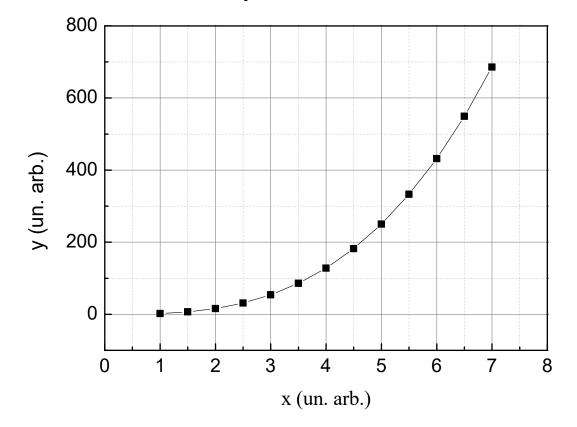
Física Experimental I

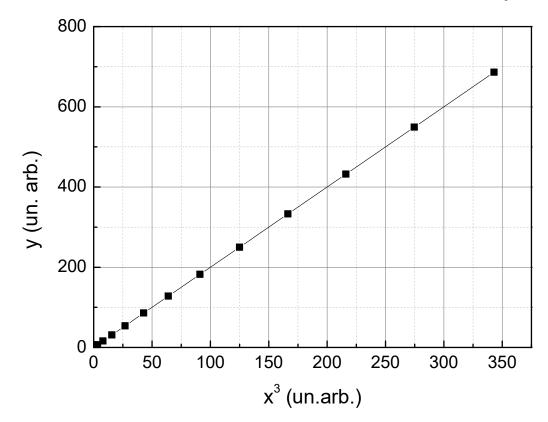

1º Semestre de 2023

Prof. Dr. Lucas Barboza Sarno da Silva

Gráfico não-linear

x (un. arb.)	y (un. arb.)
1,0	2,00
1,5	6,75
2,0	16,00
2,5	31,25
3,0	54,00
3,5	85,75
4,0	128,00
4,5	182,25
5,0	250,00
5,5	332,75
6,0	432,00
6,5	549,25
7,0	686,00

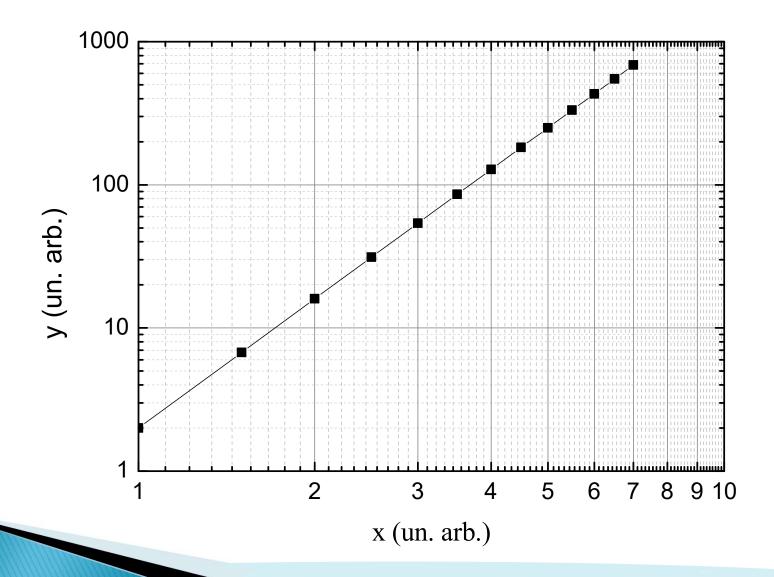
Figura 1 - Relação não linear desconhecida entre duas variáveis y e x.



Fonte: Instituto de Física de São Carlos, 2013.

Linearização dos dados

x (un. arb.)	y (un. arb.)	X = x ³ (un. arb.)
1,0	2,00	1,00
1,5	6,75	3,38
2,0	16,00	8,00
2,5	31,25	15,62
3,0	54,00	27,00
3,5	85,75	42,88
4,0	128,00	64,00
4,5	182,25	91,12
5,0	250,00	125,00
5,5	332,75	166,38
6,0	432,00	216,00
6,5	549,25	274,62
7,0	686,00	343,00


Figura 1 – Gráfico de y em função de x^3 , demonstrando a existência de uma relação cúbica $y = ax^3$.

