Técnicas fotônicas de diagnóstico – microscopia de fluorescência

Bright Field (BF) and **Electron Microscopy (EM)**

A Köhler, Zeitschrift für wissenschaftliche Mikroskopie, 1893

- Non invasive
- Live cells
 - (~1900)
- Lack of contrast
 - Lack of specificity
- Low resolution

M Knoll, E Ruska, Zeitschrift für Physik, 1932

heterochromatin nucleolus euchromatin

McGraw Hill, Inc.

• **Resolution (~1 nm)**

(~1940)

• Contrast

- Lack of specificity
 Eived complex
- Fixed samples

1 µm

Scanning Electron Microscopy (SEM)

D Attack and KCA Smith, Pulp Paper Canada, 1956

(~1980)

P Oudet et al., Cell, 1975

Finch et al., PNAS, 1976

Woodcock et al., J. Cell Biol., 1984

SEM images of chromatin in vitro

Olins et al., Nature Reviews Molecular Cell Biology, 2003

- Resolution (~1 nm)
 Contrast
 - Lack of specificity
 - Fixed samples

Fluorescence Microscopy

JFW Herschel, Philos Trans R Soc London, 1845

GG Stokes, Philos Trans R Soc London, 1852

OD Heimstadt, Z wiss Mikr, 1911

AH Coons et al., J Immunol, 1942

DC Prasher et al., Gen, 1992.

(~1950)

Microtubules

- Specificity
- Contrast
- Low spatial resolution (~250 nm)

https://www.philpoteducation.com/mod/book/view.php?id=779&chapterid=1031#/

Técnicas de microscopia - resolução

http://medcell.med.yale.edu/systems_cell_biology/blood_lab.php

Spatial Resolution of Biological Imaging Techniques

Figure 1

http://zeiss-campus.magnet.fsu.edu/print/superresolution/introduction-print.html

Microscopia de fluorescência

Microscópio de fluorescência

Problema: fluorescência é emitida em todo o caminho óptico na amostra

Microscópio confocal

Varredura da excitação pontoa-ponto para formar a imagem.

Microscópio confocal

Varredura da excitação pontoa-ponto para formar a imagem.

Fonte de luz

Luz de excitação deve ser focalizada em um "diffraction limited spot"

Poderia ser empregado lâmpada, mas é pouco eficiente

Laser: perfeitamente colimado e alta potência

Varredura

Modificação do ângulo de entrada do laser altera sua posição no plano da amostra

O ponto de emissão muda, então se deve assegurar a coincidência espacial do pinhole.

Varredura laser

z

single section

z series

xz scanning

Widefield fluorescence imaging

FIGURE 10.2 The point spread functions of conventional and confocal microscopes showing the improvement in lateral resolution that may be obtained in the confocal case.

Confocal Pinhole

Pinhole - diâmetro

Resolution is limited by the point-spread function

3D fluorescence microscopy

Acquire a "focal series" (stack) of images

Problem: Each image contains out-of-focus blur from other focal planes

The Point Spread Function (PSF)

The image of a point object

Х

Medium gain

Laser 488nm 80% PMT 800V

High gain

Laser 488nm 10% PMT 1000V

Apo 63x lens

Confocal vs. Widefield

Confocal

Widefield

Tissue culture cell with 60x / 1.4NA objective

Confocal vs. Widefield

Confocal

Widefield

20 μm rat intestine section recorded with 60x / 1.4NA objective

Marcação por imunofluorescência

- Uso de marcadores fluorescentes para localizar e identificar biomoléculas ou padrões da expressão protéica em células.

- Anticorpo primário: ligação com o antígeno (biomolécula alvo).

- Complexo antígeno-anticorpo é ligado ao anticorpo secundário (conjugado a um fluoróforo).

Uso em: 1. tecidos congelados, não fixados e em tecidos tratados com etanol.

2. células fixadas com paraformaldeído ou metanol/acetona.

