Derivados de Celulose

Sumário da aula

Breve revisão sobre celulose e tipos de matérias primas para a produção de derivados de celulose Processos de preparação de derivados com aplicação comercial

- celulosato de sódio
- ésteres de celulose
- éteres de celulose

Referência Básica: Fengel e Wegener, 1989, cap. 17

Mercado mundial e nacional de polpa de dissolução

>> insumo básico para produção de derivados de celulose

Mercado mundial atingiu 7,6 milhões de ton/ano em 2017

- >> setor em expansão com instalações de novas unidades fabris
- >> sistemas modernos de polpação começaram a oferecer a possibilidade de indústrias "flexíveis" que podem produzir polpa kraft usual ou polpa de dissolução

REFERENCIAL: mercado mundial de polpa kraft usual é cerca de 185 milhões ton/ano

Pense: porque o mercado de polpa de dissolução é menor do que o de polpa kraft usual?

Polpa de "dissolução (ou celulose solúvel)"

Exemplo no mercado nacional:

Bracell

https://www.bracell.com/produtos/#celulose-soluvel-especial

Aplicações

Celofane

Rayon (viscose)

Derivados de Celulose

Para efeitos de reatividade frente a produção de derivados, a celulose pode ser considerada como um poli-álcool no estado sólido (insolúvel em água)

Pense: Indique uma via de reação que permita transformar a celulose em um derivado que apresente propriedades diferentes da celulose original

Ocorrência de celulose em diferentes tipos de materiais

Material de origem	Teor de celulose
	(%, g/100g base seca)
Algodão	95-99
Rami (Boehmeria nivea)	90-90
Bambu (Phyllostachys spp.)	40-50
Bagaço de cana (Saccharum officinarum)	35-45
Madeiras	40-53
Cascas de madeira	20-30
Bactéria (Acetobacter xylinum)	20-30

Grau de polimerização de amostras de celulose preparadas a partir de diferentes materiais

Material	Grau de polimerização
Algodão, antes de abrir	15.300
Algodão, após aberto	8.100
Rami (Boehmeria nivea)	10.800
Pinuns ssp.	7.900
Betula spp	9.400
Bactéria (Acetobacter xylinum)	4.000-6.000
Polpa kraft de <i>Pinus</i> spp.	975
Fibras de Rayon	305

