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A B S T R A C T

Carbon Capture and Storage (CCS) is an emerging climate change mitigation technology which prevents carbon
dioxide (CO2) from entering the atmosphere, so as to reduce greenhouse gas emissions. Environmental mon-
itoring in CCS sites is critical for ensuring that any CO2 leakage and its effect on biota, especially vegetation, is
detectable. It also plays an important role in creating a social license to operate and assuring the general public
that the mechanisms for leak detection and remediation are in place. This review overviews current remote
sensing technologies for vegetation monitoring of CCS sites/regions (with a focus on rangelands and pastures),
including medium-to-high resolution satellite, aerial (both manned and unmanned aircrafts) and in situ sensors
and methods. Our literature survey has pointed out that remote sensing, particularly hyperspectral sensors, can
accurately detect CO2 leakage derived effects on vegetation. It can compensate the two main drawbacks of
operational systems for detecting these effects over large areas. One is the areas affected tend to be relatively
small (1–15m); and the other is symptoms in vegetation tissues tend to be similar to other stresses, such as
nutrient or water deficiency. With this in mind, we have recommend that a comprehensive system should be put
in place. It integrates continuous monitoring with ad-hoc detection to assess vegetation conditions in a planned
CCS site. Site-based pheonocams and area-based medium-resolution satellite remote sensing sources can be used
to compare any given point in time (e.g. the injection point) with the condition at the same location in the past.
Before an injection commences, a baseline assessment should be conducted using the combination of high-
resolution aerial hyperspectral imaging and medium-resolution long-term data from Landsat sensors. Further
acquisition of high-resolution aerial imagery (ideally hyperspectral) is particularly useful following specific
detected CO2 leaking events. Aiming at bridging the gaps between research, development and implementation of
CCS, this review will contribute to environmental and social impacts of sustainable energy policies, including
climate change mitigation and environmental pollution reduction.

1. Introduction

1.1. Carbon capture and storage technology

Global warming is primarily a result of too much carbon dioxide

(CO2) in the atmosphere. CO2 is predicted to increase substantially over
the 21st century. Thus decreasing the total CO2 output may sig-
nificantly mitigate the effects and severity of future climate change [1].
This places a premium on developing technology solutions to minimize
rises in atmospheric CO2 levels. Carbon Capture and Storage (CCS) has
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been endorsed by the Intergovernmental Panel on Climate Change
(IPCC) as part of a portfolio of measures to mitigate climate change [2].
Nowadays pilot projects multiply all around the world. An assessment
on environmental and social impacts of this energy policy relating to
climate change mitigation and environmental pollution reduction has
always been essential.

CCS is an emission reduction process that captures up CO2 emissions
produced from the use of fossil fuels in electricity generation and in-
dustrial processes, preventing large amounts of CO2 from being released
into the atmosphere [3]. The technology involves three major steps:
capture, transport and injection/storage. CO2 is firstly separated from
other gases produced at facilities and compressed to a liquid state. It is
usually transported to a suitable site for geological storage using pi-
pelines. CO2 is then injected into deep, underground rock formations,
commonly at depths of one kilometre or more. These porous formations
into which CO2 is injected for permanent storage are often referred to as
deep saline formations or saline reservoirs. They are almost always
sedimentary rocks such as sandstones or limestones [4].

Although technically feasible with current technology, large-scale
adoption of CCS needs to address its safety and effectiveness [5]. Of
primary concern is the possibility of CO2 leaking from storage sites. A
significant risk is that a leak may migrate to the Earth’s surface and
adversely affect water quality, soil properties, flora and fauna [6].
Based on both IPCC [2] and past research [5], risk of leakage from well-
selected, designed and managed geological storage sites is low [2,5].
CO2 could be trapped for millions of years as exemplified by many
natural analogues, and well-located storage sites are likely to retain
over 99 per cent of the injected CO2 over hundreds of years [3].
However, even small leaks may increase soil CO2 concentrations and
atmospheric concentrations below plant canopies. The most likely
leakage pathways for CO2 from a storage site are associated with small-
scale features, such as natural interruptions and breaches through the
confining strata, faults and fractures, and degraded wells. Intermittent
emissions may also occur during periods of CO2 injection. Therefore,
long-term environmental monitoring of CCS sites is critical to the
confirmation of storage integrity for ensuring that if the CO2 stored
underground is leaked into the soil, the leaking, as well as the potential
effects of CO2 on the biota, can be detected [7]. On the other hand, it is
also a highly-required social licence for public assurance regardless of
the low risk of CO2 leaks and the potential effects of such leaks on the
environment.

1.2. Detection and monitoring of CO2 leakage

Monitoring of a CCS site can be accomplished by many techniques.
These include underground measurements and near-surface detection,
each offers unique strengths [8]. The former consists of well pressure
monitoring, seismic detection, and predictive modelling of the injected
plume in the subsurface; and the latter contains at- or above-surface
sampling and remote sensing methods for detecting CO2 leakage.
Among them, near surface detection is a particular key [9]. It is well-
known that these traditional ground-based observation methods have
the advantages of high precision and reliability [10–13]. However, they
are constrained by the distribution and number of observation sites, and
the lack of ability of a wide range of real-time monitoring due to their
time-consuming and cost-inefficient characteristics. Recent research
into environmental impacts has naturally involved the use and devel-
opment of new monitoring tools and has posed questions about how to
identify CO2 leakage impacts, which may be spatially small within large
areas and over long spans of time. Remote sensing is a promising ap-
proach to address these questions [14].

Remote sensing is a cost-effective tool for monitoring land condi-
tions over large areas and on a regular basis. According to the target of
a remote sensor, remote sensing technologies and methodologies that
are applicable for CCS monitoring can be classified into “direct
methods” which directly detect atmospheric concentrations of emitted

CO2, and “indirect methods” which means the proxy detection of en-
vironmental responses to escaped CO2 [8]. The indirect remote sensing
methods for detection of leaking CO2 associated with CCS sites are
those attempts to look at temperature anomalies, surface deformation
and vegetation stress. Vegetation monitoring is of particular relevance
to the detection of the potentially significant effects of CO2 leakage. It is
a relatively low-cost means to ensure the social license to operate a CCS
site. It is also an explicit way to show to the general public that com-
prehensive environmental monitoring is in place.

Although increased soil CO2 levels could have significant effects on
vegetation, the impacts of this sort of localised slow-release of CO2 in
soil on plant across a large injection site are not yet well understood
[15,16]. In the few manipulative experiments and natural settings
where CO2 is present in the soil at very high concentrations, a dele-
terious effect on vegetation condition is observed as CO2 causes anoxia
in the roots [17,18]. If the effect is present for a prolonged period, it
drives plants into chlorosis and eventually into senescence [19]. Smith
[20] found the patches of decreased plant growth in a gas (similar to
CO2) field were approximately 2m in diameter and were situated at
about 10m intervals that perhaps coincided with joints in the gas pi-
peline. This is consistent with observations made by Hoeks [21] who
stated that the radius of the sphere of influence of a gas leak could vary
from 1 to 15m depending on the size of the leak, soil type and moisture
content. Also, Feitz et al. [22] observed the visible extent of the CO2

leak impact on the plants was limited to small sections directly hor-
izontal above the well and typically defined by a circular pattern, be-
tween 5 and 15m in diameter.

