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Deep learning is quickly becoming the standard technique for image classification. The

main problem facing the automatic identification of plant diseases using this strategy is

the lack of image databases capable of representing the wide variety of conditions and

symptom characteristics found in practice. Data augmentation techniques decrease the

impact of this problem, but those cannot reproduce most of the practical diversity. This

paper explores the use of individual lesions and spots for the task, rather than considering

the entire leaf. Since each region has its own characteristics, the variability of the data is

increased without the need for additional images. This also allows the identification of

multiple diseases affecting the same leaf. On the other hand, suitable symptom segmen-

tation still needs to be done manually, preventing full automation. The accuracies obtained

using this approach were, in average, 12% higher than those achieved using the original

images. Additionally, no crop had accuracies below 75%, even when as many as 10 diseases

were considered. Although the database does not cover the entire range of practical pos-

sibilities, these results indicate that, as long as enough data is available, deep learning

techniques are effective for plant disease detection and recognition.

© 2019 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Tools for automatic plant disease recognition have the po-

tential to become a valuable source of information to aid de-

cision making in farms (Barbedo, 2013). This is especially true

in places where specialised technical support is not easily

accessed and in large properties where continuous on-site

monitoring is impractical. However, there are still many

challenges lacking suitable solutions (Barbedo, 2016). Deep

learning techniques, particularly Convolutional Neural Net-

works (CNN), are quickly becoming the preferred method to

overcome some of those challenges (Barbedo, 2018a).

Although very good results have been reported in the
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literature (Table 1), investigations so far have used image da-

tabases with limited diversity. In particular, many studies

have employed the PlantVillage database (Amara, Bouaziz, &

Algergawy, 2017; Brahimi, Boukhalfa, & Moussaoui, 2017;

Cruz, Luvisi, Bellis, & Ampatzidis, 2017; Ferentinos, 2018;

Mohanty, Hughes, & Salath�e, 2016), which contains a sub-

stantial proportion of images with homogeneous back-

grounds, especially in its early versions (Hughes & Salath�e,

2015; Mohanty et al., 2016). Thus, only a limited subset of

the entire range of possibilities is being considered both for

training and testing the algorithms. The effects of those data

constraints was illustrated by Mohanty et al. (2016), who

observed a quick drop in accuracy when the model trained
.
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Table 1 e Studies employing deep learning for plant disease recognition.

Reference Network Dataset Accuracy

Amara et al. (2017) CNN (LeNet architecture) PlantVillage 92%e99%

Brahimi et al. (2017) CNN (AlexNet, GoogLeNet) PlantVillage 99%

Cruz et al. (2017) CNN (Modified LeNet) Olive tree images (own) 99%

DeChant et al. (2017) CNN (Pipeline) Corn images (own) 97%

Ferentinos (2018) CNN (Several) PlantVillage 99%

Fuentes, Yoon, Kim, and Park (2017) CNN (Several) Tomato images (own) 83%

Liu, Zhang, He, and Li (2018) CNN (AlexNet) Apple images (own) 98%

Lu, Yi, Zeng, Liu, and Zhang (2017) CNN (AlexNet inspired) Rice images (own) 95%

Mohanty et al. (2016) CNN (AlexNet, GoogLeNet) PlantVillage 99%

Oppenheim and Shani (2017) CNN (VGG) Potato images (own) 96%
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using the PlantVillage database was applied to images

collected online. Despite their limitations, these previous in-

vestigations have successfully demonstrated the potential of

deep learning techniques.

Now that the ability of deep neural networks for plant

disease recognition has been proven, CNN capabilities should

be stressed by applying more realistic and varied image

datasets. The dataset used in this work was built having di-

versity inmind. Prior to the subdivision into individual lesions

and spots, it included 1567 images representing 79 diseases

affecting 14 plant species. More importantly, images were

captured under a wide diversity of conditions and included an

extensive variety of symptom characteristics (Section 2).

However, while the resulting database was representative in

qualitative terms, it was quantitatively lacking. Many specific

conditions had only a very small number of images associ-

ated. Even with the use of augmentation techniques, which

artificially increase diversity for better generalization (Liu

et al., 2018), such a number is not enough for proper training

of deep neural networks (Barbedo, 2018b). Thus, the original

images were segmented into individual lesions and spots,

increasing the number of images to 46,409. Two additional

benefits came from this procedure: a) since conditions may

varywithin the same leaf, data diversity was also increased; b)

with single symptoms being considered, it was now possible

to identify multiple diseases affecting the same leaf.

It is worth noting that while the dataset used in this work is

more diverse than those used in previous studies, it is far from

containing the entire diversity that can be found in practice.

This is because capturing images in the field and correctly

labelling them is a difficult, expensive and time consuming

task. Thus, building a truly comprehensive database would

require resources that are beyond the capabilities of most

institutions. Some initiatives are using the concepts of social

networks to overcome this limitation (Barbedo, 2018b), but the

annotation process has some limitations that may lead to

unreliable labels (Barbedo, 2018a). More representative image

databases could also be achieved if different research groups

made their own datasets available. As a step towards this goal,

the dataset used in this work is beingmade freely available for

research purposes in the address https://www.digipathos-rep.

cnptia.embrapa.br/.

