MODELOS DE ANÁLISE DE VARIÂNCIA (ANOVA)

MODELOS DE POSTO INCOMPLETO

CAPÍTULO 12. MODELOS DE ANÁLISE DE VARIÂNCIA

PROBLEMA: O pesquisador aplica diversos tratamentos a unidades experimentais e deseja comparar as médias dos tratamentos para alguma resposta *y*.

• Utilizamos modelos lineares para facilitar as comparações entre as médias dos tratamentos.

OBJETIVO: Estudar procedimentos para <u>estimação</u> de parâmetros e <u>testes de hipóteses</u> em modelos de posto incompleto, também chamados modelos de ANOVA.

Trataremos de modelos <u>balanceados</u>, cujos tratamentos têm números iguais de observações.

Os modelos desbalanceados serão tratados no Capítulo 15.

12.1 MODELOS DE POSTO INCOMPLETO

12.1.1 MODELO COM UM FATOR (one-way model)

Exemplo: Um pesquisador deseja comparar dois aditivos usados para melhorar o desempenho da gasolina. Suponhamos que:

Sem aditivos \Rightarrow carro percorre μ quilômetros por litro

Com aditivo 1 \Rightarrow acréscimo de τ_1 quilômetros por litro.

Com aditivo 2 \Rightarrow acréscimo de τ_2 quilômetros por litro.

O modelo linear para estudar o problema pode ser expresso como:

$$y_1 = \mu + \tau_1 + \varepsilon_1$$
$$y_2 = \mu + \tau_2 + \varepsilon_2$$

onde y_1 é a quilometragem por litro para um tanque de gasolina contendo o aditivo 1 e ε_1 é um erro aleatório. As variáveis y_2 e ε_2 são definidas similarmente.

A partir da observação dos valores y_1 e y_2 o pesquisador deseja:

- Estimar os valores de μ , τ_1 e τ_2
- Testar a hipótese H_0 : $\tau_1 = \tau_2$

Como resolver este problema?

Uma sugestão: Encher os tanques de seis carros idênticos com gasolina, colocar o aditivo 1 nos tanques de três carros escolhidos ao acaso e o aditivo 2 nos tanques de outros três carros e medir o desempenho (km/litro) de cada um dos carros.

O modelo final para as 6 observações pode ser escrito como:

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}, i = 1, 2 e j = 1, 2, 3$$
 (12.2)

onde

 y_{ij} é a quilometragem/litro observada no j-ésimo carro que recebeu o i-ésimo aditivo em seu tanque.

 ε_{ij} é um erro aleatório associado a y_{ij} .

Matricialmente as equações em (12.2) ficam:

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix} = \begin{cases} \mu + \tau_1 + \varepsilon_{11} \\ \mu + \tau_1 + \varepsilon_{12} \\ \mu + \tau_1 + \varepsilon_{13} \\ \mu + \tau_2 + \varepsilon_{21} \\ \mu + \tau_2 + \varepsilon_{22} \\ \mu + \tau_2 + \varepsilon_{23} \end{cases} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{23} \end{bmatrix}$$
(12.3)

Na sua forma matricial o modelo fica:

$$y = X\beta + \varepsilon$$

Em que

$$\mathbf{y}$$
 é 6×1, \mathbf{X} é 6×3, $\mathbf{\beta}$ é 3×1 e $\mathbf{\varepsilon}$ é 6×1.

Problemas:

- **X** é 6×3 e $posto(\mathbf{X}) = 2$, ou seja, **X** é de posto incompleto \Rightarrow Teoremas dos Capítulos 7 e 8 não podem ser usados diretamente para estimar β . O modelo (12.2) é dito <u>superparametrizado</u>.
- Os parâmetros μ , τ_1 e τ_2 não são únicos!

Vamos entender o motivo: Admitindo, por exemplo, que $\mu = 15$, $\tau_1 = 1$ e $\tau_2 = 3$, o modelo (12.2) fica:

$$\begin{cases} y_{1j} = 16 + \varepsilon_{1j}, \ j = 1, 2, 3 \\ y_{2j} = 18 + \varepsilon_{2j}, \ j = 1, 2, 3 \end{cases}$$
 (12.4)

Pergunta: Partindo das equações em (12.4) nós conseguimos deduzir que $\mu = 15$, $\tau_1 = 1$ e $\tau_2 = 3$?

Problema: O sistema $\begin{cases} \mu + \tau_1 = 16 \\ \mu + \tau_2 = 18 \end{cases}$ tem solução única, como na regressão linear múltipla?

Resposta: Não! O sistema $\begin{cases} \mu + \tau_1 = 16 \\ \mu + \tau_2 = 18 \end{cases}$ tem infinitas soluções!

Por exemplo: (1)
$$\mu = 10$$
, $\tau_1 = 6$ e $\tau_2 = 8$
(2) $\mu = 25$, $\tau_1 = -9$ e $\tau_2 = -7$
(3) $\mu = 17$, $\tau_1 = -1$ e $\tau_2 = 1$

Obtemos três soluções diferentes para o sistema \Rightarrow os parâmetros μ , τ_1 e τ_2 não são únicos no modelo superparametrizado e não podem ser estimados como nos capítulos 7 e 8.

Algumas formas de <u>remediar a falta de unicidade</u> dos parâmetros no modelo superparametrizado:

1) Redefinir o modelo (12.2) usando dois novos parâmetros que sejam únicos (realizar uma reparametrização do modelo)

Sugestão: Utilizar o modelo $y_{ij} = \mu_i + \varepsilon_{ij}$, em que $\mu_i = \mu + \tau_i$ é a média de consumo dos carros <u>depois</u> de receberem o aditivo i.

Matricialmente tem-se:

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{23} \end{bmatrix} = \mathbf{W}\boldsymbol{\mu} + \boldsymbol{\varepsilon}$$

Como $posto(\mathbf{W}) = 2 \Rightarrow \widehat{\boldsymbol{\mu}} = (\mathbf{W}'\mathbf{W})^{-1}\mathbf{W}'\boldsymbol{y}$ é a solução única!

Esta proposta é chamada de <u>reparametrização</u> e o modelo final é chamado <u>modelo de médias de caselas</u>.

Note que a hipótese de interesse H_0 : $\tau_1 = \tau_2$ a ser testada no modelo (12.2), também pode ser testada neste novo modelo pois sabendo que $\mu_1 = \mu + \tau_1$ e $\mu_2 = \mu + \tau_2$, fazendo $\mu_1 = \mu_2$ reproduzimos a hipótese: H_0 : $\tau_1 = \tau_2$.

Isso quer dizer que testar H_0 : $\tau_1 = \tau_2$ no modelo (12.2) é <u>equivalente</u> a testar H_0 : $\mu_1 = \mu_2$ no modelo de médias de caselas.

2) Usar o modelo (12.2) e incluir algumas <u>restrições</u> nos parâmetros de modo a torná-los únicos.

Sugestão: Impor a condição a condição marginal $\tau_1^* + \tau_2^* = 0$ aos parâmetros do modelo (restrito) $y_{ij} = \mu^* + \tau_i^* + \varepsilon_{ij}$.

Neste novo contexto: μ^* é a <u>nova</u> quilometragem média <u>depois</u> dos aditivos químicos serem aplicados e τ_1^* e τ_2^* são <u>desvios</u> dessa média (ou efeitos dos aditivos).

Com esta restrição o sistema
$$\begin{cases} \mu^* + \ \tau_1^* = 16 \\ \mu^* + \ \tau_2^* = 18 \end{cases}$$
 passa a ter solução
$$\tau_1^* + \tau_2^* = 0$$

única:

$$\mu^* = 17$$
, $au_1^* = -1$ e $au_2^* = 1$

A interpretação dos parâmetros sujeitos à condição $\sum \tau_i^* = 0$ é alterada para:

 \Rightarrow <u>Depois do uso de aditivos</u>, o desempenho médio dos carros é 17 km/l; com o aditivo 1 o desempenho médio é 1 km/l abaixo desta média e com o aditivo 2, é 1 km/l acima desta média.

O modelo $y_{ij} = \mu^* + \tau_i^* + \varepsilon_{ij}$, sujeito à restrição $\tau_1^* + \tau_2^* = 0$, pode ser expresso no formato de um modelo de posto completo, substituindo $\tau_2^* = -\tau_1^*$ para obter:

$$y_{1j} = \mu^* + \tau_1^* + \varepsilon_{1j}$$

 $y_{2j} = \mu^* - \tau_1^* + \varepsilon_{2j}$

Matricialmente temos:

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \mu^* \\ \tau_1^* \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{23} \end{bmatrix} = \mathbf{X}^* \boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$$

Incorporando a restrição ao modelo a matriz \mathbf{X}^* passa a ter posto completo e os parâmetros $\boldsymbol{\mu}^*$ e $\boldsymbol{\tau}_1^*$ podem ser estimados de forma única (capítulos 7 e 8). Depois estimamos $\boldsymbol{\tau}_2^* = -\boldsymbol{\tau}_1^*$.

