## MR-5215 - Otimização Aplicada ao Projeto de Sistemas Mecânicos

$8^{\text {a }}$ Assignment<br>(it can be done by a group of 2 students)<br>Due to: 29/05/23

Consider a mechanical system modeled by the linear system below:

$$
[K(U)]\{U\}=\{F\} \Rightarrow\left[\begin{array}{cc}
A_{1} u_{1} & \left(2-A_{1}^{2}\right) u_{2} \\
\left(2-A_{1}^{2}\right) u_{1} & \left(4+3 A_{1}\right) u_{2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left[\begin{array}{cc}
A_{1} & 2-A_{1}^{2} \\
2-A_{1}^{2} & 4+3 A_{1}
\end{array}\right]\left\{\begin{array}{l}
u_{1}^{2} \\
u_{2}^{2}
\end{array}\right\}=\left\{\begin{array}{c}
3 / A_{1}^{2} \\
5 / A_{1}^{2}
\end{array}\right\} \text { where } A_{l}=1
$$

Displacements $u_{1}$ and $u_{2}$ are positive. Determine the numerical value of the sensitivity for function $f=3 \mathrm{u}_{1}+2 \mathrm{u}_{2}$ in relation to $A_{1}$ by using:
a) analytical method;
b) semi-analytical method $\left(\Delta A_{l}=0,01\right)$;
c) finite difference method $\left(\Delta A_{l}=0,01\right)$;
(hint: solve for $a=u_{1}{ }^{2}$ and $b=u_{2}{ }^{2}$ and take the square root to obtain $u_{1}$ and $u_{2}$ )