This study was carried out using a pretrained CNN using

the GoogLeNet architecture. The accuracies obtained for each

crop varied from 75% to 100%. Such a variation was caused by

differences in the number of images, number of diseases,
variety of conditions and, consequently, difficulty level. The

overall accuracy using individual lesions and spots was 94%,

higher than those obtained using the original images with

(82%) and without (82%) manual background removal.
2. Materials and methods

2.1. Image dataset

The images in the database were captured using several

different sensors (smartphones, compact cameras, DSLR

cameras), and their resolutions range from 1 to 24 MPixels.

Table 2 specifies the number of images for each plant/disease

pair before (PDDB) and after (XDB) subdivision. Most disorders

are related to fungi (77%), while 8% are due to viruses, 6% to

various pests, 3% to bacteria, 2% to phytotoxicity, 2% to algae,

1% to nutritional deficiencies and 1% to senescence. Approx-

imately 60% of the images were captured under controlled

conditions, and 40% under real field conditions.

Some criteria were applied in order to make the image

segmentation consistent. First, only images containing plant

leaves were considered in the creation of the expanded

dataset (XDB), because the symptoms appearing in other parts

of the plants cannot always be suitably divided. The back-

grounds of all images were manually blacked out prior to the

subdivision. Five different types of signs and symptoms were

identified, each one warranting different criteria for subdivi-

sion, always having diversity of characteristics as main goal.

For all new images, healthy tissue occupied at least 20% of the

total area in order to guarantee contrast with the diseased

tissue. Because the criteria used to subdivide the images

required human discretion to be applied correctly, the whole

process was done manually.

The first type of symptom, scattered small, consists of

numerous small lesions or spots spread over the leaf surface

(Fig. 1a). Two criteria were used: relatively isolated symptoms

were taken individually (Fig. 1b), and lesions that were part of

clusters were taken as a group (Fig. 1c).

The second type of symptom, scattered large, consists of a

number of large lesions or spots spread over the leaf surface

(Fig. 2a). The criteria adopted here were the same as the pre-

vious case, but because of the larger symptom size, the box

delimiting the area surrounding the lesion can potentially

include parts of other lesions, even if they are relatively iso-

lated. When this happened, in about half of the cases the
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Table 2 e Image database composition with plant diseases and their hosts. The table does not include the 500 images of
healthy tissue generated for each crop, as they were used only in part of the experiments.

Specimen Disorder Code # Samples

PDDB XDB

Common Bean Anthracnose A1 21 601

Cercospora leaf spot A2 2 41

Cowpea mild mottle virus A3 6 82

Rust A4 2 420

Hedylepta indicata A5 5 100

Target leaf spot A6 24 600

Bacterial brown spot A7 2 38

Web blight A8 7 75

Powdery mildew A9 12 183

Phytotoxicity A0 8 939

Cassava Mites B1 10 130

Bacterial blight B2 18 650

White leaf spot B3 9 115

Citrus Algal spot C1 5 249

Citrus greasy spot C2 10 271

Canker C3 9 227

Citrus variegated chlorosis C4 27 308

Sooty mould C5 4 148

Leprosis C6 18 65

Halo blight C7 5 7

Mosaic of citrus C8 15 440

Scab C9 2 153

Coconut tree Aspidiotus destructor D1 5 583

Lixa grande D2 33 609

Lixa pequena D3 34 195

Cylindrocladium leaf spot D4 5 100

Phytotoxicity D5 2 17

Corn Anthracnose leaf blight E1 3 12

Anthracnose vein blight E2 4 14

Tropical corn rust E3 14 889

Southern corn rust E4 15 3048

Scab E5 3 723

Southern corn leaf blight E6 44 3770

Phaeosphaeria Leaf Spot E7 31 779

Diplodia leaf streak E8 7 18

Brown spot E9 8 1071

Northern corn leaf blight E0 46 156

Kale Alternaria leaf spot F1 4 133

Powdery mildew F2 3 63

Cashew Tree Algae G1 3 111

Anthracnose G2 37 845

Angular leaf spot G3 8 1332

Black mould G4 33 2114

Powdery mildew G5 6 65

Gummosis G6 36 42

Coffee Leaf miner H1 12 52

Cercospora leaf spot H2 43 88

Leaf rust H3 17 383

Bacterial blight H4 37 1149

Blister spot H5 8 175

Brown leaf spot H6 25 52

Cotton Seedling disease complex I1 32 166

Myrothecium leaf spot I2 27 146

Areolate mildew I3 36 1711

Grapevines Bacterial canker J1 13 664

Rust J2 8 800

Isariopsis leaf spot J3 1 52

Downy mildew J4 22 597

Powdery mildew J5 29 134

Fanleaf degeneration J6 7 83
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Table 2 e (continued )

Specimen Disorder Code # Samples

PDDB XDB

Passion fruit Cercospora spot K1 4 95

Bacterial blight K2 38 169

Septoria spot K3 7 16

Soybean Bacterial blight L1 56 3791

Cercospora leaf blight L2 5 10

Rust L3 65 2265

Phytotoxicity L4 23 1545

Soybean Mosaic L5 22 311

Target spot L6 62 966

Downy mildew L7 51 2306

Powdery mildew L8 77 1291

Brown spot L9 21 1248

Sugarcane Orange rust M1 18 1013

Ring spot M2 43 1656

Red rot M3 49 104

Wheat Wheat blast N1 14 82

Leaf rust N2 24 377

Tan spot N3 2 11

Powdery mildew N4 35 370

Total 1575 46,409

Fig. 1 e Example of scattered small symptoms (a), isolated lesion (b), and cluster of lesions (c).