3) Trabalhar somente com combinações lineares estimáveis (únicas) dos parâmetros.

Sugestão: Como posto(X) = 2, vamos escolher somente duas combinações lineares dos parâmetros que sejam únicas, dentre as três combinações que já conhecemos:

$$au_1 - au_2$$
, $\mu + au_1$ e $\mu + au_2$

Note que os valores dessas combinações de parâmetros não se alteram quando usamos qualquer uma das soluções obtidas para o modelo (12.4).

Nota: Aumentar o número de repetições de cada tratamento não resolve o problema de estimação dos parâmetros do modelo (12.2).

12.1.2 MODELO COM DOIS FATORES (two-way model)

Exemplo: Pesquisador deseja avaliar o efeito de duas diferentes vitaminas e de dois diferentes métodos de administrar essas vitaminas sobre o ganho de peso de frangos \Rightarrow temos um modelo com dois fatores ($two-way\ model$).

Seja α_i o efeito da i-ésima vitamina e β_j o efeito do j-ésimo método de administração. Se o pesquisador assume que esses efeitos são aditivos e com uma única repetição (sem perda de generalidade) para cada combinação vitamina-método, o modelo pode ser escrito:

$$y_{11} = \mu + \alpha_1 + \beta_1 + \varepsilon_{11}$$

$$y_{12} = \mu + \alpha_1 + \beta_2 + \varepsilon_{12}$$

$$y_{21} = \mu + \alpha_2 + \beta_1 + \varepsilon_{21}$$

$$y_{22} = \mu + \alpha_2 + \beta_2 + \varepsilon_{22}$$

ou

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$
, para $i=1, 2 \text{ e } j = 1, 2$ (12.5)

onde y_{ij} é o ganho de peso do (ij)-ésimo frango e ε_{ij} é o erro aleatório associado a y_{ij}

Matricialmente temos:

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{21} \\ \varepsilon_{22} \end{bmatrix}$$
(12.6)

Problema: A matriz X é 4×5 , temos 5 parâmetros para estimar e $posto(X) = 3 \Rightarrow$ os Teoremas dos Capítulos 7 e 8 também não são aplicáveis.

Já sabemos que:

- Aumentar o número de repetições não altera o *posto(X)*.
- Se posto(X) = 3 ⇒ somente 3 parâmetros são únicos (ou estimáveis).
- É do interesse do pesquisador, se possível, testar as hipóteses:

$$H_0$$
: $\alpha_1 = \alpha_2 \in H_0$: $\beta_1 = \beta_2$

SOLUÇÕES POSSÍVEIS:

1) Reparametrização: Consideremos os três novos parâmetros γ_1 , γ_2 e γ_3 , definidos como:

$$\gamma_1 = \mu + \alpha_1 + \beta_1$$
, $\gamma_2 = \alpha_2 - \alpha_1$ e $\gamma_3 = \beta_2 - \beta_1$

Note que γ_2 e γ_3 são parâmetros de interesse do pesquisador.

O novo modelo pode ser escrito em termos dos γ 's como:

$$\begin{aligned} y_{11} &= (\mu + \alpha_1 + \beta_1) + \varepsilon_{11} = \gamma_1 + \varepsilon_{11} \\ y_{12} &= (\mu + \alpha_1 + \beta_1) + (\beta_2 - \beta_1) + \varepsilon_{12} = \gamma_1 + \gamma_3 + \varepsilon_{12} \\ y_{21} &= (\mu + \alpha_1 + \beta_1) + (\alpha_2 - \alpha_1) + \varepsilon_{21} = \gamma_1 + \gamma_2 + \varepsilon_{21} \\ y_{22} &= (\mu + \alpha_1 + \beta_1) + (\alpha_2 - \alpha_1) + (\beta_2 - \beta_1) + \varepsilon_{22} \\ &= \gamma_1 + \gamma_2 + \gamma_3 + \varepsilon_{22} \end{aligned}$$

Matricialmente, o novo modelo fica:

$$\begin{vmatrix}
y_{11} \\
y_{12} \\
y_{21} \\
y_{22}
\end{vmatrix} = \begin{cases}
\gamma_1 + \varepsilon_{11} \\
\gamma_1 + \gamma_3 + \varepsilon_{12} \\
\gamma_1 + \gamma_2 + \varepsilon_{21} \\
\gamma_1 + \gamma_2 + \gamma_3 + \varepsilon_{22}
\end{vmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
\gamma_1 \\
\gamma_2 \\
\gamma_3
\end{bmatrix} + \begin{bmatrix}
\varepsilon_{11} \\
\varepsilon_{12} \\
\varepsilon_{21} \\
\varepsilon_{22}
\end{bmatrix}$$

Como $posto(\mathbf{Z}) = 3 \Rightarrow \widehat{\gamma} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'y$ fornece as estimativas dos novos parâmetros $\gamma_1 = \mu + \alpha_1 + \beta_1$, $\gamma_2 = \alpha_2 - \alpha_1$ e $\gamma_3 = \beta_2 - \beta_1$.

Testar
$$\pmb{H}_0$$
: $\pmb{\alpha}_1 = \pmb{\alpha}_2$ e \pmb{H}_0 : $\pmb{\beta}_1 = \pmb{\beta}_2$ no modelo (12.6) é equivalente a

testar H_0 : $\gamma_2 = \mathbf{0}$ e H_0 : $\gamma_3 = \mathbf{0}$, respectivamente, no modelo (12.7) reparametrizado.

Na seção 12.2.2 mostraremos que funções lineares como

$$(\mu + \alpha_1 + \beta_1)$$
, $(\alpha_2 - \alpha_1)$ e $(\beta_2 - \beta_1)$

são <u>únicas</u> e <u>estimáveis</u>, mesmo quando os parâmetros μ , α_1 , α_2 , β_1 e β_2 <u>não são únicos</u>, <u>nem estimáveis</u> (como neste exemplo!)

2) Restrições sobre os parâmetros

O modelo (12.6) tem 5 parâmetros e $posto(\mathbf{X}) = 3$

- \Rightarrow A deficiência de *rank* da matriz **X** é 5 3 = 2
- \Rightarrow Devemos impor 2 (duas) condições marginais l.i. para completar o posto da matriz X.

Antes de escolher e impor as condições marginais vamos escrever o sistema de equações normais $X'X\widehat{\beta} = X'y$:

$$\begin{bmatrix} 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 0 & 1 & 1 \\ 2 & 0 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 0 \\ 2 & 1 & 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \hat{\alpha}_1 \\ \hat{\alpha}_2 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} y_{\bullet \bullet} \\ y_{1 \bullet} \\ y_{2 \bullet} \\ y_{\bullet 1} \\ y_{\bullet 2} \end{bmatrix}$$

0u

$$4\hat{\mu} + 2(\hat{\alpha}_{1} + \hat{\alpha}_{2}) + 2(\hat{\beta}_{1} + \hat{\beta}_{2}) = y_{\bullet \bullet}$$

$$2\hat{\mu} + 2\hat{\alpha}_{1} + (\hat{\beta}_{1} + \hat{\beta}_{2}) = y_{1 \bullet}$$

$$2\hat{\mu} + 2\hat{\alpha}_{2} + (\hat{\beta}_{1} + \hat{\beta}_{2}) = y_{2 \bullet}$$

$$2\hat{\mu} + (\hat{\alpha}_{1} + \hat{\alpha}_{2}) + 2\hat{\beta}_{1} = y_{\bullet 1}$$

$$2\hat{\mu} + (\hat{\alpha}_{1} + \hat{\alpha}_{2}) + 2\hat{\beta}_{2} = y_{\bullet 2}$$

Sugestão: Impor as restrições $\hat{\alpha}_1 + \hat{\alpha}_2 = 0$ e $\hat{\beta}_1 + \hat{\beta}_2 = 0$

Resolvendo o S.E.N. sob essas condições tem-se:

$$\hat{\mu} = (1/4)y_{\bullet \bullet} = \bar{y}_{\bullet \bullet}$$

$$\hat{\alpha}_1 = (1/2)y_{1 \bullet} - \hat{\mu} = \bar{y}_{1 \bullet} - \bar{y}_{\bullet \bullet}$$

$$\hat{\alpha}_2 = \bar{y}_{2 \bullet} - \bar{y}_{\bullet \bullet}$$

$$\hat{\beta}_1 = (1/2)\bar{y}_{\bullet 1} - \hat{\mu} = \bar{y}_{\bullet 1} - \bar{y}_{\bullet \bullet}$$

$$\hat{\beta}_2 = \bar{y}_{\bullet 2} - \bar{y}_{\bullet \bullet}$$

$$\hat{\beta}_2 = \bar{y}_{\bullet 2} - \bar{y}_{\bullet \bullet}$$

Com as condições marginais impostas aos parâmetros:

- $\hat{\alpha}_i$'s e $\hat{\beta}_j$'s passam a ser interpretados como <u>desvios de médias</u>, ou como os <u>efeitos</u> de vitamina e dos métodos de administração das vitaminas no peso dos frangos, respectivamente.
- Impondo $\hat{\alpha}_1 + \hat{\alpha}_2 = 0$ e $\hat{\beta}_1 + \hat{\beta}_2 = 0 \Rightarrow$ os novos parâmetros são únicos.