Sensors mounted on satellites and/or aircraft (either manned or
unmanned) could be used for detecting changes in vegetation condition
in CCS areas. The increasing availability of remotely sensed images due
to the rapid advancement of remote sensing technology has expanded
the horizon of our choices of imagery sources. Multi-spatial, multi-
spectral and multi-temporal data at multi-scales can be provided to suit
different purposes, in particular during the last decade. For example,
detection of the effects of CO2 leakage on vegetation with remote
sensing methods can be done accurately, especially when using hy-
perspectral sensors [23]. Operational systems for the detection of these
CO2-derived effects on vegetation over large areas have, however, two
main drawbacks. One is that the areas affected tend to be relatively
small, and the other is that the symptoms in vegetation tissues tend to
be similar to the stress caused by other factors, such as nutrient or water
deficiency, which creates a high rate of false positives. Vegetation
monitoring in this context needs to determine natural vegetation
variability both in space and over time. There are many studies and
reviews on the topic of vegetation remote sensing in the literature.
However, there is an absence of updated critical/comprehensive re-
views on research advances related to the rapid development and ap-
plications in remote sensors with medium-high spatial/spectral re-
solutions in vegetation monitoring for CCS projects.

1.3. Scope of review

The goal of this review is to offer readers with reference to the use of
the most advanced remote sensing technologies/systems to date for
addressing major issues and challenges on monitoring the impact of
CO2 leakage on vegetation in CCS sites. Our review is on the existing
literature on detecting and monitoring near-surface effects of CO2 leaks
on rangeland and pastures using optical remote sensing techniques,
including satellite, aerial (both manned and unmanned aircrafts) and in
situ methods.

The review is organised as follows: Section 2 presents an overview
of remote sensing systems and other technologies which may be sui-
table for vegetation monitoring in CCS sites, Section 3 describes remote
sensing methodologies for detecting vegetation response to CO2

leakage, with a focus on hyperspectral imaging applications in CO2

leakage detection, and Section 4 concludes the review by providing
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recommendations on the development of a broad scale vegetation
monitoring system for CO2 storage areas.

2. Remote sensing systems for vegetation monitoring

The medium (10–200m) to high (< 10m) resolution satellite sen-
sors which have been widely used for vegetation monitoring are listed
in Table 1 for a quick reference. In summary, most optical sensors can
be and have been used to detect vegetation changes. There tends to be a
trade-off between spatial resolution and temporal frequency. Spatial
resolution is an important factor to be considered. Higher spatial re-
solution sensors are generally able to detect vegetation change with a
higher accuracy, but their temporal resolution is usually lower, which
hampers intensive temporal monitoring. For extremely high spatial
resolution (< 5m) images, shadow problems, computation issues and
data availability are major defects. Therefore, high resolution is not
always good for all situations. It is critical to choose remote sensing
data with resolution appropriate to the size of the objects that are to be
detected.

2.1. Satellite medium-high resolution systems

2.1.1. Landsat, Sentinel-2
Landsat is one of the most successful satellite series in history.

successively supplying medium resolution (10–200m) images for over
40 years. The sensors onboard early Landsat missions were
Multispectral Scanner (MSS), and later upgraded to Thematic Mapper
(TM) on Landsat-4 (launched in 1982), Landsat-5 (launched in 1984)
and Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (launched
in 1999). Landsat-5, in particular, has operated for an unexpectedly
long period, which makes applications of Landsat TM images in vege-
tation change detection very common. Launched in 2013, Landsat-8 is
the most recent Landsat satellite. The Operational Land Imager (OLI)
onboard is the latest optical sensor. The spatial resolutions of these
Landsat sensors have been gradually improved from 80m for MSS to
30m (15m for Pan) for TM. Resolutions at this level are ideal for de-
tecting the dynamics of almost all kinds of vegetation (Table 2).

Sentinel-2 is a land monitoring constellation of two identical sa-
tellites, Sentinel-2a (launched in 2013) and Sentinel-2b (launched in
2017) by the European Space Agency. The two satellites operate si-
multaneously, phased at 180° to each other, in a sun-synchronous orbit
at a mean altitude of 786 km. The mission provides high resolution
optical imagery for the continuity of current Landsat missions. It is
designed to make a global coverage of the Earth’s land surface every
10 days with one satellite and 5 days with two satellites. The
MultiSpectral Instrument (MSI) onboard Sentinel-2 provides high
quality multispectral images with spatial resolutions ranging from 10 to
60m (Table 2).

2.1.2. Worldview and Planet
DigitalGlobe (https://www.digitalglobe.com) was founded as

WorldView Imaging Corporation in 1992. The company launched its
first commercial Earth observation satellite EarlyBird-1 in 1997. The
most recent, WorldView-4, was launched in 2016 to become
DigitalGlobe's seventh satellite in orbit, joining Ikonos which was
launched in 1999, QuickBird in 2001, WorldView-1 in 2007, GeoEye-1
in 2008, WorldView-2 in 2009, WorldView-3 in 2014 and WorldView-4
(GeoEye-2) in 2016. It is capable of discerning objects on the Earth’s
surface as small as 31 cm in the panchromatic and collects multispectral
imagery with 1.24m resolution (Table 3).

Planet (https://www.planet.com, formerly known as Planet Labs) is
a company based in California that has designed and launched a series
of micro-satellites referred to as “Doves” or PlanetScope which make up
the world’s largest constellation of Earth-imaging satellites. The first
two satellites were launched in April 2013. Nowadays with 175+
PlanetScope and 13 SkySat in orbit, Planet is able to image anywhere
on Earth daily at 3m and 72 cm resolution (Table 4). In July 2015
Planet purchased the Blackbridge Geospatial companies which owns a
suite of 5 RapidEye satellites together with an extensive network of
customers. This gave Planet the capability of accessing the archives of
RapidEye imagery (5m resolution, from 2009) for their commercial
applications (Table 4).

Another main source of high-resolution sensors is the Chinese Earth
observation system, such as Ziyuan III (or ZY-3) and Gaofen (GF) sa-
tellites. The ZY-3-01 satellite was launched in January 2012, and ZY-3-
02 reached orbit in May 2016. Together, the two satellites have a re-
visit-cycle around three days. They are used to provide imagery to
monitor resources, land use and ecology, and for use in urban planning
and disaster management. GF-1 is the first of a series of seven high-
resolution optical Earth observation satellites of China National Space
Administration launched on April 2013. It is an analogue to Europe’s
Copernicus program of Sentinel Earth observation satellites. Another six
launches are planned by 2020 and GF 2, GF 3, and GF 4 have already
been placed in orbit by March 2018. Gaofen series integrates medium-
high spatial resolution imaging capability and a wide swath. These
satellites collect different types of environmental data, including all-
weather radar imagery and atmospheric measurements. They provide
near-real-time observations for disaster prevention and relief, climate
change monitoring, geographical mapping, environment and resource
surveying, as well as for precision agriculture support. However, there
are difficulties in accessing the data from outside China.