Fig. 2 e Example of scattered large symptoms (a), spurious lesion blacked out (b), and spurious lesion unchanged (c).
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spurious lesion was blacked out (Fig. 2b), and in the other half

the spurious lesion was kept unchanged (Fig. 2c). This was

done to increase the diversity of conditions.

The third type of symptom, isolated, consists of single le-

sions or spots (Fig. 3a). In this case, since there is only one

region of interest, only one new figure is spawned from the

original sample (Fig. 3b). The only exceptions to this rule were

cases in which lesions were split into clearly distinct regions

(Fig. 3c).
The fourth type of symptom, widespread, consists of large

lesions that manifest over the entire leaf (Fig. 4a). Due to the

wide variety of characteristics found in this group, the criteria

for subdivision were only loosely defined. First, the entire

original image (with the background removed) is also

considered a sub-image. The remaining subdivisions were

done by identifying relatively homogeneous regions within

the diseased tissue (Fig. 4b,c).

Finally, the fifth type of symptom, powdery, consists of

powdery spots on the leaf's surface (Fig. 5a). Those spots are

https://doi.org/10.1016/j.biosystemseng.2019.02.002
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Fig. 3 e Example of isolated symptoms (a), lesion region delimited (b), and lesion with two visible regions (c).

Fig. 4 e Example of widespread symptoms (a), lesions delimited by homogeneity (b and c).

Fig. 5 e Example of powdery symptoms (a), isolated spots (b), and widespread spots (c).
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initially separated, but as the disease evolves, theymaymerge

into larger ones, until the leaf is completely covered. When

spots were isolated, each one of them generated a new image

(Fig. 5b). When the disease was more widespread, the division

followed the same basic rules as widespread lesions (Fig. 5c).

2.2. Experimental setup

Transfer learning (Bengio, 2012) was applied to a pretrained

GoogLeNet CNN using Matlab (Mathworks, Natick) Neural

Network Toolbox (version 2017b). The GoogLeNet architecture

waschosenbecauseof its superiorperformance inthecontextof

plantdisease recognition (Ferentinos, 2018;Mohantyetal., 2016).

The parameters used to train the network were the following:

Base Learning Rate, 0.001; Momentum, 0.9; Mini Batch Size, 64;

Number of Epochs, 5. Theseparametersweredeterminedafter a
gridsearch inwhichdifferentvaluecombinationswere testedon

the soybean dataset. All experiments were run using a NVIDIA

Titan XP Graphics Processing Unit (GPU).

Experiments were divided into two main groups. The first

group focused on the classification problem, in which the

objective was to determine the origin of a symptom that has

already been observed and located. Thus, healthy samples

should not be included in this set of experiments. For each

crop, three sets of images were used: a) unmodified original

images; b) original images with background removed; c)

expanded dataset (XDB). In each case, 80% of the samples

were used for training and 20% for validation. Additional

CNNs were trained with a reduced version of the training

dataset containing subdivided images, so it would match the

size of the original training dataset. This was done as part of

the investigation on whether training dataset size or using

https://doi.org/10.1016/j.biosystemseng.2019.02.002
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localised regions was the main factor driving the improve-

ment observed when XDB was used. Another experiment,

aiming at evaluating the impact of severe class imbalance,

was performed using only the expanded coffee dataset. In this

experiment, the image set associated to each disease was

augmented (Liu et al., 2018) until they all had the same

number of samples (919) as the largest set (bacterial blight).

This new set was used to train a CNN, and the results were

compared with those obtained without any balancing

attempt.

The second group of experiments focused on the detection

problem, in which the objective was to detect disease signs

amidst healthy tissue, for subsequent classification or not.

Two experimentswere carried out. The first onewas similar to

experiment c) in the first group, but with healthy samples

included. The motivation was to determine if including the

additional healthy samples would have significant impact on

the classification accuracies. Actual detection was assessed in

the second experiment, with the same CNN trained in the first

experiment being used in this case. However, a new test

dataset was generated, as follows. All images not used for

training were rescaled to 2048 � 1368 pixels, in order to make

the relative sizes of lesions roughly uniform across all images.

A 224 � 224 sliding window was then applied to each image,

with 50% overlap between consecutive frames, to generate a

new set of cropped images. Images containing extraneous

elements such as soil or background leaves were removed,

and each remaining samplewas labelled as healthy (no visible

disease signs), mildly diseased (visible signs occupying less

than 15% of the image), moderately diseased (visible signs

occupyingmore than 15% and less than 50% of the image) and

severely diseased (visible signs occupying more than 50% of

the image). This labelling was done manually by visual in-

spection, so the division is not rigorous. However, since those

labels were simply used to aggregate the images into groups

roughly defined by the prominence of their symptoms, the

subjectivity involved in the process was of little consequence.