Para entender o significado de um modelo aditivo com dois fatores, vamos escrever a média da casela (i, j), $E(y_{ij}) = \mu_{ij}$, como:

$$\mu_{ij} = \bar{\mu}_{\bullet\bullet} + (\bar{\mu}_{i\bullet} - \bar{\mu}_{\bullet\bullet}) + (\bar{\mu}_{\bullet j} - \bar{\mu}_{\bullet\bullet}) + (\mu_{ij} - \bar{\mu}_{i\bullet} - \bar{\mu}_{\bullet j} + \bar{\mu}_{\bullet\bullet})$$

$$= \mu^* + \alpha_i^* + \beta_j^* + (\mu_{ij} - \bar{\mu}_{i\bullet} - \bar{\mu}_{\bullet j} + \bar{\mu}_{\bullet\bullet})$$

- Para que α_i^* e β_j^* sejam considerados aditivos, precisamos admitir que $\mu_{ij} \bar{\mu}_{i\bullet} \bar{\mu}_{\bullet j} + \bar{\mu}_{\bullet \bullet} = 0$.
- Este termo, $\mu_{ij} \bar{\mu}_{i\bullet} \bar{\mu}_{\bullet j} + \bar{\mu}_{\bullet \bullet}$, é chamado <u>interação</u> entre os níveis dos fatores vitamina e método de administração.
- Modelos com interação serão discutidos no Capítulo 14.

12.2. ESTIMAÇÃO

12.2.1 Estimabilidade de β

Consideremos o modelo linear geral $y = X\beta + \varepsilon$, em que $E(y) = X\beta$, $cov(y) = \sigma^2 I$ e $X \in n \times p$, de posto k .

Utilizando o <u>Método dos Quadrados Mínimos</u> buscamos $\widehat{\pmb{\beta}}$ que minimize:

$$\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} = (\boldsymbol{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\boldsymbol{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}) = \boldsymbol{y}'\boldsymbol{y} - 2\widehat{\boldsymbol{\beta}}'\mathbf{X}'\boldsymbol{y} + \widehat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}}$$
 (12.10)

Diferenciando (12.10) com respeito a $\hat{\beta}$ e igualando a $\mathbf{0}$ tem-se o Sistema de Equações Normais:

$$\mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y} \tag{12.11}$$

Teorema 12.2A. Se **X** é $n \times p$ de posto $k , o sistema <math>\mathbf{X}' \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}' \mathbf{y}$ é <u>consistente</u>. Uma solução do sistema é:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y} \tag{12.13}$$

onde $(X'X)^-$ é qualquer inversa generalizada de (X'X).

Note que:

$$E(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'E(\boldsymbol{y}) = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$$
 (12.14)

Ou seja:

- $\hat{\beta}$ em (12.13) é um estimador **viesado** de β .
- $\hat{\beta}$ estima $(X'X)^-X'X\beta$ sem viés, ou seja, $\hat{\beta}$ estima sem viés apenas algumas combinações dos parâmetros em β (Quais?)

Problema: O produto $(X'X)^-X'X\beta$ não é invariante a escolhas de diferentes inversas generalizadas $(X'X)^-$.

Exemplo 12.2.1. Consideremos o modelo $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, i = 1, 2 e j = 1, 2, 3, em (12.2). A matriz **X** e o vetor β são dados como:

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad \boldsymbol{\beta} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix}$$

Então:

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \mathbf{e} \ \mathbf{X}'\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix} = \begin{bmatrix} y_{\bullet \bullet} \\ y_{1\bullet} \\ y_{2\bullet} \end{bmatrix}$$

onde $y_{\bullet \bullet} = \sum_{i=1}^{2} \sum_{j=1}^{3} y_{ij}$ e $y_{i \bullet} = \sum_{j=1}^{3} y_{ij}$.

Pelo Teorema 2.2.C(i) e pelo Corolário 1 do Teorema 2.8B tem-se que **um** estimador de β é igual a:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} y_{\bullet \bullet} \\ y_{1 \bullet} \\ y_{2 \bullet} \end{bmatrix} = \begin{bmatrix} 0 \\ \overline{y}_{1 \bullet} \\ \overline{y}_{2 \bullet} \end{bmatrix}$$

onde
$$\bar{y}_{i\bullet} = \frac{1}{3} y_{i\bullet}$$

Por outro lado:

$$E(\bar{y}_{i\bullet}) = E\left(\frac{1}{3}\sum_{j=1}^{3} y_{ij}\right) = \frac{1}{3}\sum_{j=1}^{3} E(y_{ij})$$
$$= \frac{1}{3}\sum_{j=1}^{3} E(\mu + \tau_i + \varepsilon_{ij}) = \frac{1}{3}(3\mu + 3\tau_i) = \mu + \tau_i$$

De (12.14) temos que

$$E(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \mu + \tau_1 \\ \mu + \tau_2 \end{bmatrix}$$

$$\therefore \widehat{\boldsymbol{\beta}} = \begin{bmatrix} 0 \\ \overline{y}_{1\bullet} \\ \overline{y}_{2\bullet} \end{bmatrix} \text{ estima sem viés as combinações dos parâmetros:}$$

$$\mu + \tau_1 \text{ e } \mu + \tau_2$$

12.2.2. Funções Estimáveis de β

- Não podemos estimar todos os parâmetros do vetor β de um modelo superparametrizado.
- Quais <u>combinações lineares</u> dos β 's, λ ' β , poderão ser estimadas?

Definição: Uma função linear dos parâmetros, $\lambda' \beta$, é dita ser <u>estimável</u> se existe uma combinação linear das observações (a'y) que tenha um valor esperado igual a $\lambda' \beta$. Isto é,

 $\lambda'\beta$ é <u>estimável</u> se existe um vetor a tal que $E(a'y) = a'X\beta = \lambda'\beta$.

- \Rightarrow Encontrar este vetor \boldsymbol{a} pode ser uma tarefa bem difícil...
- \Rightarrow **Dica**: 0 vetor \boldsymbol{a} deve indicar uma combinação das linhas de $\boldsymbol{X}\boldsymbol{\beta}$, que reproduza a função linear $\boldsymbol{\lambda}'\boldsymbol{\beta}$.

Teorema 12.2B. No modelo $y = X\beta + \varepsilon$, onde $E(y) = X\beta$, $X \in n \times p$ de *posto* $k , a função linear <math>\lambda'\beta$ é dita **estimável** se e somente se qualquer uma das seguintes condições é satisfeita:

i) λ' é uma combinação linear das linhas de **X**, isto é, existe um vetor \boldsymbol{a} tal que:

$$a'X = \lambda' \tag{12.15}$$

Isto acontece se $posto(X' : \lambda) = posto(X') = posto(X)$.

ii) λ' é uma combinação linear das linhas (ou das colunas) de X'X, isto é, existe um vetor r tal que:

$$r'X'X = \lambda'$$
 ou $X'X r = \lambda$ (12.16)

Isto acontece se $posto(X'X : \lambda) = posto(X'X) = posto(X)$.

...continua

 $iii) \lambda (ou \lambda') \text{ \'e tal que}$

$$\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\boldsymbol{\lambda} = \boldsymbol{\lambda} \text{ ou } \boldsymbol{\lambda}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X} = \boldsymbol{\lambda}'$$
 (12.17)

onde $(X'X)^-$ é uma inversa generalizada (simétrica) de X'X.

Exemplo 12.2.2(a). Será que a função $\lambda' \beta = [0, 1, -1] \beta = \tau_1 - \tau_2$ é estimável no modelo $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$ do Exemplo 12.2.1?