Matéria prima para produção de derivados de celulose

Requer o emprego do polímero na forma mais pura possível

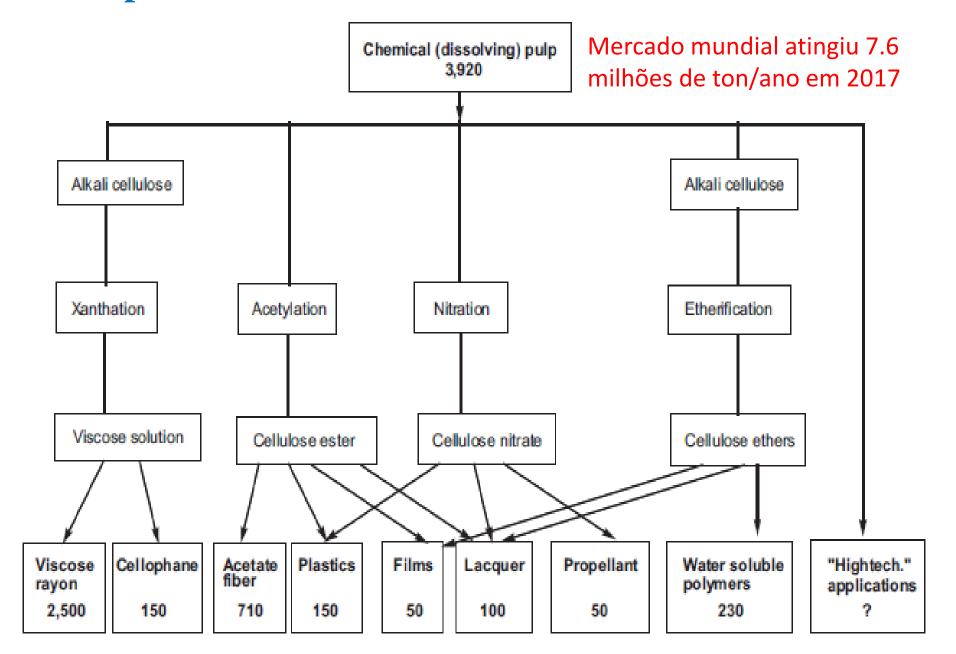
Linter de algodão ou

Polpa de dissolução, originada em processos de polpação como sulfito ácido <u>ou</u>

- Polpas kraft obtidas com pré-hidrólise ácida,
- pós-hidrólise branda de polpa kraft,
- ou extração alcalina de hemicelulose de polpas kraft

O teor de α -celulose deve ser superior a 92%, preferentemente da ordem de 96%

Características fundamentais da molécula

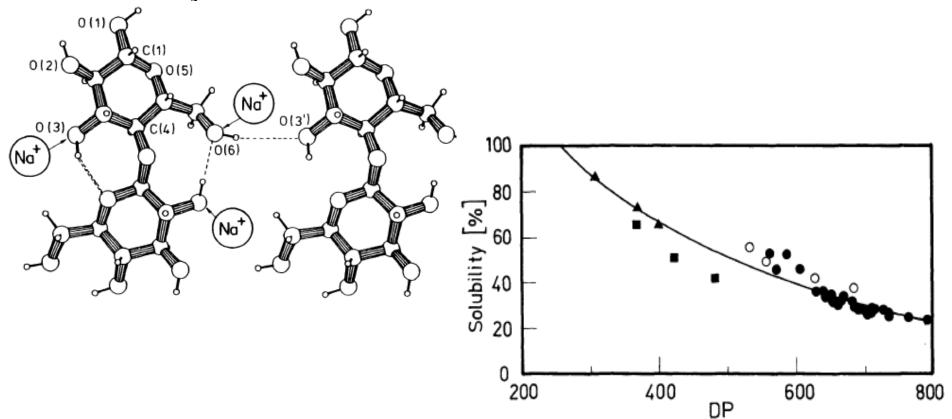

Polifuncionalidade

- 3 HIDROXILAS LIVRES em cada anidro-monômero
- >> **liberdade** para gerar uma enorme diversidade de produtos
- >> **porém**, haverá dificuldades de gerar produtos em que a substituição seja homogênea

!Susceptibilidade da ligação glicosídica ao meio ácido

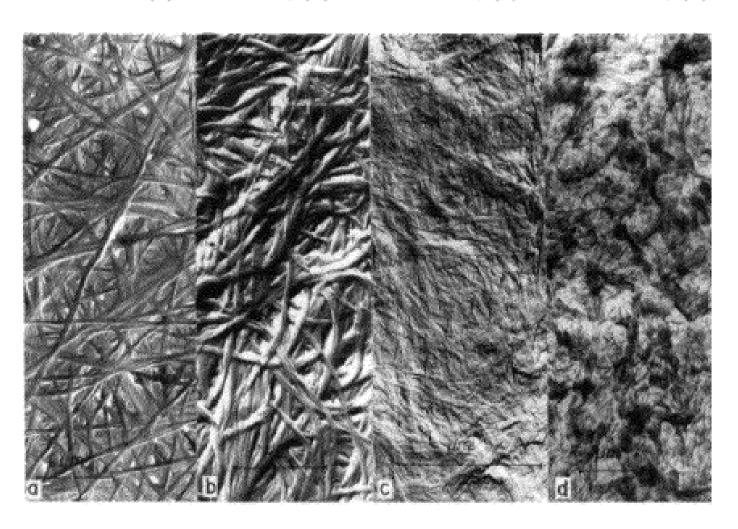
>> reações de hidrólise limitam a margem de procedimentos experimentais ou de processos possíveis de aplicação