The new test dataset was then submitted to the trained CNN

and two measures were calculated, the detection rate and the
Table 3 e Accuracies obtained for each plant species (mean an

Crop # Classes # Images

Original Expanded Original Expanded

Common Bean 5 10 64 3079

Cassava 3 3 37 895

Citrus 7 9 87 1868

Coconut Tree 4 5 77 1504

Corn 7 10 165 10,480

Coffee 6 6 142 1899

Cotton 3 3 95 2023

Cashew Tree 3 6 78 4509

Grapevines 4 6 72 2330

Kale 0 2 0 196

Passion Fruit 2 3 40 280

Soybean 8 9 377 13,733

Sugarcane 3 3 110 2773

Wheat 3 4 73 840

Total 56 79 1383 46,135
classification accuracy. Detection rate was given by the pro-

portion of images not classified as healthy. The classification

accuracy was given by the proportion of samples with symp-

toms correctly assigned, exactly as in all other experiments.

All experiments described in this section were carried out

using a 10-fold cross-validation. Also, all images were resized

prior to training to meet GoogLeNet's input dimension

requirement (224 � 224 � 3 pixels). Although the network

could be modified to accept other input sizes, the standard

dimension was a good match to the typical image sizes in

XDB. Augmentation techniques were applied to the training

set in order to improve the robustness of the trained model

(Liu et al., 2018).
3. Results

3.1. Classification experiments

Table 3 presents the overall accuracies obtained for each plant

species, considering the original, background removed, and

subdivided images with complete (C) and reduced (R) training

datasets. Not all disorders shown in Table 1 were considered

in the experiments with the original and background removed

images, because some of themhad too few images for a proper

CNN training. With the exception of cotton and soybean, re-

sults were consistently improved by using images of individ-

ual lesions and spots. Accuracies for XDB tended to drop

slightly when the reduced training dataset was used, indi-

cating that the characteristics of the images were more rele-

vant than the absolute number of samples used for training.

Because the number of classes and images and respective

characteristics varied among crops, the effects of using the

expanded dataset were also diverse. Figure 6 presents the

confusion matrices associated to the expanded dataset for all

crops, using the disorder codes presented in Table 1. An in-

dividual analysis for each crop is presented in the following.

Coffee: Results were consistent for all diseases, with

exception of Cercospora leaf spot, which had an expressive
d standard deviation).

Accuracy (%)

Original Images Background Removed Expanded

C R

83 ± 3.3 95 ± 0.8 94 ± 0.8 91 ± 1.6

92 ± 2.8 83 ± 2.5 100 ± 0 100 ± 0

79 ± 5.9 62 ± 7.8 96 ± 0.6 93 ± 1.5

97 ± 1.5 97 ± 0.4 98 ± 0.6 97 ± 1.2

60 ± 9.7 66 ± 8.0 75 ± 4.4 74 ± 6.5

76 ± 7.1 77 ± 5.2 89 ± 1.9 86 ± 2.5

100 ± 0 100 ± 0 99 ± 0.3 99 ± 0.5

88 ± 3.2 83 ± 2.0 98 ± 0.5 96 ± 1.1

75 ± 4.9 81 ± 2.7 96 ± 0.8 91 ± 3.0

e e 100 ± 0 e

50 ± 12.6 90 ± 1.2 80 ± 4.2 80 ± 4.8

82 ± 6.0 76 ± 6.3 87 ± 3.6 86 ± 4.1

93 ± 2.1 100 ± 0 99 ± 0.4 97 ± 1.0

92 ± 2.9 61 ± 7.7 99 ± 0.5 98 ± 0.9

82 ± 5.8 82 ± 4.5 94 ±2.0 91 ± 2.9
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nroCnaeBnommoC
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E0

A1 93 0 0 0 0 1 6 0 0 0 E1 50 0 0 0 0 25 0 0 25 0
A2 0 88 0 0 0 0 0 12 0 0 E2 0 100 0 0 0 0 0 0 0 0
A3 0 0 100 0 0 3 0 0 0 0 E3 0 0 98 0 0 1 1 0 0 0
A4 0 0 0 100 0 0 0 0 0 0 E4 0 0 0 97 1 2 0 0 0 0
A5 0 0 0 0 100 0 0 0 0 0 E5 0 0 1 0 95 1 3 0 0 0
A6 0 0 0 0 5 85 0 0 10 0 E6 0 0 0 2 1 96 1 0 0 0
A7 2 0 0 0 0 0 98 0 0 0 E7 0 0 1 0 4 2 92 0 0 1
A8 0 5 0 13 0 0 0 100 0 0 E8 0 0 0 0 0 75 0 25 0 0
A9 7 0 0 0 7 6 0 0 80 0 E9 0 0 0 3 0 3 0 0 94 0
A0 0 0 0 0 0 0 0 0 0 100 E0 0 0 5 0 0 35 5 0 0 55

naebyoSsurtiC
 C1 C2 C3 C4 C5 C6 C7 C8 C9 L1 L2 L3 L4 L5 L6 L7 L8 L9 

C1 100 0 0 0 0 0 0 0 0 L1 94 0 1 2 0 1 0 0 2 
C2 0 100 0 0 0 0 0 0 0 L2 50 50 0 0 0 0 0 0 0 
C3 0 0 98 0 0 0 0 2 0 L3 0 0 98 0 0 2 0 0 0 
C4 0 0 0 100 0 0 2 0 0 L4 2 0 0 98 0 2 0 0 0 
C5 0 0 15 0 77 0 0 8 0 L5 0 0 1 0 95 2 2 0 0 
C6 0 0 0 0 0 100 0 0 0 L6 7 0 5 5 1 79 1 0 3 
C7 0 2 2 0 0 0 96 0 0 L7 0 0 0 0 0 0 100 0 0 
C8 0 1 5 0 2 0 0 92 0 L8 0 0 0 0 0 0 0 100 0 
C9 0 3 0 0 0 0 0 0 97 L9 14 0 0 5 0 12 0 0 69 

seniveparGeeffoCeerTwehsaC
 G1 G2 G3 G4 G5 G6   H1 H2 H3 H4 H5 H6 J1 J2 J3 J4 J5 J6