2.1.3. Operational systems using medium-high resolution satellites
Remote sensing provides important monitoring datasets at global

scale to local scales. The number and range of available datasets have
increased rapidly over the last four decades. Correspondingly, these
data, in particular Landsat and Sentinel-2, are now widely used in

Table 1
Main characteristics of commonly used space-borne remote sensors for vegetation detection: spatial resolution, temporal resolution, spectral resolution (bands),
spatial coverage (swath), data cost, data availability and scale of application.

Sensor group Satellite/sensor Bands Spatial resolution
(m)

Temporal
resolution (day)

Max swath at
nadir (km)

Scale of
applicationa

Data distribution
policy (cost)

Data availability

Medium resolution
sensor

Landsat 4–9 15–80 16 185 L-G no 1972–
SPOT 4–5 2.5–20 26 120 L-R yes 1986–
Aster 14 15–90 16 60 L-G no 1999–
Sentinel-2 13 10–60 5 290 L-R no 2015–

High resolution sensor IKONOS 5 1–4 1.5–3 11.3 L-R yes 1999–
QuickBird 5 0.61–2.24 2.7 16.5 L yes 2001–
WorldView 4–17 0.31–2.40 1–4 17.6 L yes 2007–
RapidEye 5 5 1–5.5 77 L-R yes 2008–
Ziyuan III (ZY-3) 4 2.1–5.8 5 50 L-R yes 2012–
Gaofen(GF1-4) 5 1–16 4–5 800 L-R yes 2013–

a L= Landscape, R=Regional, G=Global, L-R= Landscape to Regional, L-G=Landscape to Global, R-G=Regional to Global.
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operational systems to inform management and demonstrate steward-
ship to meet the demand for property scale data in accessible formats.

One such example in the United States is the online platform de-
veloped by Planet (https://www.planet.com/products/platform). With
the rapid expansion of the imaging capability offered by micro-sa-
tellites, the whole business model of Planet is rapidly changing from
selling single images to a subscription-based model. The Planet
Platform is a fully-automated, cloud-based platform for online image
downloading, processing and management. It delivers analysis-ready
data enabling customers to build tools, integrate data, run analytics,
and extract information at scale. Planet is also approaching govern-
ments offering whole-of-government licences to access and use such
tools.

An Australian example is the VegMachine® tool (https://
vegmachine.net/) which has played a pioneering role in delivering re-
motely sensed land cover data for land management in Queensland
(QLD), Australia [23,24]. VegMachine is an online tool that uses sa-
tellite imagery to summarise decades of change in Australia’s grazing
lands. The software uses satellite data to track changes in landscape
cover over time and identify the best places to manage grazing pressure
through pinpointing areas that require more specific management. At
present, VegMachine® offers information on vegetation cover derived
from the Landsat satellites series (starting in 1990) and from the Sen-
tinel 2 satellites from 2016. The web tool is open to public use, pro-
viding the full level of service for all of Queensland and a subset of
services to a large part of Australia. A most recent study by Guerschman
et al. [25] has used the VegMachine to access and interrogate the
Landsat fractional cover data for analysing the temporal dynamics of
vegetation cover (Fig. 1) at a CCS site.

2.2. Airborne hyperspectral imaging

Hyperspectral remote sensing is also known as hyperspectral ima-
ging. It started in the early 70s and has been blooming in many ap-
plication fields since then. The system collects and processes informa-
tion simultaneously in dozens or hundreds of narrow, adjacent spectral
bands from across the electromagnetic spectrum. These measurements
make it possible to derive a continuous spectrum for each image cell
(pixel) of a scene. A variety of techniques have been developed for data
collection. A common format is a push-broom imaging sensor which

performs four sampling operations involved in the collection of spectral
image data: spatial, spectral, radiometric, and temporal [26]. Fig. 2
from Shaw and Burke [27] illustrates the resultant three-dimensional
hyperspectral data cube. After adjustments for sensor, atmospheric, and
terrain effects are applied, these image spectra can be compared with
field or laboratory reflectance spectra with the purpose of recognising
objects, identifying materials, or detecting processes. In the case of
vegetation, hyperspectral imagery gives detailed information on the
specific pigments present and their concentration which is highly useful
for accurately detecting specific effects caused by nutrient, water and
other stress factors. Therefore, hyperspectral imaging has been used
since last decade as a suitable tool for studying vegetation response to
CO2 leakage (see Section 3.2 for details). Commonly used hyperspectral
sensors are listed in Table 5.

The primary advantage of hyperspectral imaging is its spectral re-
solution. An entire spectrum acquired at each point allows all available
information from the dataset to be mined almost without the needs of
prior knowledge and post-processing. Hyperspectral imaging can also
take advantage of the spatial relationships among the different spectra
in a neighbourhood, enabling more elaborate spectral-spatial models
for a more accurate segmentation and classification of the image
[28,29]. The main disadvantage is cost. Fast computers, sensitive de-
tectors, and large data storage capacities are needed for analysing hy-
perspectral data. All of these factors greatly increase the cost of ac-
quiring and processing hyperspectral data.

2.3. Unmanned Aerial Vehicle (UAVs)

An Unmanned Aerial Vehicle (UAV), also commonly known as a
“drone”, is an aircraft flown from a remote location without a human
pilot on board. The term “Unmanned Aircraft System” (UAS) has the
same meaning and is currently gaining more international acceptance
and the term may replace UAV in the near future. UAVs are, as with
miniaturised satellites, a rapidly evolving technology for Earth ob-
servation. UAVs can be fitted with instruments to measure surface
condition and are often cheaper than flying a piloted aircraft.
Previously the main use of UAVs was as an enhancement to the more
traditional field sampling devices used in experimental studies (e.g.
spectroradiometers, thermal cameras) and operated in the context of
sampling. Nowadays UAVs have become an alternative to airborne or

Table 2
Comparisons between Landsat and Sentinel-2 sensors on spatial resolution, temporal resolution, spectral resolution (bands) and spatial coverage (swath).