Principais derivados de celulose


Celulosato de sódio - precursor de inúmeros derivados de celulose

Formados após a reação com soluções alcalinas (usualmente hidróxido de sódio) concentradas (acima de 20%)

A reação gera uma molécula cuja função álcool pode estar desprotonada >> pode atuar como excelente doador de elétrons


De fato:

- Fenômeno relevante no celulosato >> **inchamento** das microfibrilas >> ocorre em tempos curtos após a exposição da celulose à solução alcalina (alguns segundos até poucos minutos)
- >> processo controlado pela difusão da solução alcalina no interior da fibrila
- >> NaOH (18 a 22 %) gera **Na-cellulose II**. Não ocorre dissolução.
- >> Solubilização efetiva somente com celulose de baixo DP

Inchamento observado por microscopia eletrônica de varredura

Bacterial cellulose: (a) untreated; (b) 10 % NaOH; (c) 12 % NaOH; (d) 15 % NaOH

Celulose mercerizada

Processo industrial de produção de derivados de celulose mais simples.

- Transformação de **celulose nativa** (**celulose I**) em celulosato de sódio e a regeneração subsequente da celulose por neutralização, que gera **celulose II**.
- Aplicado em fios ou tecidos de algodão >> tratamento alcalino feito sob efeito de **tensão mecânica (mercerização)** >> melhorar a maciez e a susceptibilidade da superfície ao tingimento.

Mercerização à frio:

NaOH 30 % a 20 °C; velocidade de processamento da ordem de 30-40 m/min com um tempo de contato do tecido com o banho alcalino da ordem de alguns minutos.

O tecido é lavado para eliminar o alcali

Mercerização a quente:

NaOH 22-24 % a 60-70 °C

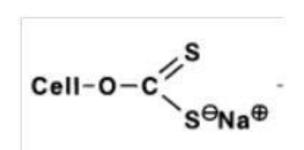
Maciez e susceptibilidade do tingimento >> decorrência do aumento dos poros no tecido

ÉSTERES DE CELULOSE

Table 4.4.1. Production capacity of commercial cellulose esters (average values of world production, t/a).

Ester	Production capacity (t/a)	
Cellulose xanthogenate	3200,000 (as intermediate)	
Cellulose acetate	850,000	números atuais correspondem a
Cellulose nitrate	200,000	aproximadamente o dobro

Pense: Contraponto com a produção de celulose


- >> no Brasil, a produção anual de polpa celulósica é da ordem de 15 milhões de toneladas
- >> os derivados de celulose, apesar de representarem produtos de maior valor agregado, são produzidos em escala menor do que o produto de consumo massivo que é a polpa celulósica destinada à produção de papel e embalagens

Ésteres "inorgânicos" de celulose

Ex: Xantato de celulose (viscose)

Formação do xantato

Cel -OH + OH⁻
$$\leftrightarrows$$
 Cel-O⁻+ H₂O
Cel-O⁻ + S=C=S \leftrightarrows [Cel-O-(CS)=S]⁻

Regeneração da celulose (na forma de celulose II)

$$[Cel-O-(CS)=S]^- + H^+ \leftrightarrows [Cel-O-(CS)=S]H \leftrightarrows Cel-OH + S=C=S$$

(ou ácido de Lewis)

Aplicações

Celofane

Rayon (viscose)