G1 96 4 0 0 0 0  H1 82 0 0 18 0 0 J1 99 1 0 0 0 0
G2 0 99 1 0 0 0  H2 0 61 6 28 6 0 J2 0 100 0 0 0 0
G3 0 0 97 3 0 0  H3 0 1 99 0 0 0 J3 0 0 100 0 0 0
G4 0 0 2 98 0 0  H4 0 1 0 99 0 0 J4 0 0 0 99 0 1
G5 0 0 0 0 100 0  H5 0 0 9 0 91 0 J5 0 0 0 1 99 0
G6 0 0 0 0 0 100  H6 0 0 0 0 0 100 J6 0 0 0 3 0 97

 Cassava  Co on Passion Fruit Coconut Tree  
 B1 B2 B3   I1 I2 I3 K1 K2 K3 D1 D2 D3 D4 D5  

B1 100 0 0  I1 97 0 3 K1 100 0 0 D1 100 0 0 0 0  
B2 0 100 0  I2 0 100 0 K2 12 88 0 D2 0 100 0 0 0  
B3 0 0 100  I3 0 0 100 K3 25 25 50 D3 0 0 100 0 0  

8004D 92 0  
Wheat  Sugarcane Kale D5 3 0 0 0 100  

 N1 N2 N3 N4   M1 M2 M3 F1 F2     
N1 100 0 0 0  M1 100 0 0 F1 100 0     
N2 4 96 0 0  M2 3 97 0 F2 0 100     
N3 0 0 100 0  M3 0 0 001
N4 0 1 0 99

Fig. 6 e Confusion matrices obtained for all crops using the expanded dataset.

 H1 H2 H3 H4 H5 H6
H1 82 

88 
0 
0 

0
0 

18 
12 

0 
0 

0
0 

H2 0 
1 

61 
76 

6
4 

28 
15 

6 
6 

0
0 

H3 0 
0 

1 
2 

99
98 

0 
0 

0 
0 

0
0 

H4 0 
13 

1 
7 

0
1 

99 
79 

0 
0 

0
0 

H5 0 
0 

0 
0 

9
8 

0 
0 

91 
92 

0
0 

H6 0 
0 

0 
0 

0
0 

0 
0 

0 
0 

100
100 

Fig. 7 e Confusion matrices obtained using the unbalanced

(top values) and balanced (bottom values) coffee training
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number of samplesmisclassified as Bacterial blight. The cause

for those errors was the combination of similar symptoms

with unbalanced representativeness (88 samples for the

former, 1149 for the latter). In order to quantify the impact of

this imbalance, an experiment in which all classes had the

samenumber of training sampleswas performed (Section 2.2).

Using balanced and imbalanced datasets resulted in almost

the same accuracy (88.8% and 88.7%, respectively), but the

errors caused by symptom similarity weremuchmore equally

distributed between the classes (Fig. 7).

Cassava: This crop had only a few samples associated, and

the images of a given class tended to be captured in a single

location, resulting in generally similar backgrounds. As a

result, in many cases the CNN probably used the background,
dataset.

https://doi.org/10.1016/j.biosystemseng.2019.02.002
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and not the symptoms, as themain distinctive feature. This is

one of the potential negative effects of having an insufficient

number of images for training and testing, and explains the

seemingly poorer results when background was removed. It is

worth noting that this crop had only three classes with rela-

tively distinct symptoms, which made the task easier.

Common Bean: The accuracy for common bean using the

expanded dataset was 11% higher than that obtained using

the original images, but it was a little lower than that obtained

using images with background removed. There are two ex-

planations for this. First, many of the original images included

whole diseased plants, rather than targeting a single leaf.

Since leaves had different orientations and cast shadows on

each other, it was difficult for the CNN to properly detect the

features of interest in the images. When the background was

removed from those images, only the centremost leaf was

kept, making it easier to focus on the symptoms, greatly

increasing the accuracy. Second, the number of classes

considered for the expanded dataset was twice of that asso-

ciated to the other two datasets, making the problem

considerably harder. Thus, achieving accuracy of 94% with 10

classes can be considered an improvement. There were no

diseases whose symptoms were consistently confused. The

largest error rate, which was associated to powdery mildew

(20%), was not caused only by symptom similaritieswith other

diseases. Rather, because powdery mildew samples had

similar lighting conditions to many other diseases, the

network sometimes associated those specific conditions to

different classes, especially when symptoms were slight or

not very distinctive. This was one of the few cases for which

augmentation operations were not able to prevent spurious

model fitting.