Como exercício, vamos verificar a estimabilidade da função $\tau_1 - \tau_2$ usando cada uma das condições impostas no Teorema 12.2B.

Problema: Encontrar uma combinação das linhas de **X** que reproduza $\lambda' = [0, 1, -1]$.

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ e } \boldsymbol{\lambda}' = [0, 1, -1]$$

i) Note que $3^{\underline{a}}$ linha – $4^{\underline{a}}$ linha de **X** é igual a $\lambda' \Rightarrow$ Considerando a' = [0, 0, 1, -1, 0, 0] tem-se:

$$\mathbf{a}'\mathbf{X} = [0, 0, 1, -1, 0, 0] \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = [0, 1, -1] = \boldsymbol{\lambda}'$$

Conclusão: A função $\lambda' \beta = [0, 1, -1] \beta = \tau_1 - \tau_2$ é estimável.

Existem outras escolhas para o vetor a que satisfazem $a'X = \lambda'$, como por exemplo:

$$a' = [1, 0, 0, 0, 0, -1]$$
 ou $a' = [2, -1, 0, 0, 1, -2]$.

Para mostrar que $\lambda' \beta = [0, 1, -1]\beta$ é estimável é mais fácil verificar que:

$$posto(\mathbf{X}': \lambda) = posto(\mathbf{X}') = posto(\mathbf{X}) = 2$$

Outro problema: Encontrar uma combinação das colunas de X'X que reproduza λ .

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \mathbf{e} \ \boldsymbol{\lambda} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

ii) $(1/3)[2^{\underline{a}} \text{ coluna} - 3^{\underline{a}} \text{ coluna de } \mathbf{X}'\mathbf{X}]$ é igual a λ ⇒ Escolhendo $\mathbf{r} = [0, 1/3, -1/3]'$ tem-se:

$$\mathbf{X}'\mathbf{X}\,\mathbf{r} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1/3 \\ -1/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \boldsymbol{\lambda}$$

 $\lambda' \beta = \tau_1 - \tau_2$ é estimável.

Certamente, existem outros valores possíveis de r, tais como r = [-1/3, 2/3, 0]', que servem para verificar $\mathbf{X}'\mathbf{X} \mathbf{r} = \lambda$.

Alternativa mais simples: $\lambda' \beta = [0, 1, -1] \beta$ é estimável porque $posto(\mathbf{X}'\mathbf{X} : \lambda) = posto(\mathbf{X}'\mathbf{X}) = posto(\mathbf{X}) = 2$

iii) Utilizando a inversa generalizada $(\mathbf{X}'\mathbf{X})^- = diag[0, 1/3, 1/3]$, obtida no Exemplo 12.2.1, temos:

$$\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\boldsymbol{\lambda} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \boldsymbol{\lambda}$$

Concluímos de diversas formas que

$$\boldsymbol{\lambda}'\boldsymbol{\beta} = [0, 1, -1]\boldsymbol{\beta} = \tau_1 - \tau_2$$

é uma função estimável no modelo 12.2.1.

Definição: Um conjunto de funções lineares e estimáveis $\{\lambda'_1\beta, \lambda'_2\beta, ..., \lambda'_m\beta\}$ é dito <u>linearmente independente</u> (l.i.) se todos os vetores $\lambda_1, \lambda_2, ..., \lambda_m$ forem linearmente independentes.

Teorema 12.2C. No modelo de posto incompleto $y = X\beta + \varepsilon$, o número de funções estimáveis e l.i. de β é igual ao posto(X) = k.

(*Prova*: ver Graybill, 1976, pp. 485-486)

Importante:

- Toda linha de $X\beta$ é uma função estimável $\Rightarrow X\beta$ é estimável.
- Toda linha de $X'X\beta$ é uma função estimável $\Rightarrow X'X\beta$ é estimável.

Teorema 12.2D. No modelo $y = X\beta + \varepsilon$, onde $E(y) = X\beta$ e $X \in n \times p$, de *posto* $k , qualquer função estimável <math>\lambda'\beta$ pode ser obtida como uma combinação linear das linhas (elementos) de $X\beta$ ou das linhas de $X'X\beta$.

Exemplo 12.2.2(b). Consideremos o modelo (12.6) com dois fatores da Seção 12.1.2 com

$$\mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \mu + \alpha_1 + \beta_1 \\ \mu + \alpha_1 + \beta_2 \\ \mu + \alpha_2 + \beta_1 \\ \mu + \alpha_2 + \beta_2 \end{bmatrix}$$

• Todas as linhas de $\mathbf{X}\boldsymbol{\beta}$ são estimáveis, como por exemplo a 1ª linha: $\lambda_1'\boldsymbol{\beta} = [1 \ 1 \ 0 \ 1 \ 0]\boldsymbol{\beta} = \mu + \alpha_1 + \beta_1$.

• Combinações lineares das linhas de $X\beta$ também são estimáveis! Exemplos:

 $2^{\underline{a}}$ linha – $1^{\underline{a}}$ linha: $\lambda_2' \beta = \beta_2 - \beta_1$ é estimável

 $3^{\underline{a}}$ linha – $1^{\underline{a}}$ linha: $\lambda_3' \beta = \alpha_2 - \alpha_1$ é estimável

Observe que:

• As funções lineares $\lambda'_1 \beta$, $\lambda'_2 \beta$ e $\lambda'_3 \beta$ são estimáveis e os vetores

$$\lambda_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \lambda_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} e \lambda_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
são $l.i.$

Note que essas funções são idênticas às funções γ_1 , γ_2 e γ_3 que foram usadas na Seção 12.1.2 para **reparametrizar** o modelo de posto incompleto para um modelo de posto completo.

Conclusão: Funções dos parâmetros que sejam l.i. e estimáveis podem ser usadas em reparametrizações.

Note que os coeficientes das funções estimáveis $\lambda_2' \beta = \beta_2 - \beta_1$ e $\lambda_3' \beta = \alpha_2 - \alpha_1$ somam zero.

Toda combinação linear desse tipo, em que a soma dos seus coeficientes é nula é chamada de <u>contraste</u> e todo contraste é estimável.

12.3. ESTIMADORES

12.3.1 Estimadores de $\lambda'\beta$

Teorema 12.3A. Seja $\lambda' \beta$ uma função estimável de β no modelo $y = X\beta + \varepsilon$, onde $E(y) = X\beta$ e X é $n \times p$, de posto $k . Seja <math>\widehat{\beta}$ qualquer solução do sistema de equações $X'X\widehat{\beta} = X'y$ e seja r qualquer solução para $X'Xr = \lambda$. Então os dois estimadores $\lambda' \widehat{\beta}$ e r'X'y têm as seguintes propriedades:

- i) $E(\lambda'\widehat{\beta}) = E(r'X'y) = \lambda'\beta$, ou seja, $\lambda'\widehat{\beta}$ é um estimador justo ou não viesado de $\lambda'\beta$.
- *ii*) $\lambda' \hat{\beta} = r' X' y$ para qualquer $\hat{\beta}$ e qualquer r.
- iii) Os estimadores $\lambda' \widehat{\beta}$ e r'X'y são <u>invariantes</u> para escolhas de $\widehat{\beta}$ ou de r.

Exemplo 12.3.1. No Exemplo 12.2.2(a) mostramos que a função $\lambda' \beta = \tau_1 - \tau_2$ é estimável. Para estimar $\tau_1 - \tau_2$ com r'X'y, usamos $r' = \begin{bmatrix} 0 & 1/3 & -1/3 \end{bmatrix}$ do Exemplo 12.2.2(a) para obter:

$$\mathbf{r}'\mathbf{X}'\mathbf{y} = \begin{bmatrix} 0 & 1/3 - 1/3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1/3 - 1/3 \end{bmatrix} \begin{vmatrix} y_{\bullet \bullet} \\ y_{1 \bullet} \\ y_{2 \bullet} \end{vmatrix} = \bar{y}_{1 \bullet} - \bar{y}_{2 \bullet}$$

Para obter o mesmo resultado usando $\lambda' \widehat{\beta}$, precisamos encontrar uma solução do sistema $X' X \widehat{\beta} = X' y$:

$$\begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \hat{\tau}_1 \\ \hat{\tau}_2 \end{bmatrix} = \begin{bmatrix} y_{\bullet \bullet} \\ y_{1 \bullet} \\ y_{2 \bullet} \end{bmatrix}$$

Ou

$$\begin{cases} 6\hat{\mu} + 3\hat{\tau}_1 + 3\hat{\tau}_2 = y_{\bullet \bullet} \\ 3\hat{\mu} + 3\hat{\tau}_1 = y_{1 \bullet} \\ 3\hat{\mu} + 3\hat{\tau}_2 = y_{2 \bullet} \end{cases}$$