Giannakakou et al., Nature Cell Biology,2000

PRIMARY ANTIBODY sheep anti-p53 polyclonal

SECONDARY ANTIBODY Texas Red conjugated anti-sheep

PRIMARY ANTIBODY mouse anti- α tubulin monoclonal

SECONDARY ANTIBODY FITC conjugated anti-mouse

Direct Staining of Cell Structures

Organelle Probes

Mitochondria	MitoTracker	mitochondrial membrane potential
Lysosomes	LysoTracker	hydrolytic activity of enzymes
ER and Golgi	Lectin conjugates	lipid composition

Other Probes

Stress fibers	Phalloidin-conjugaes	bind F-actin
Nuclei	DAPI	binds to minor groove of ds-DNA

microtubules

centrosomes

nucleus

Figure 6. (A) Molecular structure and localization of the chromophoric tripeptide in *A. victoria* wild-type GFP. Notice that the tripeptide is located centrally within the β -barrel. A vast number of genetically enhanced (denoted "E", *e.g.*, EGFP) and engineered FPs [27] have been created over the pasts decades. (B) Anatomy of a semiconductor quantum dot (QD), which derives its fluorescent properties from the bandgap between the inner core material and the capsule shell. QDs display size dependent fluorescent properties. (C) Excitation and emission spectra of *A. victoria* GFP (green lines) and examples of how the size influences the fluorescent properties of QDs.

Table 1. Overview of the fluorescent properties of popular organic dyes and fluorescent proteins. Reproduced with permission. © 2011 Carl Zeiss Micro-Imaging GmbH.

BFP	Ex 380 Em 440				
Alexa 405	Ex 401 Em 422	-			
DAPI	Ex 359 T Em 457				
eCFP	Ex 435 Em 476		_		
Cy-2	Ex 492 Em 507	- i			
eGFP	Ex 489 Em 509	Ť			
Fluorescein FITC	Ex 494 Em 517	Ť			
Alexa 488	Ex 499 Em 520	_			
BODIPY-FL	Ex 502 Em 510	_	1		
SYTOX Green	Ex 504 Em 524				
eYFP	Ex 514 Em 527				
mOrange	Ex 546 Em 563				
DsRed	Ex 545 Em 572			-	
Dil	Ex 551 Em 565				
Cy-3	Ex 554 Em 566				
Rhodamine TRITC	Ex 550 Em 573				
Alexa 547	Ex 557 Em 572				
dTomato	Ex 554 Em 581				
mStraw- berry	Ex 574 Em 596				
Alexa 568	Ex 577 Em 603			-	
mCherry	Ex 587 Em 610				
Texas Red	Ex 589 Em 610		` _		
mPlum	Ex 588 Em 649			-	
Alexa 633	Ex 631 Em 647				
Cy-5	Ex 650 Em 665				
DRAQ5	Ex 647 Em 683				
	4	00 50	00 6	00 70	00 nm

HC Ishikawa-Ankerhold et al. Molecules 2012, 17.

Channel	Band	Excitation laser (nm)				
Channel	вапо	405	488	561	642	785
1	435-505	DAPI, BV421, Hoechst, PacBlue, CascadeBlue, eFluor450, DyLight405, CFP, LIVE/DEAD Violet				
2	505-560	BV510, PacOrange, Cascade Yellow, AF430, eFluor525, QD525	FITC, AF488, GFP, YFP, DyLight488, PKH67, Syto13, LysoTrackerGreen, MitoTrackerGreen			
3	560-595	QD565, QD585, eFluor565	PE, PKH26, DSRed, mOrange, Sytox Orange, Cy3	PE, AF546, Cy3, DyLight550, PKH25, DSRed		
4	595-642	QD625, eFluor625, BV605	PE-TexRed, PI, RFP, QD625, eFluor625	AF568, Cy3, PE- TexRed, TexRed, AF610, RFP, mCherry, PI		
5	642-745	QD705, eFluor700, BV711	PE-Cy5, PE-AF647, 7AAD, PerCP, PerCP- Cy5.5, DRAQ5, QD705	PE-Cy5, PE-AF647, DRAQ5, 7AAD	APC, AF647, AF660, AF680, APC, Cy5, DyLight649, PE- AF647, PE-Cy5, DRAQ5, PerCP, , PerCP-Cy5,5	
6	745-780	QD800, BV786	PE-Cy7, PE-AF750, QD800	PE-Cy7, PE-AF750	APC-Cy7, APC-AF750, APC-H7, Cy7, AF750, PE-Cy7, PE-AF750	SSC