Citrus: The results for citrus improved considerably after

subdivision. The relatively poor results for the original set is

due to the small number of images for testing, so even single

misclassifications resulted in very large error rates. Results

were even poorer for the background removed set, due to the

tendency of the CNN to take the background into consider-

ation when only a few images are available, as explained for

cassava. The results for the subdivided datasets were consis-

tently good, especially considering that nine different diseases
Fig. 8 e Example showing the similarity of symptoms produced

(bottom).
were present. More importantly, most of the images were

captured in the field under a variety of conditions. A major

reason for this was that most diseases had hundreds of im-

ages associated, which translated to thousands of images

available to be used in the training after dataset augmenta-

tion. The only diseases that had fewer images associated

(Leprosis and Halo blight) have distinctive symptoms that

could be learned by the network with just a few images.

Coconut tree: The results were also consistently good for

this plant species. All five diseases had very distinctive

symptoms among them, with the exception of Lixa Grande

and Lixa Pequena, but the number of images was enough to

avoid any major confusion.

Corn: As in the case of common bean, corn has 10 classes,

but the results were significantly poorer, being the only crop

for which the global accuracy was below 80%. This was ex-

pected, as the dataset associated to this crop includesmany of

the factors that may cause difficulties to any deep learning-

based classifier (Barbedo, 2018a). The first and most obvious

reason is the presence of diseases with similar symptoms.

This is aggravated by the fact that the number of images for

each disease is very imbalanced, varying froma dozen to a few

thousands. This explainswhymostDiplodia leaf streak images

were classified as Southern corn leaf blight e besides pro-

ducing similar symptoms (Fig. 8), the number of images was

more than 200 times larger for the latter. The second reason

for the relatively large error ratewas that almost all images for

this crop were captured under uncontrolled conditions, often

containing problematic illumination effects such as light-and-

shadow and specular reflection (Fig. 9). Leaf regions severely

affected by those phenomena were not removed, rather being

included to stress the CNN capabilities. Experiments have

shown that when the loss of information associated to those

effects reached a certain amount, the network was no longer

capable of reliably recognizing the symptoms.

Cotton: Although the accuracy for this crop was nearly

perfect, the accuracy dropped slightly in comparison with the

original dataset. The reason for this is that the shape of

Seedling disease complex symptoms varies considerably, and

in some specific cases they mimic the symptoms caused by

Areolate mildew. If the entire leaf is considered, a variety of
by Diplodia leaf streak (top) and Southern corn leaf blight
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Fig. 9 e Image containing light-and-shadow and specular

reflection effects.

Table 4 e Detection rate and classification accuracy using
the “sliding window” dataset. Two classification
accuracies are presented: “all”, which considers all
samples, and “detected”, which considers only samples
correctly detected as diseased. The results obtained for all
crops were aggregated for brevity.

Group Detection Rate Classification
Accuracy

All Detected

Healthy e 89% e

Mildly diseased 39% 31% 70%

Moderately diseased 97% 87% 80%

Severely diseased 100% 94% 85%
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shapes is considered together, making it easier to correctly

recognise the disease.

Cashew tree: The results for this plant species were

consistent for all datasets. The few errors that occurred were

associated to the advanced stage of the diseases in some

samples. In such cases, leaf tissuemay begin to die, producing

some characteristic visual cues that are only slightly related to

the original symptoms of the disease that caused the necrosis.

Grapevines: Almost perfect accuracy was achieved for this

crop, improving the original results in 21%. The few errors that

occurred were mostly related to similarities between Downy

mildew and Fanleaf degeneration.

Kale: Due to the small number of samples, this plant spe-

cies was only considered in its expanded dataset version.

Having to deal with only two classes, the CNN had no problem

achieving 100% accuracy.

Passion Fruit: the difference in classification accuracies

observed for the original (50%) and the background removed

(90%) datasets was not entirely due to the busy backgrounds

present in the former. As in the case of other crops, the small

number of images used to validate the CNN caused individual

errors to have a major negative impact on the accuracy per-

centages, which artificially decreased the accuracy obtained

for the original dataset. In the case of the expanded database,

many Septoria spot samples were classified as Cercospora spot

and Bacterial blight, both due to symptom similarities and

representativeness imbalance. No other major confusions

were observed.

Soybean: Global results for soybean did not improve much

(5%) when the expanded dataset was used. This was mainly

due to the extreme imbalance between the number of samples

available for Cercospora leaf blight (only 10) and for the other

diseases (hundreds to thousands). This prevented the CNN to

adequately learn the symptoms associated to this disease,

leading to high error rates. All other errors were associated to

diseases producing similar symptoms, such as Bacterial blight

and Brown spot. The mild improvement using XDB was also

associated to the fact that almost all images for this crop were

captured under controlled conditions, making it easier for the

CNN to learn patterns from complete images.
Sugarcane: The accuracies achieved for sugarcane were

generally high. Most errors in the original dataset were due to

busy backgrounds, while in the other datasets there were only

a few sporadic errors. It is worth noting that almost all images

associated to sugarcane were captured under controlled con-

ditions, in which case CNNs tend to perform well with the

original complete images.

Wheat: Results were significantly improved using XDB,

with the few errors being mostly due to the heavily imbal-

anced number of samples between classes.