Como a primeira equação é redundante (é igual à soma da segunda e terceira equações), podemos tomar $\hat{\mu}$ como uma constante arbitrária e daí obter:

$$\hat{\tau}_1 = \bar{y}_{1\bullet} - \hat{\mu} \ \text{e} \ \hat{\tau}_2 = \bar{y}_{2\bullet} - \hat{\mu}$$

Assim

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\mu} \\ \hat{\tau}_1 \\ \hat{\tau}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \overline{y}_{1\bullet} \\ \overline{y}_{2\bullet} \end{bmatrix} + \hat{\mu} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

Para estimar $\tau_1 - \tau_2 = [0 \ 1 \ -1] \boldsymbol{\beta} = \boldsymbol{\lambda}' \boldsymbol{\beta}$, podemos tomar $\hat{\mu} = 0$ em $\hat{\boldsymbol{\beta}}$ para obter:

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} 0 \\ \overline{y}_{1\bullet} \\ \overline{y}_{2\bullet} \end{bmatrix} \Rightarrow \text{estimador de } \boldsymbol{\lambda}' \boldsymbol{\beta} = \tau_1 - \tau_2 \in \boldsymbol{\lambda}' \widehat{\boldsymbol{\beta}} = \overline{y}_{1\bullet} - \overline{y}_{2\bullet}$$

Mesmo mantendo $\hat{\mu}$ arbitrário, obtemos o mesmo estimador:

$$\lambda'\widehat{\boldsymbol{\beta}} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \bar{y}_{1\bullet} - \hat{\mu} \\ \bar{y}_{2\bullet} - \hat{\mu} \end{bmatrix} = (\bar{y}_{1\bullet} - \hat{\mu}) - (\bar{y}_{2\bullet} - \hat{\mu}) = \bar{y}_{1\bullet} - \bar{y}_{2\bullet}$$

PROBLEMA: Como $\hat{\beta} = (X'X)^- X'y$ não é único no modelo de posto incompleto $y = X\beta + \varepsilon$ onde $cov(y) = \sigma^2 \mathbf{I}$, $cov(\hat{\beta})$ também não é única.

Para uma particular inversa generalizada (simétrica) de (X'X) nós podemos usar o Teorema 3.6(D)i para obter:

$$cov(\widehat{\boldsymbol{\beta}}\) = cov[(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\boldsymbol{y}\] = \sigma^2(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}$$
 (12.18) que **não é invariante** para diferentes escolhas de $(\mathbf{X}'\mathbf{X})^{-}$.

Mas $var(\lambda' \hat{\beta}) = \sigma^2 \lambda' (X'X)^- \lambda$ é <u>invariante</u> a diferentes escolhas de $(X'X)^-$ se $\lambda' \beta$ é uma função estimável.

Teorema 12.3B. Seja $\lambda' \beta$ uma <u>função estimável</u> no modelo linear $y = X\beta + \varepsilon$, onde X é $n \times p$ de *posto* $k e <math>cov(y) = \sigma^2 I$. Seja r qualquer solução para $X'X r = \lambda$ e seja $\widehat{\beta}$ qualquer solução de $X'X\widehat{\beta} = X'y$. Então, a <u>variância</u> de $\lambda'\widehat{\beta}$ (ou de r'X'y) tem as seguintes propriedades:

i)
$$var(\mathbf{r}'\mathbf{X}'\mathbf{y}) = \sigma^2 \mathbf{r}'(\mathbf{X}'\mathbf{X})^- \mathbf{r} = \sigma^2 \mathbf{r}'\lambda$$

ii) $var(\lambda'\widehat{\boldsymbol{\beta}}) = \lambda' cov(\widehat{\boldsymbol{\beta}})\lambda = \sigma^2 \lambda'(\mathbf{X}'\mathbf{X})^- \underbrace{\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^- \lambda}_{\widehat{\lambda}}$
 $= \sigma^2 \lambda'(\mathbf{X}'\mathbf{X})^- \lambda$, porque $\lambda' \boldsymbol{\beta}$ é estimável.

 $iii) var(\lambda' \hat{\beta})$ é <u>única</u>, ou seja, é <u>invariante</u> para as escolhas de r ou de $(X'X)^-$.

Teorema 12.3C. Se $\lambda_1' \beta$ e $\lambda_2' \beta$ são duas <u>funções estimáveis</u> no modelo $y = X\beta + \varepsilon$ onde $X \in n \times p$, de *posto* $k e <math>cov(y) = \sigma^2 I$, a covariância entre seus estimadores é:

$$cov(\lambda_1'\widehat{\boldsymbol{\beta}}, \ \lambda_2'\widehat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{r}_1' \ \lambda_2 = \sigma^2 \lambda_1' \boldsymbol{r}_2 = \sigma^2 \lambda_1' (\mathbf{X}'\mathbf{X})^- \lambda_2$$

onde $\mathbf{X}'\mathbf{X}\boldsymbol{r}_1 = \lambda_1 \ \mathbf{e} \ \mathbf{X}'\mathbf{X}\boldsymbol{r}_2 = \lambda_2$.

Teorema 12.3D. Se $\lambda' \beta$ é uma <u>função estimável</u> no modelo $y = X\beta + \varepsilon$ onde X é $n \times p$, de *posto* $k , então os estimadores <math>\lambda' \widehat{\beta}$ e r'X'y são os <u>melhores estimadores não viesados</u> (*BLUE*) de $\lambda' \beta$.

12.3.2. Um estimador da variância (σ^2)

Por analogia com (7.23) nós definimos

$$SQResiduo = (y - X\widehat{\beta})'(y - X\widehat{\beta})$$
 (12.19)

onde $\widehat{\pmb{\beta}}$ é qualquer solução do sistema de equações normais $\mathbf{X}'\mathbf{X}\widehat{\pmb{\beta}}=\mathbf{X}'\mathbf{y}$.

Duas expressões alternativas para *SQRes* são:

$$SQResiduo = y'y + \widehat{\beta}'X'y$$
 (12.20)

$$SQResiduo = y'[I - X(X'X)^{-}X']y$$
 (12.21)

Para um estimador de σ^2 , nós definimos:

$$s^{2} = \frac{SQResiduo}{n-k} = QMResiduo$$
 (12.22)

onde n é o número de linhas de \mathbf{X} e $k = posto(\mathbf{X})$.

Teorema 12.3E. Para s^2 definido em (12.22) para um modelo $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ de posto incompleto, com $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ e $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, temos as seguintes propriedades:

- i) $E(s^2) = \sigma^2$ (provar!)
- *ii*) s^2 é <u>invariante</u> para escolhas de $\hat{\beta}$ ou escolhas de inversas generalizadas $(\mathbf{X}'\mathbf{X})^-$

12.3.3. Modelo Normal

Para o modelo de posto incompleto $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, assumiremos que $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$ ou que $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2\mathbf{I})$. Com isso nós podemos obter <u>estimadores de máxima verossimilhança</u>.

Teorema 12.3F. Se $y \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, onde $\mathbf{X} \in n \times p$, de *posto* $k , então os <u>estimadores de máxima verossimilhança</u> de <math>\boldsymbol{\beta}$ e σ^2 são dados por:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y} \tag{12.23}$$

$$\hat{\sigma}^2 = \frac{1}{n} (\mathbf{y} - \mathbf{X} \widehat{\boldsymbol{\beta}})' (\mathbf{y} - \mathbf{X} \widehat{\boldsymbol{\beta}})$$
 (12.24)

• O estimador de máxima verossimilhança $\hat{\beta}$ em (12.23) é idêntico ao estimador de mínimos quadrados em (12.13).

• O estimador $\hat{\sigma}^2$ em (12.24) é <u>viesado</u> \Rightarrow Vamos substituir $\hat{\sigma}^2$ pelo <u>estimador não viesado</u>, s^2 , dado em (12.22).

Teorema 12.3G. Se $y \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, $\mathbf{X} \in n \times p$, de *posto* $k , então os <u>estimadores de máxima verossimilhança</u> <math>\widehat{\boldsymbol{\beta}}$ e s^2 (corrigido para o viés) têm as seguintes propriedades:

i)
$$\hat{\boldsymbol{\beta}} \sim N_p[(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}]$$

ii)
$$(n-k)s^2/\sigma^2 \sim \chi^2_{(n-k)}$$

iii) $\hat{\beta}$ e s^2 são <u>independentes</u>.

