub_U0  |performSub  |     4098|  27.321 us|     none|
+---------------+------------+---------+-----------+---------+

Dataflow optimisation
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+---------+-----------+----------+
|  Latency|   Latency | Pipeline |
| (cycles)| (absolute)|   Type   |
+---------+-----------+----------+
|     8339|  55.596 us|  dataflow|
+---------+-----------+----------+
+---------------+------------+---------+-----------+---------+
|               |            |  Latency|   Latency | Pipeline|
|    Instance   |   Module   | (cycles)| (absolute)|   Type  |
+---------------+------------+---------+-----------+---------+
|readData3_U0   |readData3   |     8266|  55.109 us|     none|
|writeData_U0   |writeData   |     4167|  27.781 us|     none|
|performDiv_U0  |performDiv  |     4100|  27.335 us|     none|
|performAdd_U0  |performAdd  |     4098|  27.321 us|     none|
|performSub_U0  |performSub  |     4098|  27.321 us|     none|
+---------------+------------+---------+-----------+---------+

Dataflow optimisation

150

Note the overlap!



Final remarks
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Final Remarks

152

● There is no golden rule that apply for every input code
● Optimisation usually consists of:

○ Reducing or eliminating recurrence constraints in loops
○ Uncoupling pipelined loops from uncoalesced off-chip load/stores (use on-

chip buffers instead)
■ Coalesced off-chip load/stores are still acceptable due to burst

○ Applying pipeline directive to loops
○ Applying unroll directives to increase the parallelism inside pipeline iterations
○ Apply array partitioning to increase on-chip port availability

■ A highly efficient unrolled+pipelined compute datapath usually requires a parallel 
access to arrays

○ Apply dataflow optimisation for subroutines that can overlap
○ Use arbitrary-precision data types to reduce memory bandwidth and reduce 

the computation resource footprint



Thank you for your attention!
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