3.2. Detection experiments

For almost all crops, the inclusion of healthy samples had

little impact on the model's effectiveness, with accuracies in

most cases not deviating by more than 2% from the values

presented in Table 3. Only three crops experienced higher

drops in accuracy: cassava (100%e95%), kale (100%e89%) and

wheat (99%e96%). On the other hand, the accuracy for corn

rose from 75% to 78%. Most accuracy loss was caused by

confusion between healthy samples and samples containing

diseases with either powdery-like (Fig. 5) or mosaic-like

symptoms. In general, considering that one additional class

was added in all cases, the accuracy drop can be considered

mild.

The effectiveness of the proposed approach in detecting

diseased tissue is directly related to the prominence of the

symptoms in the image (Table 4). While detection was most

unsuccessful for mildly diseased images, success rates were

much higher in the other cases, and the few moderately

diseased samples that remained undetected had symptoms

occupying less than 25% of the images. Therefore, if at least

one quarter of the cropped image contains diseased tissue,

successful detection is very likely. The proportion of false

positives (healthy samples detected as diseased) was 11%.

Most of those errors were due to the presence of dust, debris,

water droplets and other extraneous elements. The classifi-

cation accuracy obtained for samples detected as diseased

was, in average, 10e12% lower than the accuracies obtained

using the manually cropped images. This was expected, since

the sliding window crops the images without any criterion

regarding the position of the lesion in the frame. On the other

hand, considering that each lesion will probably appear in

multiple images, there will be many opportunities to get the

classification right through a simple majority rule.
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3.3. Processing times

Each training round using the original and subdivided sets of

all crops took, in average, 13 min and 6.5 h, respectively.

Considering the 10-fold cross-validation and the complete set

of experiments, the total time spent training the CNNs was

close to 140 h, using a single Nvidia Titan XP GPU. It is worth

noting that training times can be greatly reduced by using

multiple GPUs.
4. Discussion

CNN training may require a substantial number of images to

yield reliable results, even with the application of transfer

learning and augmentation techniques (Barbedo, 2018b;

Kamilaris & Prenafeta-Boldú, 2018). This was the main moti-

vation behind the creation of the expanded dataset. As

explained in Section 2.1, the process of creating XDB was

entirely manual, which took a few hundred hours to be

completed. Fortunately, the approach of using localised im-

ages would not be labour intensive on the application side, as

the widespread touchscreen technology enables the creation

of applications allowing potential users to easily zoom in and

select the region of interest. It is also worth noting that

generating thousands of subdivided images requires fewer

hours than capturing the same amount of new images. If

automation of whole process is mandatory, using a sliding

window to swipe the entire image can be a viable option. Re-

sults presented in Section 3.2 revealed that if symptoms fill at

least 25% of the image, they will likely be detected, and since

they may appear in multiple windows, correct classifications

may be obtained by a majority rule. As a result, while the

manual approach tends to be a little more accurate because it

allows for symptoms to be carefully framed, the automatic

approach can be advantageous under certain conditions.

The superior results obtained using the expanded dataset

are directly associated to two main factors: 1) more images

represent more opportunities for the neural network to learn

the actual characteristics of the symptoms; 2) the elimination

of spurious elements (e.g. background) by the segmentation

process generated images with more homogeneous charac-

teristics, allowing the network to focus on the right elements.

The slight drop in accuracy observed when the number of

training samples for XDB was reduced indicates that the

second factor is more relevant. In fact, most additional errors

were more related to diminished data variety than to the

actual number of samples. The impact of reducing the

training dataset was larger for crops with a wider variety of

conditions.

One important consequence of having a larger and more

homogeneous dataset is that the influence of images that are

not good representations for the class will be weakened by the

large number of proper samples, increasing the reliability of

the training process. Thus, deleterious effects caused by the

presence of spurious elements such as specular reflections

and debris are greatly attenuated. This explains why using the

expanded dataset was much more impactful when most of

the images were captured under real conditions.
The ability of the expanded database to dilute deleterious

effects caused by poor data is also useful in another context.

Manual labelling of the images, being a subjective task, is

prone to error. When only a few images are available for each

class, wrong labels may have a substantial impact on the

training process of the algorithms. Since XDB offers a large

number of images for most diseases, the impact of wrong la-

bels is considerably reduced.

Despite the superior performance achieved by using the

expanded dataset, there are a few limitations that should be

considered. After subdivision, the number of samples associ-

ated to each disease varied greatly due to the characteristics of

the symptoms. Diseases that cause numerous small lesions or

spots ended up having much more extensive sample collec-

tions. There are many factors that influence the ideal number

of images that would be enough for the neural network to

properly learn the characteristics of a disease's symptoms:

intra-class symptom variability, diversity of conditions ex-

pected to be found in practice, similarity with other diseases,

among others (Barbedo, 2018a). The experiments did not

provide a clear answer on howmany imageswould be enough

for the neural network to properly learn the characteristics of

its symptoms. In all cases, a few hundred images seemed to be

enough to deliver reliable results, but this number has to be

taken cautiously. Training and test datasets were taken from

the same database, which contains only a very limited subset

of all possibilities expected to be found in practice e as dis-

cussed in the Introduction, building a truly comprehensive

database is currently unfeasible. Thus, it is possible to assert

that a few hundred images are enough to properly deal with

the conditions contemplated in the database used in the ex-

periments, but it is not possible to claim that the trained CNNs

will be robust under practical conditions. This may explain, at

least in part, why Mohanty et al. (2016) observed a steep

decrease in accuracy (from 99% to 31%) when their networks

were applied to images that were not part of the original

dataset.