Teorema 12.3H. Se $y \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, onde \mathbf{X} é $n \times p$, de *posto* $k , e se <math>\lambda' \boldsymbol{\beta}$ é uma <u>função estimável</u>, então $\lambda' \widehat{\boldsymbol{\beta}}$ tem <u>variância mínima</u> dentre todos os estimadores não viesados de $\lambda' \boldsymbol{\beta}$.

12.4. REPARAMETRIZAÇÃO

Na reparametrização, transformamos um modelo de posto incompleto:

$$y = X\beta + \varepsilon$$
, onde $X \in n \times p$, de posto k

em um modelo de posto completo

$$y = \mathbf{Z} \boldsymbol{\gamma} + \boldsymbol{\varepsilon}$$
, onde \mathbf{Z} é $n \times k$ de posto k

em que

$$\gamma = \mathbf{U}\boldsymbol{\beta}$$
, onde $\mathbf{U} \in k \times p$ de posto k

é um conjunto de k funções estimáveis e linearmente independentes de β .

Problema: Se conhecemos a reparametrização $\gamma = U\beta$, mas precisamos encontrar a matriz **Z** do modelo reparametrizado $y = \mathbf{Z}\gamma + \varepsilon$.

Como $\mathbf{Z}\boldsymbol{\gamma} = \mathbf{X}\boldsymbol{\beta}$ e $\boldsymbol{\gamma} = \mathbf{U}\boldsymbol{\beta}$ podemos escrever:

$$\mathbf{Z}\boldsymbol{\gamma} = \mathbf{Z}\mathbf{U}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\beta} \Rightarrow \mathbf{X} = \mathbf{Z}\mathbf{U} \tag{12.30}$$

Pós-multiplicando ambos os lados de (12.30) por U', tem-se:

$$XU' = ZUU'$$

Como a matriz UU' é não singular, pós multiplicando ambos os lados por $(UU')^{-1}$ temos:

$$\mathbf{X}\mathbf{U}'(\mathbf{U}\mathbf{U}')^{-1} = \mathbf{Z}\mathbf{U}\mathbf{U}'(\mathbf{U}\mathbf{U}')^{-1} = \mathbf{Z}$$

ou seja:

$$\mathbf{Z} = \mathbf{X}\mathbf{U}'(\mathbf{U}\mathbf{U}')^{-1} \tag{12.31}$$

que é uma matriz $n \times k$ de *posto* coluna completo, porque

$$posto(\mathbf{Z}) \ge posto(\mathbf{Z}\mathbf{U}) = posto(\mathbf{X}) = k$$

 \Rightarrow Conhecendo as matrizes **X** e **U** que definem os novos parâmetros $\gamma = U\beta$ obtemos a nova matriz **Z** utilizando (12.31).

Como o modelo $y = \mathbf{Z}\gamma + \boldsymbol{\varepsilon}$ é de <u>posto completo</u>, o sistema de equações normais, $\mathbf{Z}'\mathbf{Z}\widehat{\boldsymbol{\gamma}} = \mathbf{Z}'y$, tem <u>solução única</u>, dada por:

$$\widehat{\mathbf{y}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

O estimador não viesado de σ^2 no modelo reparametrizado é dado por:

$$s^{2} = \frac{1}{n-k} (\mathbf{y} - \mathbf{Z}\widehat{\mathbf{\gamma}})'(\mathbf{y} - \mathbf{Z}\widehat{\mathbf{\gamma}}) = \frac{SQResiduo}{n-k}$$
(12.32)

Observe que:

• Desde que $\mathbf{Z} \boldsymbol{\gamma} = \mathbf{X} \boldsymbol{\beta} \Rightarrow \mathbf{Z} \hat{\boldsymbol{\gamma}} = \mathbf{X} \hat{\boldsymbol{\beta}} \Rightarrow SQResiduo$ definida em (12.19) e em (12.32) também são iguais, ou seja:

$$(y - X\widehat{\beta})'(y - X\widehat{\beta}) = (y - Z\widehat{\gamma})'(y - Z\widehat{\gamma})$$
 (12.33)

- O conjunto de novos parâmetros, $\gamma = U\beta$, é <u>somente um conjunto de funções estimáveis</u> e *l. i.*
- Podemos usar outros conjuntos de k funções estimáveis e l.i. de β em outras reparametrizações e a igualdade (12.33) continua válida.

Exemplo 12.4. Nós ilustraremos uma reparametrização para o modelo $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, i = 1, 2 e j = 1, 2. Na sua forma matricial este modelo pode ser escrito como $y = X\beta + \varepsilon$, em que:

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{23} \end{bmatrix}$$

Como $posto(\mathbf{X}) = 2$, precisamos de duas funções estimáveis e linearmente independentes para realizar a reparametrização, como $\gamma_1 = \mu + \tau_1$ e $\gamma_2 = \mu + \tau_2$. Assim:

$$\boldsymbol{\gamma} = \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \mu + \tau_1 \\ \mu + \tau_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} = \mathbf{U}\boldsymbol{\beta} \Rightarrow \mathbf{U} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Apesar de ser fácil (neste caso!) obter a matriz \mathbf{Z} do modelo reparametrizado, vamos obtê-la usando $\mathbf{Z} = \mathbf{X}\mathbf{U}'(\mathbf{U}\mathbf{U}')^{-1}$.

$$\mathbf{U}\mathbf{U}' = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \Rightarrow (\mathbf{U}\mathbf{U}')^{-1} = \begin{pmatrix} \frac{1}{3} \end{pmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\mathbf{U}'(\mathbf{U}\mathbf{U}')^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \frac{1}{3} \end{pmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{pmatrix} \frac{1}{3} \end{pmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\mathbf{Z} = \mathbf{X}\mathbf{U}'(\mathbf{U}\mathbf{U}')^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{pmatrix} \frac{1}{3} \end{pmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

de tal modo que:

$$\mathbf{Z}\boldsymbol{\gamma} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_2 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \gamma_1 \\ \gamma_1 \\ \gamma_1 \\ \gamma_2 \\ \gamma_2 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \mu + \tau_1 \\ \mu + \tau_1 \\ \mu + \tau_1 \\ \mu + \tau_2 \\ \mu + \tau_2 \\ \mu + \tau_2 \\ \mu + \tau_2 \end{bmatrix} = \mathbf{X}\boldsymbol{\beta}$$

Obs: Verifique que $\mathbf{Z}\mathbf{U} = \mathbf{X}$.

Exercício: Escreva o modelo reparametrizado para os novos parâmetros $\gamma_1=2\mu+\tau_1+\tau_2$ e $\gamma_2=\tau_1-\tau_2$

IMPORTANTE: Ver material adicional sobre reparametrização em modelos de posto incompleto, disponível no Moodle.

12.5. CONDIÇÕES MARGINAIS

<u>Condições marginais</u> fornecem restrições (lineares) que tornam <u>únicos</u> e <u>individualmente estimáveis</u> os parâmetros de um modelo linear.

Outro uso para as condições marginais: impor restrições sobre as estimativas de β somente para simplificar a resolução do sistema de equações normais, $X'X\widehat{\beta} = X'y$.

Situação: \mathbf{X} é $n \times p$, de *posto* k representa um conjunto de <math>k funções estimáveis de $\boldsymbol{\beta}$.

Já sabemos: As condições marginais devem ser funções <u>não estimáveis</u> de β .

Justificativa: Se uma condição marginal for uma função estimável de $\boldsymbol{\beta}$, ela pode ser expressa como uma combinação linear das linhas de $\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$ e <u>não contribuirá</u> para anular a deficiência de posto de \mathbf{X} , nem para obter um vetor solução $\widehat{\boldsymbol{\beta}}$ do sistema $\mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}'\boldsymbol{y}$.

Se a deficiência no posto de \mathbf{X} é (p-k), devemos impor (p-k) condições marginais que completem a deficiência de posto de \mathbf{X} .

Definiremos as condições marginais como:

$$T\beta = 0$$
 (nos parâmetros do modelo)

ou

$$\mathbf{T}\widehat{\boldsymbol{\beta}} = \mathbf{0}$$
 (nas estimativas $\widehat{\boldsymbol{\beta}}$, que são soluções do S.E.N.)

onde **T** é uma matriz $(p-k)\times p$ de posto p-k, tal que **T** $\boldsymbol{\beta}$ é um conjunto de funções <u>não estimáveis</u> e l.i. dos parâmetros em $\boldsymbol{\beta}$.

Teorema 12.5A. Se $y = X\beta + \varepsilon$, onde $X \in n \times p$, de *posto* k e se <math>T é uma matriz $(p-k)\times p$, de posto p-k, tal que $T\beta$ é um conjunto de funções <u>não estimáveis</u> de β , então existe um <u>vetor único</u> $\widehat{\beta}$ que satisfaz, simultaneamente, $X'X\widehat{\beta} = X'y$ e $T\widehat{\beta} = \mathbf{0}$.