Landsat 4 and 5 Thematic
Mapper (TM)

Landsat 7 Enhanced
Thematic Mapper Plus (ETM+)

Landsat 8 Enhanced Thematic Mapper
Plus (ETM+)

Sentinel-2A and
Sentinel-2B

Spectral Resolution
(nm)

1. 450–520 (B)
2. 520–600 (G)
3. 630–690(R)
4. 760–900 (NIR)
5. 1550–1750 (MIR)
6. 2080–2350 (MIR)
7. 10400–12500 (TIR)

1. 450–520 (B)
2. 520–600 (G)
3. 630–690(R)
4. 760–900 (NIR)
5. 1550–1750 (MIR)
6. 2080–2350 (MIR)
7. 10400–12500 (TIR)
8. 520–900 (Pan)

1. 430–450 (C/A)
2. 450–520 (B)
3. 530–600 (G)
4. 630–680 (R)
5. 850–890 (NIR)
6. 1560–1660 (SIR)
7. 2100–2300 (SIR)
8. 500–680 (Pan)
9. 1360–1390 (C)
10. 10300–11300 (LIR)
11. 11500–12500(LIR)

1. 430–450 (C/A)
2. 460–520 (B)
3. 540–580 (G)
4. 650–680 (R)
5. 700–710 (VRE)
6. 730–750 (VRE)
7. 770–790 (VRE)
8. 780–900 (NIR)
8A. 860–880 (NNIR)
9. 940–960 (WV)
10. 1370–1390 (C)
11. 1570–1660 (SIR)
12. 2100–2280 (SIR)

Spatial Resolution
(m)

30×30
120×120 (TIR)

15× 15 (Pan)
30× 30
60×60 (TIR)

15× 15 (Pan)
30× 30
100×100 (TIR)

10× 10 (Pan)
20× 20
60×60 (TIR)

Temporal Resolution
(revisit days)

16 16 16 5

Spatial coverage (km) 185×185 183×170 185×185 290×290
Website https://lta.cr.usgs.gov/TM https://landsat.gsfc.nasa.gov/the-

enhanced-thematic-mapper-plus/
https://landsat.gsfc.nasa.gov/landsat-
8/

https://sentinel.esa.int/web/
sentinel/missions/sentinel-2

Note: B= blue, G= green, R= red, C/A= coastal/aerosol, NIR= near-infrared, NNIR=narrow-band near-infrared, SIR= short-wavelength infrared, MIR=mid-
wavelength infrared, LIR= long-wavelength infrared, TIR= total infrared, Pan=Panchromatic, C=Cirrus, VRE=Vegetation Red Edge, WV=water vapour.
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space platforms for regional mapping.
In terms of the platforms available, and similarly to manned aircraft,

the most widespread types of UAVs are planes and helicopters. Planes
have the advantage of more stable flight characteristics and higher
payloads. Helicopters, on the other hand, can be launched and retrieved
more easily than planes. In UAVs, the single propeller of traditional
helicopter technology coexists with multiple propeller units known as
multicopters (typically with four, six or eight propellers) which pro-
vides additional stability and easier control (Fig. 3). The sensors that
can be mounted on UAVs are constrained by the payload capacity of the
platform. For vegetation monitoring the most common sensors used
include red-NIR radiometers (which allows vegetation indices to be
calculated), and thermal sensors. LIDAR sensors are also available for
UAVs, although such sensors tend to be heavier and need bigger plat-
forms. The eBee Ag UAV from the SenseFly company (http://www.
sensefly.com/drones/ebee-ag.html) is perhaps the most successful off-
the-shelf UAV available to date.

One of the biggest advantages of UAVs is their relatively low price
and ease of use. This permits flying over a defined area and collection of
data without the limitations of the more traditional aircraft. Repeated
measurements on the same day and/or during a certain period are
feasible at much lower costs than manned aircrafts. Miniaturisation is
the biggest advantage of UAVs, but comes with the greatest dis-
advantage of limited payload and endurance. Small, cheap UAVs can
only carry light instruments and fly short distances.

A large number of companies are already offering image collection
services for vegetation monitoring purposes in the developed world and
also in developing countries such as South America and Asia. Typically,
the services include visible, near-infrared and sometimes thermal
imagery [30]. These wavelengths allow vegetation indices and canopy
temperature to be estimated and these are used to estimate canopy
cover and water stress. Many universities and research institutes are
also actively involved in improving the techniques, both the hardware
and instrumentation (i.e. designing UAVs which can fly for longer, with
more stability and more autonomy) and in designing better techniques
and tools for processing and using the data collected.

2.4. Phenocams (in situ)

Monitoring the impacts of environmental change requires an ex-
ponential increase in the quantity, diversity, and resolution of field-
collected data. Until recently, ground-based collection of time-series
image data over long periods was expensive and technically challen-
ging, but advancements in imaging and communication technologies
are enabling continuous, widespread monitoring of the environment.
Automated digital time-lapse cameras – “phenocams” – can monitor
vegetation status and environmental changes over long periods of time
[31].

As high-quality, low-cost digital cameras have become more widely
available, interest in applying these tools to ecological and environ-
mental studies has expanded. “Near-surface remote sensing” utilizes
data from automated ground-based sensors to augment conventional
remote-sensing data, and to help bridge the gap between satellite
monitoring and traditional on-the-ground observations. “Phenocams” –
digital cameras configured to capture time-lapses (or repeat photo-
graphy) – can provide a permanent, continuous visual record of the
environment over years or even decades. Information captured by
phenocams can provide essential baseline data for tracking such
changes. Phenocam-derived data can also be combined with data ob-
tained from other remote sensors to characterize the relationship be-
tween environmental drivers and vegetation responses, as well as for
cross-scale comparison and monitoring.

The technologies include: conventional RGB cameras, multispectral
and hyperspectral sensors, long-wave infrared and thermal and LIDAR
[32]. An example of thermal cameras used for individual wheat plants
and for experimental wheat plots is shown in Fig. 4. The mainTa
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difference is that such measurements are made at a much closer dis-
tance to the plants, can be near-continuous (many times per day) and
additionally, they can be done from varying viewing angles. Therefore,
high temporal and spatial resolution imagery from phenocams can be
used to obtain information about vegetation changes across a wide
range of vegetation types. The field is developing rapidly and continued
technological advances are likely to provide further opportunities for
image-based, real-time environmental monitoring.

2.5. Discussion

Satellite-based medium-resolution remote sensing makes possible
the extraction of long time data series of consistent and comparable
data. Furthermore, some satellite platforms offer free access to visible
and multispectral data, such as Landsat 7–8. But these medium re-
solution satellites alone are insufficient for detecting and monitoring
vegetation change caused by CO2 leakage because the spatial resolution
(e.g. 30m for Landsat) and the orbit period (e.g. 16 days for Landsat)
are inadequate (too coarse) for the purpose.

Accessing high or very high spatial resolution imagery (i.e. few
meters or better) with daily (or better) revisiting times has only become
possible recently through commercial satellites. The launch of suc-
cessful small satellite missions, particularly nanosatellites, has resulted
in the generation of larger observation constellations. They are able to
achieve high temporal resolution of data and in the meantime possess
very high spatial resolution. For example, with more than 170 satellites
in orbit at present, the Planet constellation scans the Earth every day,
imaging the entirety of Earth’s landmass at 3–5m resolution. Intensive
monitoring of vegetation for specific area at high resolution is thus
possible. However, this imagery is still expensive and not practical to
use for large-area and long-time vegetation monitoring.