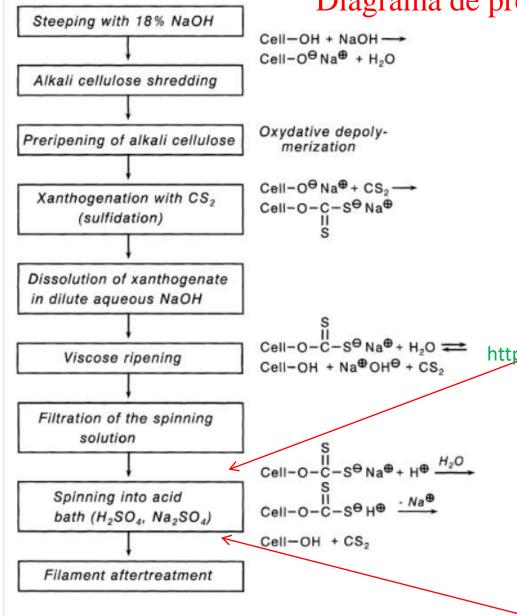


Diagrama de processo

https://www.youtube.com/watch?v=5QFOnZ3TLHQ

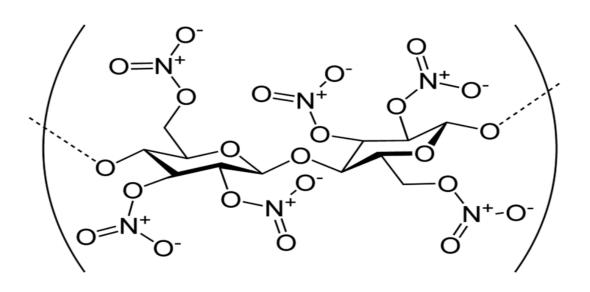


Figure 4.4.24. Scheme of the viscose process.

Ésteres "inorgânicos" de celulose

Ex: nitrato de celulose

$$Cel -OH + HONO_2 \iff Cel -OH_2^+ + ONO_2 \iff Cel -ONO_2 + H_2O$$

Aplicações do nitrato de celulose de acordo com o grau de substituição

Table 4.4.3. Typical nitrating acid compositions for various grades of cellulose nitrate.

Nitrating acid		Cellulose nitrate			
% HNO ₃	$\% H_2SO_4$	% H ₂ O	Type	% N by weight	DS_N
25	55.8	19.2	Celluloid grade	10.9	1.95
25	56.6	18.4	Lacquer grade, EtOH soluble	11.3	2.05
25	59.5	15.5	Lacquer grade, ester soluble	12.3	2.35
25	66.5	8.5	Gun cotton	13.4	2.70

 DS_N = Degree of substitution of nitrate groups.

Bolas de tênis de mesa fabricadas com materiais que contém cerca de 70% de nitrato de celulose Substituição das hidroxilas não é uniforme

$$O = N^{+}$$
 $O = N^{+}$
 $O =$

Table 4.4.4. Equilibrium constant K of the hydroxy groups of the AGU in nitration with $HNO_3/H_2SO_4/H_2O$.

System	K value of:			Reference
	OH-2	OH-3	OH-6	
HNO ₃ /H ₂ SO ₄ /H ₂ O	1.8	1.0	5.8	Wu (1980)
HNO ₃ /H ₂ O	0.26	0.12	12.6	Cicirov et al. (1990)

Velocidade de nitração em diferentes temperaturas

Pense: Qual a implicação da temperatura??

- 1. eficiência de nitração versus hidrólise da ligação glicosídica
- 2. trinitrocelulose é explosiva

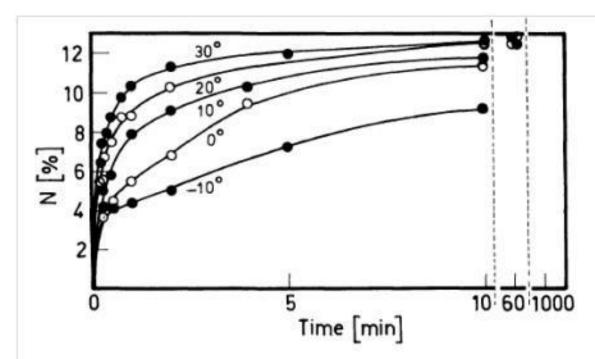


Figure 4.4.5. Nitrogen content versus reaction time on nitration of spruce sulfite pulp (predried at 20 °C) in dependence on reaction temperature.