Prova: O modelo $y = X\beta + \varepsilon$ e o conjunto de condições marginais $\mathbf{0} = \mathbf{T}\beta + \mathbf{0}$ podem ser combinados como:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{X}\boldsymbol{\beta} \\ \mathbf{T}\boldsymbol{\beta} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{X} \\ \mathbf{T} \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} \boldsymbol{\varepsilon} \\ \mathbf{0} \end{bmatrix}$$
 (12.35)

Como as linhas de **T** são l.i. e não são combinações das linhas de **X**, a matriz $\begin{bmatrix} \mathbf{X} \\ \mathbf{T} \end{bmatrix}$ é $(n+p-k)\times p$ e tem posto p. O novo sistema de equações normais fica:

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{T} \end{bmatrix}' \begin{bmatrix} \mathbf{X} \\ \mathbf{T} \end{bmatrix} \widehat{\boldsymbol{\beta}} = \begin{bmatrix} \mathbf{X} \\ \mathbf{T} \end{bmatrix}' \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}$$
 (12.36)

Ou

$$(\mathbf{X}'\mathbf{X} + \mathbf{T}'\mathbf{T})\widehat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y} + \mathbf{T}'\mathbf{0} = \mathbf{X}'\mathbf{y}$$

e tem solução única:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X} + \mathbf{T}'\mathbf{T})^{-1}\mathbf{X}'\mathbf{y} \tag{12.37}$$

Note que $[\mathbf{X}' \ \mathbf{T}'] \begin{bmatrix} \mathbf{X} \\ \mathbf{T} \end{bmatrix} = \mathbf{X}'\mathbf{X} + \mathbf{T}'\mathbf{T}$ é uma matriz quadrada $p \times p$ e de posto completo.

A solução $\hat{\beta}$ em (12.37) também satisfaz o sistema de equações normais $(\mathbf{X}'\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}'\boldsymbol{y}$, desde que, por (12.36):

$$(\mathbf{X}'\mathbf{X} + \mathbf{T}'\mathbf{T})\widehat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y} + \mathbf{T}'\mathbf{0} \Rightarrow \mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} + \mathbf{T}'\mathbf{T}\widehat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$$
 (12.38)

Como assumimos $\mathbf{T}\widehat{\boldsymbol{\beta}} = \mathbf{0} \Rightarrow (12.38)$ reduz-se a $\mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$.

Exemplo 12.5. Consideremos o modelo $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, i = 1, 2, j = 1, 2, como no Exemplo 12.4. No Problema 12.5(b) pode ser mostrado que $\tau_1 + \tau_2$ é uma função <u>não é estimável</u>.

Impondo a condição marginal $\mathbf{T}\boldsymbol{\beta} = [0 \ 1 \ 1]\boldsymbol{\beta} = \tau_1 + \tau_2 = 0$, em que $\mathbf{T} = [0 \ 1 \ 1]$, temos:

$$\mathbf{X}'\mathbf{X} + \mathbf{T}'\mathbf{T} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 3 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

Então

$$(\mathbf{X}'\mathbf{X} + \mathbf{T}'\mathbf{T})^{-1} = \frac{1}{4} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Como $\mathbf{X}'\mathbf{y} = [y_{\bullet\bullet} \ y_{1\bullet} \ y_{2\bullet}]'$ e utilizando (12.37), obtemos:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X} + \mathbf{T}'\mathbf{T})^{-1}\mathbf{X}'\mathbf{y} = \frac{1}{4} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_{\bullet \bullet} \\ y_{1 \bullet} \\ y_{2 \bullet} \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 2y_{\bullet \bullet} - y_{1 \bullet} - y_{2 \bullet} \\ 2y_{1 \bullet} - y_{\bullet \bullet} \\ 2y_{2 \bullet} - y_{\bullet \bullet} \end{bmatrix} = \begin{bmatrix} \bar{y}_{\bullet \bullet} \\ \bar{y}_{1 \bullet} - \bar{y}_{\bullet \bullet} \\ \bar{y}_{2 \bullet} - \bar{y}_{\bullet \bullet} \end{bmatrix}$$
(12.39)

Porque: $y_{1\bullet} + y_{2\bullet} = y_{\bullet\bullet}, \bar{y}_{i\bullet} = y_{i\bullet}/2 \text{ e } \bar{y}_{\bullet\bullet} = y_{\bullet\bullet}/4.$

Para mostrar que $\hat{\beta}$ em (12.39) também é solução do sistema de equações normais $(\mathbf{X}'\mathbf{X})\hat{\beta} = \mathbf{X}'y$, basta verificar que:

$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_{\bullet \bullet} \\ \bar{y}_{1 \bullet} - \bar{y}_{\bullet \bullet} \\ \bar{y}_{2 \bullet} - \bar{y}_{\bullet \bullet} \end{bmatrix} = \begin{bmatrix} y_{\bullet \bullet} \\ y_{1 \bullet} \\ y_{2 \bullet} \end{bmatrix}$$

Exercício: Considere o modelo $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, i = 1, 2, j = 1, 2, 3, como no Exemplo 12.4 e os dados:

Aditivo 1	Aditivo 2
14	18
16	19
15	17
•	

Obtenha estimativas de β impondo as seguintes condições marginais:

- a) $\tau_1 = 0$ (Condição imposta pelo R)
- b) $\tau_2 = 0$ (Condição imposta pelo SAS)
- c) $\tau_1 + \tau_2 = 0$ (Condição + comum da Estatística Experimental)

12.6. TESTANDO HIPÓTESES

12.6.1. Hipóteses testáveis

Definição: A hipótese H_0 : $\beta_1 = \beta_2 = \dots = \beta_q$ é <u>testável</u> se existe um conjunto de funções estimáveis linearmente independentes $\{\lambda'_1 \beta, \lambda'_2 \beta, \dots, \lambda'_{q-1} \beta\}$ tal que H_0 é verdadeira se e somente se

$$\lambda_1' \boldsymbol{\beta} = \lambda_2' \boldsymbol{\beta} = ... = \lambda_{q-1}' \boldsymbol{\beta} = 0$$

Ou

 H_0 : $\beta_1 = \beta_2 = ... = \beta_q$ é testável se encontrarmos um conjunto de funções estimáveis e $l.i. \{\lambda_1' \beta, \lambda_2' \beta, ..., \lambda_{q-1}' \beta\}$ que quando igualadas a zero, reproduzem a hipótese H_0 .

Exemplo: Para testar H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4$ precisamos encontrar um conjunto de 4 - 1 = 3 funções estimáveis e l.i. tais que $\lambda'_1 \beta = \lambda'_2 \beta = \lambda'_3 \beta = 0$ reproduzam H_0 .

Sugestão: Usar contrastes (funções estimáveis e *l. i.*) do tipo:

$$\lambda_1' \boldsymbol{\beta} = 3\beta_1 - (\beta_2 + \beta_3 + \beta_4)$$
$$\lambda_2' \boldsymbol{\beta} = 2\beta_2 - (\beta_3 + \beta_4)$$
$$\lambda_3' \boldsymbol{\beta} = \beta_3 - \beta_4$$

Igualando $\lambda_3' \beta = \lambda_2' \beta = \lambda_1' \beta = 0$ reproduzimos H_0 (verifique!)

Caso geral: Para testar H_0 : $\beta_1 = \beta_2 = \dots = \beta_q$ vamos usar q-1 contrastes que formam um conjunto de funções estimáveis e l.i., tais que:

$$\begin{bmatrix} \boldsymbol{\lambda}_1' \boldsymbol{\beta} \\ \boldsymbol{\lambda}_2' \boldsymbol{\beta} \\ \vdots \\ \boldsymbol{\lambda}_{q-1}' \boldsymbol{\beta} \end{bmatrix} = \begin{bmatrix} q-1 & -1 & -1 & \cdots & -1 & -1 \\ 0 & q-2 & -1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -1 \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \\ \vdots \\ \boldsymbol{\beta}_{q-1} \\ \boldsymbol{\beta}_q \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

se e somente se $\beta_1 = \beta_2 = \cdots = \beta_q$.