Airborne systems have the advantage over satellites that they

provide simple and reliable means of acquiring remotely sensed images.
They can fly on demand, they are not limited by cloud cover as they can
fly beneath it, and they are not constrained by an orbit and so can cover
an area as often as is necessary. In addition, the remote sensing
equipment carried may be able to give greater spectral resolution, for
example the hyperspectral sensors which cover a range of 440–2500 nm
with over 100 wavebands. Airborne hyperspectral imaging obtains
imagery with adequate spatial resolution and improved spectral re-
solution capable of detecting leaks. This would probably be suitable for
monitoring leakage if weather conditions allow images to be collected
(ideally clear sky), although some argued it may be cost prohibitive due
to the requirement of relatively expensive aircraft and pilot. The UAV
platforms have become more widespread in recent years with afford-
able aircraft and camera payloads ranging from visible, near and
thermal infrared, and 3D LIDAR. Using the UAV, higher spatial and
temporal data resolution can be achieved, which makes possible ve-
getation detection to the sub-meter resolution.

Operational systems using medium-high resolution satellites have
promise for large-area monitoring of environmental impact. Enormous
data with different spatial, temporal and spectral resolutions from
various sensors can be integrated and compensated in such systems.
Large amounts of other geospatial data, such as land cover, land use,
climate, hydrology and topography, can also be incorporated. With the
advanced analysis capability of algorithms and models in the system,
natural and human-induced vegetation changes can be clarified for
providing management insights and decision support. The output will
be definitely useful to the identification of the CO2 leakage impact on
vegetation. In addition, the system is usually implemented as an online
tool which is simple to operate, easy to understand, and free to access. It
would negate many of the costs of supporting large numbers of users for
timelier data delivery.

Phenocams provide data at local and landscape scales that can be

Fig. 1. Screen capture of VegMachine® tool showing the fractional cover image for summer 2017 (Dec 2017 to Feb 2018), and the median values for (from top to
bottom of the right panel) total cover, non-green vegetation, green vegetation, bare ground and rainfall for the CCS site (left panel) from 1988 to 2017. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Structure of the hyperspectral data cube. (a) A push-broom sensor on an airborne or spaceborne platform collects spectral information for a one-dimensional
row of cross-track pixels, called a scan line. (b) Successive scan lines comprised of the spectra for each row of cross-track pixels are stacked to obtain a three-
dimensional hyperspectral data cube. In this illustration the spatial information of a scene is represented by the x and y dimensions of the cube, while the amplitude
spectra of the pixels are projected into the z dimension. (c) The assembled three-dimensional hyperspectral data cube can be treated as a stack of two-dimensional
spatial images, each corresponding to a particular narrow waveband. A hyperspectral data cube typically consists of hundreds of such stacked images. (d) Alternately,
the spectral samples can be plotted for each pixel or for each class of material in the hyperspectral image. Distinguishing features in the spectra provide the primary
mechanism for detection and classification of materials in a scene (by permission, from Shaw and Burke [27], Lincoln Laboratory Journal, 14, 3–28).

Table 5
A comparison of commonly used imaging spectrometers.

Sensor Organisation‘ Country Bands Wavelength (nm) Resolution

HYMAP HyVista Corporation Australia 128 400–2450 <5m
AVIRIS NASA United States 224 400–2500 20m
AISA Spectral Imaging Limited Finland 286 450–900 1m
CASI ITRES Research Limited Canada 288 430–870 0.25–1.5m
DAIS 2115 Ger CORP United States 211 400–1200 10 nm
PROBE-1 Earth Search Sciences Inc United States 128 400–2450 1 nm
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used in diverse ways. The “near-remote sensing” of vegetation and
landscapes by phenocams has advantages over satellite-derived data
including imagery that is continuous in time, unaffected by cloud cover
and finer scale information at the canopy level down to individual
plants. Phenocam images also provide in situ details on mechanisms of
changes viewed by satellite, such as the relationship of leaf color to
satellite reflectance data, and landscape context for field observations.

3. Remote sensing of vegetation stress

3.1. Remote sensing of chlorophyll content/concentration

Vegetation health is one of the most important measures of en-
vironmental impact of CO2 leakage. Vegetation will be stressed due to
elevated soil CO2 concentration leading to decreased soil pH and de-
creased soil O2 concentrations. Chlorosis, (yellowing) of leaf tissue due
to a lack of chlorophyll, is a common indicator of vegetation under
stress [13,34].

Healthy vegetation has a characteristic spectral signature in the
solar radiation wavebands (Fig. 5). It has low reflectance (typically
about 5%) in the visible wavebands (400–700 nm) and a very steep rise
at about 700 nm to about 50% reflectance in the near-infrared (NIR).
This spectral signature can be explained by the structure and chemical
composition of the leaf. Leaves contain chlorophyll and other pigments
such as carotenes, xanthophylls, anthocyanin and amaranthine that
absorb light strongly in the visible wavelengths, and therefore, have
low reflectance.

Chlorophyll, the major absorber of light in leaves, is contained
mainly in the palisade tissue layer and comprises two forms.
Chlorophyll a is found in all, and chlorophyll b in most,

photosynthesising plants. Changes in the level of chlorophyll in the leaf
can be detected as changes in the spectral characteristics of the leaf,
particularly in the visible wavelengths. Most other pigments absorb in
the blue region in the vicinity of 445 nm, but only chlorophyll absorbs
in the red at 645 nm [36]. Near-infrared light is not significantly ab-
sorbed or transmitted by pigments in the leaf and thus the reflectance is
greater beyond 700 nm. At longer wavelengths (beyond 1350 nm) there
is a decrease in reflectance as more radiation is absorbed by water
within the leaf. The structure of the leaf, with many air–water inter-
faces, makes a very strong scattering medium that causes high re-
flectance and transmittance in any region where absorbance is low
[37].

Chlorosis can be identified as a stress by remote sensing as an in-
crease in reflectance in the yellow wavelengths at around 580 nm
[37,38]. The sharp change in reflectance between wavelengths at
around 690 and 740 nm is termed the “red-edge” [37,39]. It char-
acterises the boundary between the strong absorption of red light by
chlorophyll and the increased multiple scattering of radiation in the leaf
mesophyll and the absence of absorption by pigments in the near-in-
frared wavelengths. Information on the red-edge position provides a
useful indicator of chlorophyll content, which can then be used as an
indicator of vegetation productivity or stress.

Many studies have been carried out to correlate spectral variations
with chlorophyll content, and thus enable detection of stress by mea-
suring decreased chlorophyll content. For example, Horler et al. [38]
found that chlorotic leaves had higher reflectance in the visible wave-
lengths, with the effect greatest at 540 nm and that the red-edge was
shifted towards shorter wavelengths. The chlorophyll content of a leaf
was closely correlated with the red edge shift. Carter [40] used various
stresses and plant species to detect changes in reflectance. He found

Fig. 3. Multirotor-based remote sensing system over farmers’ fields in
Tanzania. Photo courtesy of Roberto Quiroz, International Potato Centre.