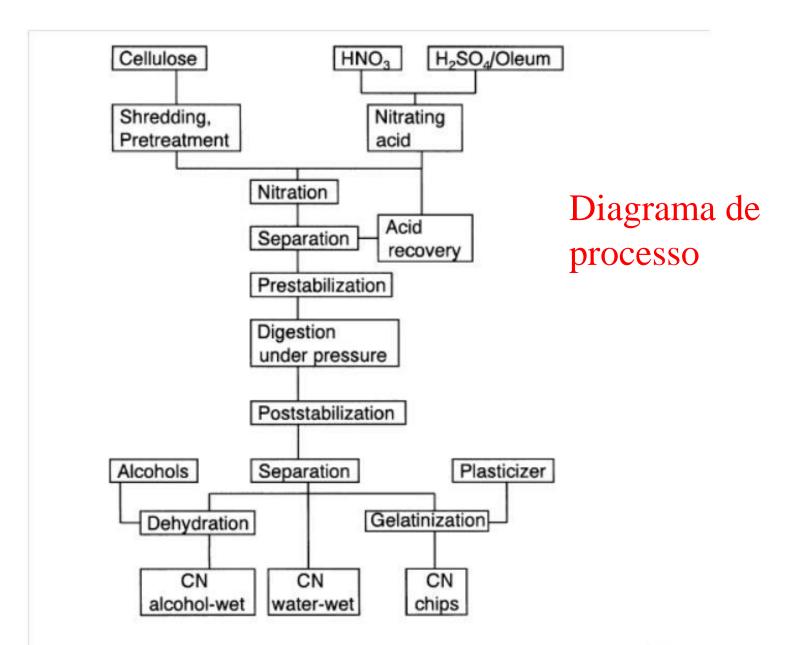
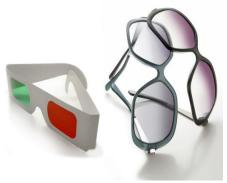


Figure 4.4.6. Diagram of cellulose nitrate (CN) production (Balser et al., 1986).