Fonte: Instituto de Física de São Carlos, 2013.

Escalas logarítmicas

Um método alternativo de linearização consiste em manter os dados y e x originais da tabela e transformar as escalas do gráfico de maneira logarítmica.

Linearização da função potencial

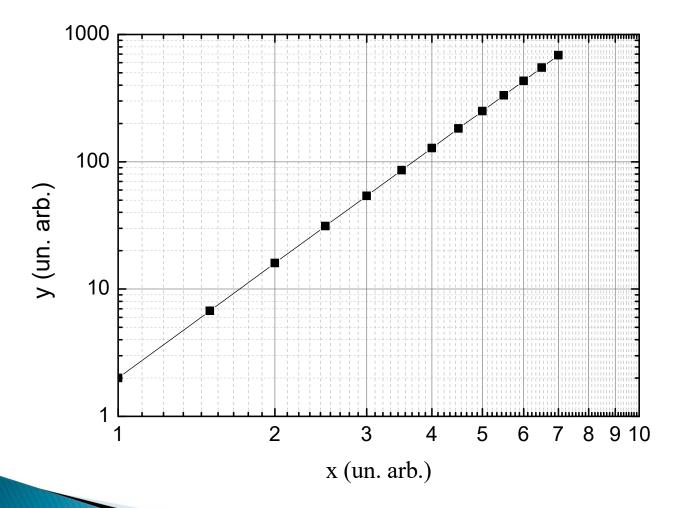
Uma aplicação muito importante das escalas logarítmicas é na linearização de dados.

Exemplo:

$$y = ax^n$$

Aplicando logaritmos a ambos os lados da igualdade, temos

$$log(y) = log(a) + n log(x)$$


Portanto, um gráfico dessas grandezas, em escalas logarítmicas, resultará em uma reta de inclinação *n*.

$$n = \frac{log(y_2) - log(y_1)}{log(x_2) - log(x_1)}$$

Exercício

A partir da reta traçada na figura, e usando a equação $y = ax^n$, calcule o valor

do expoente n.

X	y					
(un. arb.)	(un. arb.)					
1,0	2,00					
1,5	6,75					
2,0	16,00					
2,5	31,25					
3,0	54,00					
3,5	85,75					
4,0	128,00					
4,5	182,25					
5,0	250,00					
5,5	332,75					
6,0	432,00					
6,5	549,25					
7,0	686,00					

Linearização da função exponencial

Outro exemplo de linearização importante é o caso de uma relação exponencial

$$y = ab^{cx}$$

sendo a, b e c constantes. Aplicando logaritmo em ambos os lados dessa equação

$$log(y) = log(a) + c log(b)x$$

Essa equação mostra que existe uma relação linear entre log(y) e x. Portanto, um gráfico mono-log, com o eixo vertical em escala logarítmica e o eixo horizontal em escala linear, mostrará uma reta. A inclinação da reta é o coeficiente B = c log(b), que pode ser calculado como

$$B = \frac{\log(y_2) - \log(y_1)}{x_2 - x_1}$$

Exercício 1

Dada a tabela de pontos

x (±0,1) (un. arb.)	0,0	5,0	10,0	15,0	20,0	25,0	30,0	35,0	40,0	45,0	50,0
y (±1) (un. arb.)	0	22	32	39	45	50	55	59	63	67	71

- a) Faça um gráfico de *y* versus *x*, em papel milimetrado.
- b) Faça um gráfico de y^2 versus x, também em papel milimetrado.
- c) Faça um gráfico de log(y) versus log(x), usando papel di-log. Calcule a inclinação da reta e discuta o resultado obtido, com base nos gráficos obtidos em a) e b).
- d) Sabendo que estes pontos se ajustam a uma função do tipo

$$y = Ax^{1/2}$$

É possível determinar a constante A a partir de algum gráfico acima?

Exercício 2

Sabe-se que a tabela de pontos a seguir representa uma função do tipo

$$y = Ae^{-t/\tau}$$

$t (\pm 0,1)$ (un. arb.)	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
$y (\pm 0,1)$ (un. arb.)	3,8	3,0	2,5	1,8	1,4	1,2	0,9	0,6	0,5	0,4

Determine, graficamente, os valores de A e τ .