Fig. 4. Thermal images showing the differ-
ence in conditions with and without salt. (a)
durum wheat seedlings to show leaf tem-
perature difference (∼1°C) in a salt-stressed
seedling relative to a control (non-salt seed-
ling), and (b) a wheat trial imaged from a
cherry picker to capture canopy temperature
data for a large number of plots (by permis-
sion, from Furbank and Tester [33], Trends in
Plant Science, 16, 635–44).

Fig. 5. Typical spectral signature of green vegetation, water and soil (modified
from Siegmund and Menz [35]). Grey bands indicate Landsat wavelengths. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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that visible reflectance, particularly in the region near 550 and 710 nm,
increased consistently in response to stress regardless of the stress agent
or the species. The greatest changes occurred near 710 nm. Close cor-
relation between chlorophyll content and reflectance at 550 and
700 nm was also found by Gitelson and Merzylak [41], who found that
reflectance near 700 nm and in the range 530–630 nm were the only
features to be sensitive to chlorophyll content over a wide range of
chlorophyll variation. Chappelle et al. [42] found that the concentra-
tion of chlorophyll a had a strong linear relationship with the re-
flectance ratio R675/R700, (where R675 is the reflectance at 675 nm
and R700 is the reflectance at 700 nm), whereas the concentration of
chlorophyll b was related best to R675/(R675xR700). Although this
may work well at the leaf level it is not so consistent for canopies due to
the effect of variations in background properties, and the effect of leaf
layering and canopy structure. A pigment-specific simple ratio,
PSSR=R800/R680 was found by Blackburn [43] to have the strongest
linear relationship with chlorophyll concentration in canopies. The
optimum individual waveband for pigment estimation was 680 nm for
chlorophyll a, 635 nm for chlorophyll b and 470 nm for carotenoids.

The stress can be induced by a variety of natural and anthropogenic
stressors. Stress effects in plants may manifest themselves by showing
decreased or increased growth (hyperplasia) or decreased levels of
chlorophyll leading to chlorosis of the leaves and thus decreased pho-
tosynthesis. These changes could be detected using remote sensing. It
should be possible to show that vegetation is stressed, but it is difficult
to identify exactly what is causing the stress as plants tend to have a
number of similar responses to a range of stresses. For example, al-
though chlorosis can be detected, it is difficult to determine the cause of
the response, because chlorosis is a general plant response to many
stresses, such as drought, waterlogging, diseases and mineral defi-
ciencies, as examples given in Table 6. One possible solution for this
issue is to pay particular attention to the spatial arrangement of the
anomalies as vegetation anomalies produced by CO2 leaks will have
different sizes, shapes and patterns than those produced by water de-
ficiency, grazing, machinery transit and so on [9]. Given the spatial
feature (1–15m) of possible leak impacts on vegetation [20–22], hy-
perspectral imaging could be a suitable means for the detection of leak-
related vegetation stress.

3.2. CO2 related stress detection using hyperspectral imaging

Hyperspectral remote sensing has been used in environmental
monitoring, such as productivity evaluation, degradation assessment,
carbon flux and storage estimate and response to disturbance or stress
(human activities, grazing, fire and climate change). But there are
limited studies on detection and monitoring CO2 leakage impact on
ground cover. Among 19 relevant publications we found (Table 7) in
the literature, the commonly used methods were mature techniques,
such as linear regressions, time series analysis and vegetation indices
(VIs).

Vegetation indices are simple and effective algorithms for

quantitative and qualitative assessment of vegetation cover condition
among other approaches and applications [52]. Noomen et al. [53]
examined the performance of 51 hyperspectral indices for detecting
variations in canopy reflectance of maize and wheat caused by under-
ground natural gas leakage. The effect of gas leakage on vegetation is
similar to that of CO2. When hydrocarbon seeps into the environment
and into the roots of growing plants, it leads to stress as well as
chlorosis. In the study, most indices that are known to respond to
changes in vegetation vigour are reflectance ratios in the visible and
near-infrared, while a few indices are located in the shortwave infrared.
They found the indices had the highest correlation with oxygen con-
centrations in the soil for both species 29 days after a simulated gas
leak, which was halfway through the growth cycle of the plants. It was
not possible to find one reflectance index that could be used at any time
during the growth cycle due to the changing canopy characteristics.
Whereas Optimised Soil-Adjusted Vegetation Index (OSAVI) was the
best predictor (at Day 29) based on the differences in canopy cover,
Carter Indices (CTR2) was the best predictor (at Day 22) because of the
less dense canopy and larger differences in leaf chlorophyll con-
centrations. Another study by Jiang et al. [54] showed the usefulness of
the ratio of two sums, the first derivative reflectance in the green band
(SDg) and red band (SDr). The index was suitable to identify CO2

leakage spots though monitoring the spectral change of vegetation on
the surface of the CCS fields for both leaf scale and canopy scale. It was
sensitive to bean under CO2 leakage stress and capable of distinguishing
the gassed and ungassed bean in the slight CO2 leakage spots. The index
could identify the bean stress on the 11th day after gassing started by
utilizing leaf spectra, and it was also able to detect responses of bean by
using canopy spectra after the twenty-second day since injection began.
Therefore, their study suggested that it is possible to detect the CO2

leaking region by using hyperspectral remote sensing techniques. CO2

leakages may occur in the area where the index values fall significantly
below the control values of the surrounding plants. Therefore, if ab-
normal index values were observed in some spots above sequestration
fields, such spots could be considered as suspected leakage region.

3.3. Vegetation monitoring

3.3.1. Assessment of baseline for impact
The overarching goal of a proposed monitoring plan is to assess

status and trends of vegetation responses to CO2 leakage. A well-known
sampling framework in ecology is the BACI (Before-After, Control-
Impact) proposed by Stewart-Oaten et al. [69] to structure environ-
mental impact monitoring. The BACI concept requires examination of
the Before (pre-construction baseline) and After (post-construction)
conditions of the area, as well as a comparison between a Reference site
(without CCS) and the Impact site (with CCS). Before and After -
sampling will determine how the leakage process changed the site
through time from its historical condition. Reference and Impact sam-
pling will allow the effects of CO2 leakage to be discerned from natural
variability, stochastic events, and underlying trends in the larger area.

Table 6
Remote sensing of vegetation stress-vegetation response to different stressor at identified wavelengths.

Wavelength (nm) Stressor Vegetation response References

525–575 Nutrient deficiency Increase in reflectance and shift to shorter wavelengths of the red-edge [44]
550–650 Nutrient deficiency Increase in reflectance and shift to shorter wavelengths of the red-edge [45]
550 and 770 Waterlogging Elevated reflectance [46]
555 and 700 Nutrient deficiency Greatest variations in reflectance [47]
580 Drought Increase in reflectance [37]
650–850 Waterlogging A small peak of reflectance [48]
675 Drought Increase in reflectance and shift to shorter wavelengths of the red-edge [38]
690–700 and

R694/R760

Drought High reflectance
Increase in reflectance

[4950]

584 and 1300 Drought Peak value of reflectance [40]
1300–2500 Drought Greatest increase in reflectance [51]
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A Reference site which has identical conditions to the Impact site is
usually unavailable. Thus, areas near the CCS but not part of the area
directly affected by the injection can be used as Reference sites. The
Impact and Reference sites are typically monitored with similar in-
tensity to allow for direct comparison of the different monitoring
samples.