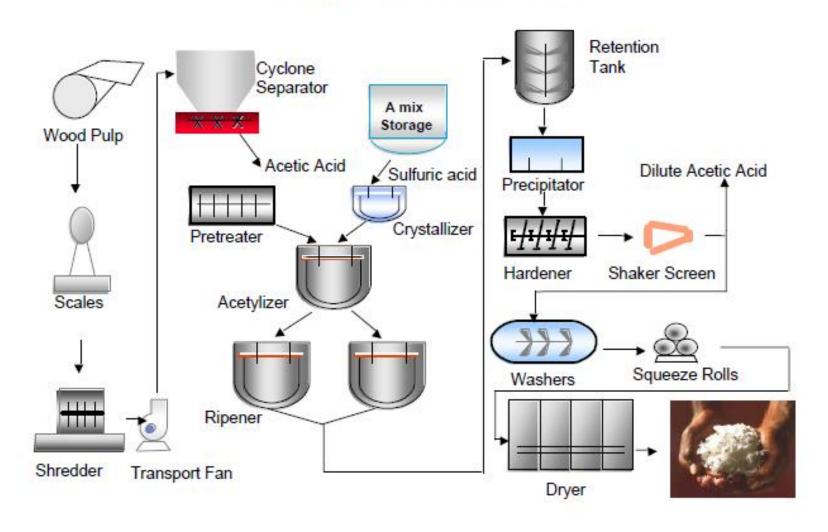
Ésteres de celulose

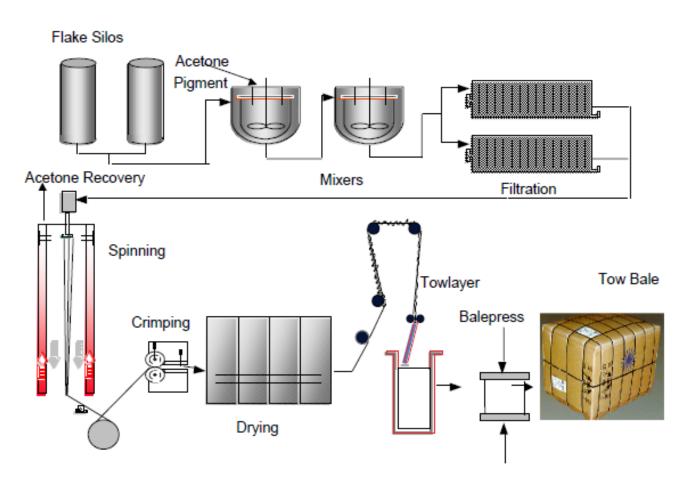
Ex.: acetato de celulose

Cel -OH + H⁺ + CH₃COOH \leftrightarrows Cel-OCOCH₃ + H⁺ também se emprega anidrido acético


Aplicações do acetato de celulose de acordo com o grau de substituição

Teor grupos acetila (%)	Grau de susbtituição	Solventes comuns	Aplicação
22,2-32,2	1,2-1,8	Metoxi-etanol	Plásticos, lacas
36,5-42,2	2,2-2,7	Acetona	Fibras e filmes fotográficos
43,0-44,8	2,8-3,0	Clorofórmio	Tecidos, membranas, fibras




Síntese do acetato de celulose

Flake Process

Processamento do acetato de celulose

Tow Process

- Éteres de celulose

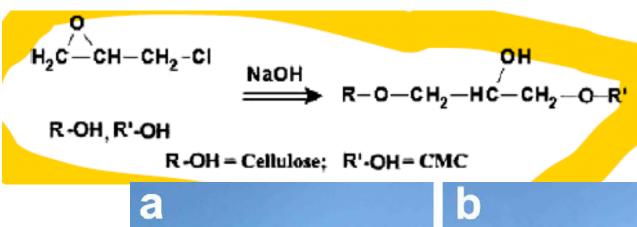
em meio ácido

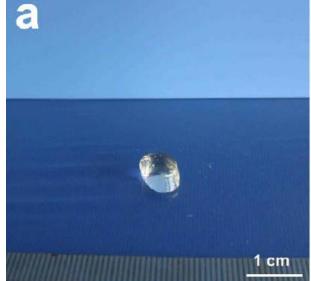
Cel -OH + H⁺
$$\leftrightarrows$$
 Cel-OH₂⁺
Cel-OH₂⁺ + R-OH \leftrightarrows Cel-OR + H₂O

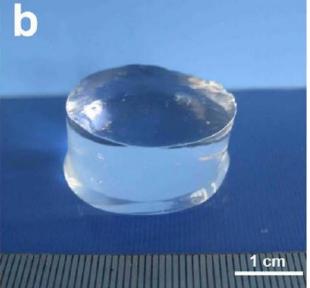
em meio alcalino

Cel -OH + OH - + R-Cl
$$\leftrightarrows$$
 Cel-OR + Cl - + H₂O

exemplo característico - carboximetilcelulose


 $Cel -OH + OH^- + Cl-CH_2COO^-Na^+$ \leftarrow $Cel-OCH2-COO^-Na^+$


CMC é solúvel em água a partir de um grau de substituição entre 0,5-1,2 - muito usada como espessante e volumoso na indústria de alimentos e fármacos


Novos produtos a partir de celulose

- alongamento da cadeia celulósica com epóxidos

Cel -OH + $(CH_2)_2O \leftrightarrows Cel$ -OC H_2CH_2OH exemplo para síntese de materiais super absorventes