Detecção espectral

The Spectral Imaging Lambda Stack

Figure 4 - 32-Channel Spectral Image Lambda Stack Acquisition

Co-localização: distribuição celular do fotossensibilizador

Cinética em microscopia confocal

Incubação com Photodithazine 50 µg/mL (Escala: 1 mm)

Alta incorporação do Photodithazine nos tumores de melanoma, mesmo para menores tempos de incubação.

Cinética em microscopia confocal

Incubação com Photogem 50 µg/mL (Escala: 1 mm)

Incorporação significativa do Photogem nos tumores de melanoma em maiores tempos de incubação

z-axis

Distribuição do Photogem

Incubação com Photogem 50 μg/mL (Escala: 50 μm). Aumento de 40 vezes.

Distribuição heterogênea mesmo em maiores tempos de incubação.

TFD NOS TUMORES

Distribuição do Photodithazine

Incubação com Photodithazine 50 μg/mL (Escala: 50 μm). Aumento de 40 vezes.

Distribuição homogênea do Photodithazin

Photodithazine melhor para TFD em melanoma. Mais hidrofóbico que Photogem – melhor distribuição. Confocal análise qualitativa. Quantificação intracelular.

Quantificação de fotossensibilizador

	intra	icelular	
Petersensibilizeden	Tempo de incubação	Concentração de FS	
Fotossensibilizador	(horas)	intracelular (μg/mL)	
	4	(3,00 ± 0,05)	Cultura 2D
Photodithazine®	8	(3,24 ± 0,05)	Cultura 2D
Filotouttidzine	16	(5,70 ± 0,11)	
	24	(3,45 ± 0,06)	
	4	(1,52 ± 0,05)	
Photog	8	(2 71 + 0 50)	
Temp de 10	melaı no de incubação pa 6 horas <i>– uptak</i> e c	noma (3D). ara os experiment le aproximadame	tos de TFD nte 5,34%.
Temp de 10	melar no de incubação pa 6 horas <i>– uptake</i> c	noma (3D). ara os experiment le aproximadament Tempo de inc	tos de TFD nte 5,34%. cubação Concentração de
Temp de 10	melar no de incubação pa 6 horas <i>– uptake</i> o Fotossensibiliza	noma (3D). ara os experiment le aproximadame Tempo de inc ador (horas)	tos de TFD nte 5,34%. cubação Concentração de intracelular (µg/mL)
Temp de 10	melar no de incubação pa 6 horas <i>— uptake</i> o Fotossensibiliza	noma (3D). ara os experiment le aproximadame Tempo de inc ador (horas)	tos de TFD nte 5,34%. cubação Concentração de intracelular (µg/mL) (0,82 ± 0,02)
Temp de 10	melar no de incubação pa 6 horas <i>— uptake</i> o Fotossensibiliza	noma (3D). ara os experiment le aproximadame ador (horas) 4 8	tos de TFD nte 5,34%. Cubação Concentração de intracelular (μg/mL) (0,82 ± 0,02) (1,60 ± 0,03)
Temp de 10	melar po de incubação pa 6 horas <i>— uptake</i> c Fotossensibiliza Photodithazir	noma (3D). ara os experiment le aproximadament ador (horas) 4 ne* 16	tos de TFD nte 5,34%. cubação Concentração de intracelular (μg/mL) (0,82 ± 0,02) (1,60 ± 0,03) (2,67 ± 0,04)
Temp de 10	melar po de incubação pa 6 horas <i>— uptake</i> c Fotossensibiliza Photodithazir	noma (3D). ara os experiment le aproximadame ador tempo de inc (horas) 4 8 16 24	tos de TFD nte 5,34%. cubação Concentração de intracelular (μg/mL) (0,82 ± 0,02) (1,60 ± 0,03) (2,67 ± 0,04) (1,90 ± 0,03)
Cultura 3D	melar po de incubação pa 6 horas <i>— uptake</i> co Fotossensibiliza Photodithazir	noma (3D). ara os experiment le aproximadame ador ne [*] 4 8 16 24 4	tos de TFD nte 5,34%. cubação Concentração de intracelular (μ g/mL) (0,82 ± 0,02) (1,60 ± 0,03) (2,67 ± 0,04) (1,90 ± 0,03) (0,25 ± 0,03)
Cultura 3D	melar po de incubação pa 6 horas <i>— uptake</i> o Fotossensibiliza Photodithazir	noma (3D). ara os experiment le aproximadame ador ne° A ne° A ne°	tos de TFD nte 5,34%. cubação Concentração de intracelular (μ g/mL) (0,82 ± 0,02) (1,60 ± 0,03) (2,67 ± 0,04) (1,90 ± 0,03) (0,25 ± 0,03) (0,80 ± 0,10)
Cultura 3D	melar po de incubação pa 6 horas – <i>uptake</i> d Fotossensibiliza Photodithazir Photogem [®]	noma (3D). ara os experiment le aproximadame ador ne° (horas) 4 8 16 24 4 8 16	tos de TFD nte 5,34%. Cubação Concentração de intracelular (μ g/mL) (0,82 ± 0,02) (1,60 ± 0,03) (2,67 ± 0,04) (1,90 ± 0,03) (0,25 ± 0,03) (0,80 ± 0,10) (1,08 ± 0,12)