3.3.2. Integration of multi-sensors and multi-data
With the advances in sensor technology and the increasing quantity

of multi-sensor, multi-temporal, and multi-resolution data from dif-
ferent sources over the last decade, data integration has become as a
valuable approach in detecting and monitoring the effect of CO2

leakage on vegetation. It aims synergistically combine sensor data from
disparate sources – with different characteristics, resolution, and
quality – in order to provide more reliable, accurate, and useful in-
formation required for the application purpose. Olsson et al. [58] used
both hyperspectral field measurements and Landsat TM imagery to
detect invasive grass in a desert scrub community in USA. They in-
tegrated field measurements of hyperspectral plant species signatures
and canopy cover with multi-temporal spectral analysis to identify
opportunities for detection using moderate-resolution multi-spectral
imagery. They found Landsat TM-based reflectance differences of un-
invaded and invaded landscapes are minimal due to the high level of
mixing, and a sensor with narrow bands at 2050, 2100, and 2150 nm
would be essential for the detection. Marshall et al. [70] conducted a
study to determining if Worldview-2 8-band multispectral imagery can
be used to discriminate grass in Australia. Their results proved World-
view-2 offers even greater potential for the discrimination of buffel
grass under NIR2 (near-infrared 2: 860–1040 nm) and Yellow

(608–632 nm) bands. Marshall et al. [30] undertook another study
aiming at assessing the feasibility of using airborne imagery for vege-
tation assessment in Australian arid lands. They evaluated the common
methods using high-resolution multispectral imagery and aerial pho-
tography, and recommended that an ultra-high resolution aerial pho-
tography together with airborne hyperspectral imagery could be con-
sidered for improved spectral separation. Sandino et al. [71] proposed
an integrated pipeline methodology for monitoring vegetation in arid
and semiarid Australia. They demonstrated the implementation of un-
manned aerial systems (UAVs and high-resolution RGB cameras) and
machine learning for a feasible, accurate and light-weighted assessment
of grasses (buffel and spinifex). Most recently, Guerschman et al. [25]
investigated a suite of related VIs at a proposed Australian CCS site
where vegetation cover is highly variable in spatial and temporal di-
mensions following environmental and human-induced drivers. They
conducted a baseline assessment of vegetation condition on rangelands
dominated by buffel grass using Landsat and HyMap hyperspectral
imagery in combination with a field survey. The analysis of time series
of satellite data (Landsat-derived vegetation fractional cover) spanning
30 years show how vegetation changes within season and the specific
trends of each part of study site since 1988 (Fig. 6). They were also able
to identify areas cropped in the past and disturbed by some other type
of land uses. Their study proved that hyperspectral imagery provides a
much more spatially detailed picture of the vegetation condition at just
one moment in time. It also proves its ability to accurately map (Fig. 7)
and identify specific traits of vegetation condition (particularly cover
and green/non-green fractions) at the image resolution (1.8 m).

Table 7
Summary of vegetation being detected/monitored (target), wavelength region studied and algorithm/model employed in literature on hyperspectral imaging of CO2

leakage on rangelands.

Target Wavelength (nm) Algorithm/Model Reference

Buffel grass 645–696, 765–815 Normalized Difference Vegetation Index (NDVI) [25]
2000, 2100, 2200 Cellulose Absorption Index (CAI)
705–750 Red Edge NDVI (RENDVI)
720–740 Vogelmann Red Edge Index 1 (VREI1)
1510, 1680 Normalised Difference Nitrogen Index (NDNI)
550, 680, 750 Plant Senescence Reflectance Index (PSRI)
510, 550, 700 Column Labels Carotenoid Reflectance Index (CLCRI)

Bean 500–550, 680–760 Ratio of the sum of the first derivative reflectance in green
band (SDg) and red band (SDr): SDr/SDg

[54]

Barley, canola and field pea
Alfalfa

400–1000, 990–2494
1300–2500

Chlorophyll Normalized Difference Index (Chl NDI)
TIBCO Spotfire S+

[2255]

Alfalfa, dandelion, thistle 424–929 Red Edge Index (REI) [56]
Western salsify, dandelion, Canada thistle, alfalfa, birdsfoot, trefoil, clover,

lupine, quack grass, orchard grass, Kentucky bluegrass
630–670, 780–820 NDVI [57]

Buffel grass 1360–1430,
1800–1950

NDVI
Spectral mixture analysis (SMA)

[58]

Grassland 402–989 Intrinsic Random Functions (IRF)
Generalised covariance function (GCF)

[59]

Vegetation 402–989 Point Spread Function (PSF) [60]
Western salsify, dandelion, Canada thistle, alfalfa, birdsfoot, trefoil, clover,

lupine, quack grass, orchard grass, Kentucky bluegrass
700–760 Linear Regressions [61]

Tall and underlying grasses 500–580, 630–710,
735–865

NDVI [62]

Flower, Orchard grass, Kentucky bluegrass 575–580, 720–723 Structural Independent Pigment Index (SIPI)
Normalized Difference First Derivative Index (NFDI)
Chl NDI
Pigment Specific Simple Ratios (both PSSRa and PSSRb)

[63]

Vegetation 350–2500 Analysis of Time Series (ATS) [64]
Alfalfa 650–750 Random Forest Classifiers (RFC) [65]
40–50 cm grass (May),

< 15 cm grass (Oct)
402–989 Normal Probability Plot (NPP) [66]

Maize, wheat 350–2500 Optimised Soil-Adjusted Vegetation Index (OSAVI)
Carter Indices (CTR2) and 49 others

[53]

Maize, wheat, grassland 400–2170 Lichtenthaler Indices (LIC) [67]
Grass, wheat, bean 702, 720–730 Derivative Analysis (DA) [68]
Soybean 410–740 Regamma Function (RF) [49]
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3.4. Discussion

Achieving both high spatial resolution and high spectral resolution
is an important direction of the most recent advances in remote sensing
technology for vegetation stress detection. Hyperspectral imaging
meets the needs of enabling small leakage features, or vegetation re-
sponses to leakage, to be successfully captured. Although there has been
a significant increase in scientific literature in recent years focusing on
detecting stress in plants using hyperspectral image analysis, applica-
tions of hyperspectral imaging in monitoring the impact of CO2 on
vegetation are limited. The technology is becoming more popular since
the falling costs of camera production have enabled researchers and
developers greater access to this technology. But it still has two major
issues. One is its small scene coverage, making them unsuitable for
mapping large areas. The other is its revisit frequency, which makes the
CO2 leakage monitoring difficult.