Dataset representativeness has yet another layer that

needs to be considered. The crops considered in this work had

between 2 and 10 diseases associated. To the author's
knowledge, there is no work in the literature that takes into

consideration more than 10 diseases for a given plant species.

The problem is that, in practice, each cropmay have hundreds

of disorders associated (Barbedo, 2016), from which only a

very limited subset is usually considered. Even taking into

account that such a subset usually contains themost common

and economically important diseases, there will still be a vast

amount of cases for which the CNN has not been trained,

inevitably leading to misclassifications. This limitation is very

difficult to overcome, because there are fewer opportunities to

capture images from rarer disorders, and since they are lesser

known, correctly labelling also becomes a challenge.

Many of the misclassifications observed when using the

expanded dataset were due to severe imbalance regarding the

number of samples used in the training. When diseases had

relatively similar symptoms, and the number of samples used

in the training was significantly different (more than 5-fold),

the class with more samples was invariably favoured when

there was some uncertainty associated to the visual charac-

teristics displayed by the symptoms. To avoid this, it is
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recommended that more samples be generated for the under-

represented class or, if this is not possible, to reduce the

number of training samples associated to other diseases.

Because transfer learning was used in association with a

GoogLeNet CNN, all images used in this investigation were

resized to 224 � 224 � 3 pixels. While the loss of information

for the subdivided images was limited, as many of them

already had small dimensions, such a reduction had signifi-

cant impact on some of the original images. In some cases, it

was observed that image resizing caused the resolution to fall

below the level above which lesions could be properly

resolved. This was themain factor behind the poor accuracies

observed for wheat when complete images were considered.

Thus, while the results using the expanded dataset were

indeed superior, it is important to emphasise that part of the

misclassifications associated to the complete images can be

explained by the process of image resizing. Future research

should employmore flexible network architectures capable of

receiving images with different resolutions as input, thus

avoiding the loss of essential information.

Although the experiments have indicated that image crop-

pingcanbeaneffectiveway to increase imagedatasets forplant

images, it is important to emphasise that this procedure causes

the loss of the information provided by patterns and density of

spots on the leaves. This trade-off between data augmentation

and loss of contextual information should be taken into

consideration, because under certain conditions using the

original images may be advantageous. Further investigations

on this issue are expected to be carried out in the future.

This work was motivated by the lack of suitable datasets

for proper application ofmachine learning techniques to plant

pathology problems. The proposed approach, albeit imperfect,

succeeds inmitigating the problem. However, other options to

increase the amount of data available need to be further

explored. An alternative that has already been successfully

applied to a number of problems is the citizen science (Irwin,

2002). In this approach, non-professional volunteers collect

and/or process data as part of a scientific enquiry (Silvertown,

2009). In the specific case of plant pathology, farmers and field

workers could collect images in the field and, after uploaded to

a server, those imageswould be properly labelled by an expert.

This idea has been already carried out in practice, being the

concept behind the commercial application Plantix™ (PEAT,

Berlin). As mobile devices with imaging capabilities become

ubiquitous, the challenge would be how to engage the

farmers.

Another alternative to fill the data gap is by data sharing.

There are research groups working on the automatic disease

detection all over the world, using images collected in regions

with very diverse characteristics. If the respective datasets

weremade available and properly integrated, the resulting set

of images would be much more representative and research

results would be more meaningful and applicable to real

world conditions. As a step towards this goal, the dataset used

in this work is being made available (https://www.digipathos-

rep.cnptia.embrapa.br/). A further step would be to adhere to

the FAIR (Findable, Accessible, Interoperable, and Reusable)

principles (Wilkinson et al., 2016). The generation of research

data is usually expensive and time-consuming, and single use

is thus a waste of resources that most often come from public
funding. The FAIR principles imply that enabling and maxi-

mizing the fitness for reuse of research data involves much

more than simply open access to data. The set of images could

be published as a scientific citable product by itself, deposited

in a long-term archive, described with detailed metadata and

identifiable with a machine-readable digital identifier(s) that

would be independent of the URL web-location. There are a

few solutions that allow for those conditions to be met, such

as Dataverse (Crosas, 2011) and ISA (Sansone et al., 2012).
5. Conclusion

The classification of plant diseases using digital images is very

challenging. Deep learning techniques, and CNNs in partic-

ular, are seemingly capable of properly addressingmost of the

technical challenges associated to plant disease classification.

On the other hand, dataset limitations in terms of both

number and variety of samples still prevent the emergence of

truly comprehensive systems for plant disease classification.

Some efforts are underway towards building more represen-

tative databases, and data sharing is gradually becoming

common practice, but the data available is still limited. The

solution proposed in this article can not only increase the size

of image datasets significantly, but can also increase the di-

versity of the data, as the natural variability within each image

is indirectly taken into account by the subdivision into smaller

regions. This approach also has some shortcomings, but it

clearly leads to more reliable results in a context of limited

data availability.
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