TFD NOS TUMORES

MICROSCOPIA MULTIFÓTONS

Förster Resonance Energy Transfer

Donor-Acceptor Spectral Overlap Region

Absorption CFP DsRFP Emission Spectra 40 20 20 350 400 450 500 550 600 650 700 Figure 4

Mitochrondrial Protein-Protein Association with FRET

FRET Detection of in vivo Protein-Protein Interactions

https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/fluorescence/fret

Figure 23. In vivo multiphoton FLIM-FRET measurements. Living HeLa cells coexpressing either unfused, free EGFP and unfused, free mCherry (A), or GFP-coupled directly to mCherry through a 17-amino-acid linker (B), or GFP-coupled directly to mCherry through a 7-amino-acid linker (C) were imaged by using a multiphoton scanning microscope. For each panel, the spatial distribution of the mean fluorescence lifetime (τ_m) and of the fluorescence lifetime of the donor molecules interacting with the acceptor (τ_{DA}) is shown throughout the cells. The FRET efficiencies were calculated for each pixel from Eq. 24 × 100%. Color scale shown covers the range of E_{FRET} values from 0% to 60%. Bars, 10 µm. Adapted from [217] with permission. © 2007 John Wiley & Sons.

HC Ishikawa-Ankerhold et al. Molecules 2012, 17.

Figure 26. Principle of stimulated emission depletion (STED) microscopy. (A) STED is based on shrinking the excitation focal spot by depleting the outer excited state fluorochromes through stimulated emission with a doughnut-shaped STED beam of redshifted and Δt time-shifted light (B). In essence the excitation PSF is combined with the PSF of the STED depletion laser (B) to produce a resultant PSF that is smaller than the diffraction limit of light. (C) Ultra-high resolution nanopattern distribution of the antibodytagged SNARE protein SNAP-25 on the plasma membrane of a mammalian cell imaged with confocal and STED microscopy. The encircled areas show linearly deconvolved data. STED microscopy provides a substantial leap forward in the imaging of protein selfassembly; here it reveals for the first time that SNAP-25 is ordered in clusters of <60 nm average size. Part C adapted from [288]. © 2006 IOP Publishing Ltd.

STED microscopy

Localization-based microscopy

Super-resolution microscopy

Fluorescence Microscopy

JFW Herschel, Philos Trans R Soc London, 1845

GG Stokes, Philos Trans R Soc London, 1852

OD Heimstadt, Z wiss Mikr, 1911

AH Coons et al., J Immunol, 1942

DC Prasher et al., Gen, 1992.