There are various techniques available to analyse the data to detect
CO2 induced stress in plants. Examples of these methods have been
discussed in this section. Vegetation and stress indices are increasing in
quantity every year. Significant wavelengths combined together can
indicate the health status occurring within a specific species. Indices are
valuable for detecting specific criteria for vegetation only when they
are selected with the datasets, species and conditions favourable to the
experiments at that time. It is difficult to take an index designed for
plant X and apply it to a dataset for plant Y. This is the motivation
behind considering a larger range of wavelengths over the spectrum,
which has the potential to yield better results.

It is relatively easy to detect vegetation stresses, but much more
difficult to identify those caused by CO2 leaks from others, such as
natural climate variability, grazing and other human interventions. One
possible solution for this issue is to pay particular attention to the
spatial pattern of the stress as vegetation stress produced by CO2 leaks
will have a different size and shape than that produced by water defi-
ciency, grazing, harvesting and so on [9]. Another effective way is to
conduct a baseline assessment of ‘intact’ condition before injection and
undertake evaluation in comparison with a reference site after injec-
tion.

A hyperspectral image acquisition can be a good option for assessing
vegetation condition if a leak is detected and/or at regular intervals
after the commencement of the CO2 injection. However, the cost is
relatively high. Cheaper options (and faster and more flexible to de-
ploy) can be sourced from UAV providers. The exact characteristics of
the imagery being acquired need to be carefully assessed, particularly in
the context of an increasing number of providers and specifications
available. At the very least, a multispectral sensor can be used to cap-
ture the red edge features. In addition to the above, phenocams are a
cheap and reliable source of in situ information and can track daily
changes in vegetation and therefore be a rapid way to detect sudden
changes in vegetation conditions.

Vegetation monitoring on its own is not going to provide a reliable
way of detecting CO2 leakage. Rather, it has to be a complement of
other more direct tracking of CO2 levels on the ground and in the at-
mosphere. The main reason is that the stresses in vegetation induced by
CO2 in the soil produce similar effects to other stresses such as water or

Fig. 6. Maps showing the fractional cover (1988–2017) at a planned CCS area. The left panel shows all Landsat images for four seasons from 1988 to 2017. The four
larger maps show the long-term mean cover for Autumn (Mar-Apr-May, or MAM), Winter (Jun-Jul-Aug, or JJA), Spring (Sep-Oct-Nov, or SON) and Summer (Dec-
Jan-Feb, or DJF). Yellow dots represent five study sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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nutrient deficiency, and therefore the rates of false positives would be
too high and difficult to reduce.

4. Recommendations for establishing a monitoring system

4.1. Remote sensing is a feasible means for vegetation monitoring

CCS is an emerging climate change mitigation technology and en-
vironmental monitoring is vital for its credibility as a sustainable so-
lution. Satellite, airborne and in-situ remote sensing provides a cost-
effective technique for monitoring vegetation condition and potentially
identifies CO2 leakage through the detection of plant stress caused by
elevated soil CO2 associated with CCS sites.

4.2. Combination of several remotely-sensed sources and on-ground
monitoring is the most promising alternative

The particular characteristics of the effects of CO2 leaks on vege-
tation (small hot spots producing plant chlorosis) determine that no
single approach can, on its own, be sufficient for continuous monitoring
of an operational CCS facility.

We recommend that a system is put in place combining the fol-
lowing technologies:

• Continuous monitoring using medium resolution (Landsat, Sentinel
2) satellite remote sensing sources: This option is cheap (data
sources are free), can monitor a large area and can compare any
given point in time with the condition in the same location in the

Fig. 7. Orthophotos (15 cm resolution; 1st column from left), HyMap in false color (1.8 m resolution; 2nd column from left) and vegetation indices (3rd and 4th
columns from left) derived from the HyMap image for the five study sites in Fig. 6. Spectra for all pixels (in color) and mean spectra for each site (black line) are
shown in the right-hand side column. NDVI stands for Normalised Difference Nitrogen Index, and CAI is Cellulose Absorption Index. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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past. These data sources, however, do not have sufficient spatial
resolution for identifying small hot spots of plant stress in case of
CO2 leaks occurrence. Tools such as the VegMachine described in
Section 2.1.3 can be a useful technique already available for this.

• Ad-hoc acquisition of high-resolution aerial imagery (ideally hy-
perspectral) following specific detected CO2 leaking events: In the
hypothetical case that a CO2 leak is registered, a high-resolution
hyperspectral image of the affected area can assist in pinpointing the
spatial extent of stress caused to vegetation.

• Continuous monitoring of the injection point(s) using phenocams: as
the leaks, if they occur, are more likely to occur near the injection
points, we recommend continuous monitoring of these areas using
hyperspectral phenocams installed on site.

4.3. Reference site selection and baseline assessment are essential for CO2

leakage detection

It is important to understand whether different sources of physio-
logical plant stress occur naturally and are spectrally discernible in
order to properly interpret vegetation stress signals during image ana-
lysis. It is expected that the highly dimensional nature of hyperspectral
data lends itself to discriminate among different types of vegetation
stress. However, our literature search shows even though hyperspectral
signatures can be used to estimate the amount of plant stress, it is un-
able to distinguish between the different causes of stress. This un-
certainty can be problematic when testing for CO2 leaks. A CCS field
could appear unhealthy spectrally, but the stress could be caused by
other plant physiological stressors. To reduce the number of possible
false positives, it is important to normalise measurements by comparing
plant spectra to identical environmental conditions outside the site. In
this case, the selection of reference sites become significantly im-
portant. Similarly, to distinguish between the concepts of “environ-
mental impact” and “leakage effect”, acquiring baseline characteriza-
tion of environmentally-relevant variables is crucial to this distinction.

We then recommend that:

• An aerial hyperspectral image is acquired in a CCS planned site
before any CO2 injection begins and the naturally occurring varia-
bility in vegetation condition is assessed, particularly those traits
known to be affected by CO2 leaks.

• An assessment of the natural and human-induced variability in ve-
getation cover in the planned injection site is performed using long-
term data obtained from the Landsat sensor. This assessment will
determine the range of conditions observed in each 30×30m pixel
over the last 27 years and can be used as a baseline for tracking any
future anomalies in vegetation cover.

In conclusion, a primary concern for the safety and effectiveness of
CCS is the possibility that CO2 may migrate from storage sites to the
Earth’s surface. Direct detection of CO2 leaks via its effects on vegeta-
tion are highly difficult due to the small nature of the area affected and
the high chances of false positives. Our review has addressed this
challenge. It adds value to the literature by recommending an in-
tegrated monitoring system where remote sensing technology is a key
driver. The recommended approach provides scientific rigour to meet
public expectations of the sustainability of the CCS practice for bridging
the gaps between research, development and implementation of CCS. It
is crucial to the minimisation of environmental impacts for a sustain-
able CCS implementation, and will eventually contribute to environ-
mental pollution reduction and climate change mitigation.
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