(~1950)

Microtubules

- Specificity
- Contrast
- Low spatial resolution (~250 nm)

Diffraction limit

Point Spread Function (PSF)

 $w_{x,y} \approx \frac{\lambda}{2NA} > 200nm$

 $w_z \approx \frac{2\lambda\eta}{(NA)^2} > 500nm$

GB Airy, Transactions of the Cambridge Philosophical Society, 1835

Localization-based microscopy

RM Dickson, WE Moerner et al., Nature, 1997

E Betzig et al., Science, 2006

MJ Rust, M Bates, X Zhuang, Nature methods, 2006

(~2005)

*Super-resolution microscopy

Rust et al. Nature Methods, 2006

Localization precision of ~10-50 nm *depends on the number of collected photons

STORM

Rust et al., Nature Methods, 2006

High laser power density (~300 W/cm²) ٠

- Small ratio of: k_{on} / k_{off} High quantum efficiency Bright

- Low photobleaching

*The quality of the image depends on the photophysical properties of the dye

STORM: Stochastic Optical Reconstruction Microscopy

Fluorescence Microscopy: STORM & Conventional

Conventional microscopy ~250 nm resolution

Localization-based microscopy ~20 nm resolution

STORM: Stochastic Optical Reconstruction Microscopy

Bates et al., Science, 2007

DNA-PAINT

- Does not rely on fluorophore photo-physics
- No irreversible photo-bleaching (low laser)
- Image buffer not required

- Requires long exposure times (100 300 ms)
- Time consuming

DNA-PAINT: DNA-based Point Accumulation for Imaging in Nanoscale Topography

DNA-PAINT

Schnitzbauer et al, Nature Protocols, 2017

DNA-PAINT: DNA-based Point Accumulation for Imaging in Nanoscale Topography

Fluorescence correlation spectroscopy

Manzo and Garcia-Parajo, Rep Prog Phys 78(12), 2015

Which imaging technique should I use?

	1-5 μm	TIRF (for samples at the coverslip)		
1-2	1-20 um	Wide-field (+deconvolution)	Fa	
Sample	p	Spinning Disk Confocal	st	ivity
Thickne	10-100 μm	Line-scanning confocal		Sensit
55	>20 µm	Point scanning Confocal	Slo	
	>50-100 μm	2-photon confocal	W	

Sistema de microscopia a fibra

T. Muldoon, M.C. Pierce, R Richards-Kortum

Gengiva

Mucosa bucal

Pólipo adenomatoso – colo retal

Mucosa normal

Pólipo adenomatoso

Pólipo adenomatoso

Microscope coupled to smartphone

Dual configuration microscope

Figure 1: View of the complete system high resolution portable microendoscope assembly.

Fiber bundle IGN-08/30 (Sumitomo Corp, Japan)

Royal Blue Rebel Luxeon LED (Philips, Netherlands)

Rechargeable 3.7V battery (TrustFire 18350, EUA)

Dual configuration microscope

PA Gómez-García et al., Proc. of SPIE Vol. 9531 953149-3 (2015)

Main characteristics

Figure 2: Image of a USAF 1951 chart taken with the system, where the smallest distinguished lines are on the 6^{th} element of the 7^{th} group. Each of those lines has a width of 2.19 μ m.

Table 1: Main characteristics of the system.

Property	Value
Resolution	~2 µm
Magnifying power	150X
Characteristic size	120 mm
Weight	0.25 kg
Main material	Aluminum
Penetration (mucosa tissue)	~50 µm
Field of view	Ø 1.5 mm
Resolution (with fiber bundle)	~4 µm
Field of view (with fiber bundle)	Ø 850 µm

Mucosa bucal

Cell smear

Microscópio Multifótons

Aplicações

Primeiros testes amostras ex vivo:

Pele de rato Wistar

Tecido epitelial (queratinócitos); z \approx 15 $\mu m;$ 100 x 100 μm^2

Fibras de colágeno; z \approx 35 µm; 100 x 100 µm²

Aplicações

Primeiros testes cultura de células de tumor de Erlich em membrana corioalantóica:

 $100 \text{ x} 100 \ \mu\text{m}^2$