Para ilustrar hipóteses testáveis, seja o modelo aditivo com dois fatores

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$
, para $i = 1, 2, 3$ e $j = 1, 2, 3$

e a hipótese de interesse H_0 : $\alpha_1 = \alpha_2 = \alpha_3$. Já sabemos que todas as linhas de **X** β são estimáveis:

Linha	Função estimável
1	$\mu + \alpha_1 + \beta_1$
2	$\mu + \alpha_2 + \beta_1$
3	$\mu + \alpha_3 + \beta_1$
4	$\mu + \alpha_1 + \beta_2$
5	$\mu + \alpha_2 + \beta_2$
6	$\mu + \alpha_3 + \beta_2$
7	$\mu + \alpha_1 + \beta_3$
8	$\mu + \alpha_2 + \beta_3$
9	$\mu + \alpha_3 + \beta_3$

- Combinações lineares dessas linhas também são estimáveis:
 - (1) Linha 1 Linha 2 = $\alpha_1 \alpha_2$
 - (2) Linha 1 + Linha 2 2*Linha 3 = $\alpha_1 + \alpha_2 2\alpha_3$

Igualando as duas funções estimáveis e *l. i.* a zero temos:

$$(1) \alpha_1 - \alpha_2 = 0 \Rightarrow \alpha_1 = \alpha_2$$

(2)
$$\alpha_1 + \alpha_2 - 2\alpha_3 = 0 \Rightarrow \alpha_2 + \alpha_2 - 2\alpha_3 = 0 \Rightarrow 2\alpha_2 = 2\alpha_3$$

$$\Rightarrow \alpha_2 = \alpha_3 \Rightarrow \alpha_1 = \alpha_2 = \alpha_3$$
 e reproduzimos H_0

 \therefore H_0 : $\alpha_1 = \alpha_2 = \alpha_3$ é uma <u>hipótese testável</u> e testar essa hipótese é <u>equivalente</u> a testar:

$$H_0: \begin{bmatrix} \alpha_1 - \alpha_2 \\ \alpha_1 + \alpha_2 - 2\alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (12.40)

Dúvida: Como testar H_0 : $\alpha_1 = \alpha_2 = \alpha_3$?

Usar a abordagem do Modelo completo *versus* Modelo reduzido? Usar a abordagem da hipótese linear geral?

12.6.2. Modelo Completo e Modelo Reduzido

Problema: Testar a hipótese H_0 : $\beta_1 = \beta_2 = \cdots = \beta_q$ no modelo de posto incompleto $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, onde \mathbf{X} é $n \times p$, de posto $k e <math>\boldsymbol{\beta}$ é $p \times 1$.

Argumento: Se H_0 é testável nós podemos encontrar um conjunto de t funções estimáveis e $l.i.\{\lambda_1'\boldsymbol{\beta},\lambda_2'\boldsymbol{\beta},...,\lambda_t'\boldsymbol{\beta}\}$ tais que $H_0:\beta_1=\beta_2=\cdots=\beta_q$ seja equivalente a:

$$H_0: \boldsymbol{\gamma}_1 = \begin{bmatrix} \boldsymbol{\lambda}_1' \boldsymbol{\beta} \\ \boldsymbol{\lambda}_2' \boldsymbol{\beta} \\ \vdots \\ \boldsymbol{\lambda}_t' \boldsymbol{\beta} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Também é possível encontrar outro conjunto de (k-t) funções:

$$\boldsymbol{\gamma}_2 = \begin{bmatrix} \boldsymbol{\lambda}_{t+1}^{\prime} \boldsymbol{\beta} \\ \boldsymbol{\lambda}_{t+2}^{\prime} \boldsymbol{\beta} \\ \vdots \\ \boldsymbol{\lambda}_{k}^{\prime} \boldsymbol{\beta} \end{bmatrix}$$

de tal forma que todas as *k* funções:

$$\underline{\lambda'_1\beta,\lambda'_2\beta,...,\lambda'_t\beta} \ \underline{\lambda'_{t+1}\beta,...,\lambda'_k\beta}$$

sejam <u>estimáveis</u> e l.i., onde $k = posto(\mathbf{X})$.

Seja $\gamma = \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}$ então podemos <u>reparametrizar</u> o modelo de posto incompleto $y = X\beta + \varepsilon$, obtendo o <u>modelo de posto completo</u>:

$$y = \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon} = \mathbf{Z}_1\boldsymbol{\gamma}_1 + \mathbf{Z}_2\boldsymbol{\gamma}_2 + \boldsymbol{\varepsilon}$$

em que $\mathbf{Z} = [\mathbf{Z}_1 \ \mathbf{Z}_2]$ é particionada conforme o número de elementos em γ_1 e γ_2 .

Na abordagem modelo completo *versus* modelo reduzido, usamos $\mathbf{y} = \mathbf{Z}_1 \mathbf{y}_1 + \mathbf{Z}_2 \mathbf{y}_2 + \boldsymbol{\varepsilon}$ como o <u>modelo completo</u>.

Para testar H_0 : $\gamma_1 = \mathbf{0}$ usamos o modelo reduzido $\mathbf{y} = \mathbf{Z}_2 \gamma_2^* + \boldsymbol{\varepsilon}^*$

Pelo Teorema 7.10A, a estimativa de γ_2^* no modelo reduzido é a mesma estimativa de γ_2 no modelo completo desde que as colunas de \mathbf{Z}_2 sejam ortogonais às colunas de \mathbf{Z}_1 , isto é, se $\mathbf{Z}_2'\mathbf{Z}_1 = \mathbf{0}$.

Como para modelos balanceados esta ortogonalidade geralmente se verifica, usaremos γ_2 e $\hat{\gamma}_2$, ao invés de γ_2^* e $\hat{\gamma}_2^*$.

- Desde que $y = \mathbf{Z}\gamma + \boldsymbol{\varepsilon}$ é um modelo de posto completo, a hipótese $H_0: \gamma_1 = \mathbf{0}$ pode ser testada como na Seção 8.2 (Regressão linear múltipla)
- O número de graus de liberdade (t) associado a $SQ(\gamma_1|\gamma_2)$ é igual ao número de funções estimáveis e l.i. necessárias para expressar a hipótese H_0 .

Tabela 12.2 Análise de variância para testar H_0 : $\gamma_1 = \mathbf{0}$ no modelo reparametrizado balanceado

F. Variação	g.l.	Somas de quadrados
Devida a $\gamma_1 \gamma_2$	t	$SQ(\gamma_1 \gamma_2) = \widehat{\gamma}'\mathbf{Z}'\mathbf{y} - \widehat{\gamma}_2'\mathbf{Z}_2'\mathbf{y}$
Resíduo	n-k	$SQResiduo = y'y - \widehat{\gamma}'\mathbf{Z}'y$
Total	n-1	$SQT = \mathbf{y}'\mathbf{y} - n\bar{y}^2$

• Os resultados apresentados na Tabela 12.2 são análogos aos da Tabela 8.3 (modelo de regressão linear múltipla)

A soma de quadrados $\hat{\gamma}'\mathbf{Z}'y$ é obtida no modelo completo $y = \mathbf{Z}\gamma + \boldsymbol{\varepsilon}$ e a soma de quadrados $\hat{\gamma}_2'\mathbf{Z}_2'y$, no modelo reduzido $y = \mathbf{Z}_2\gamma_2^* + \boldsymbol{\varepsilon}^*$, que assume que a hipótese $H_0: \gamma_1 = \mathbf{0}$ é verdadeira.

Este procedimento envolvendo a reparametrização é interessante, mas na prática a obtenção da matriz **Z** pode consumir muito tempo! Veremos que <u>este passo pode ser evitado</u>.

Perceba que de (12.20) e (12.33), nós temos:

$$y'y - \widehat{\boldsymbol{\beta}}'\mathbf{X}'y = y'y - \widehat{\boldsymbol{\gamma}}'\mathbf{Z}'y$$

de onde obtemos:

$$\widehat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} = \widehat{\boldsymbol{\gamma}}' \mathbf{Z}' \mathbf{y} \tag{12.41}$$

onde $\widehat{\beta}$ representa **qualquer** solução do sistema de equações normais $(X'X)\widehat{\beta} = X'y$.

De modo similar, correspondente ao <u>modelo reduzido</u> $y = \mathbf{Z}_2 \gamma_2^* + \boldsymbol{\varepsilon}^*$, temos o <u>modelo reduzido</u> $y = \mathbf{X}_2 \boldsymbol{\beta}_2^* + \boldsymbol{\varepsilon}^*$, obtido quando assumimos que $\beta_1 = \beta_2 = \cdots = \beta_q$.

Então,

$$\widehat{\boldsymbol{\beta}}_{2}^{*}'\mathbf{X}_{2}'\mathbf{y} = \widehat{\boldsymbol{\gamma}}_{2}^{*}'\mathbf{Z}_{2}'\mathbf{y} \tag{12.42}$$

onde $\widehat{\boldsymbol{\beta}}_2^*$ é <u>qualquer solução</u> do sistema $(\mathbf{X}_2' \ \mathbf{X}_2) \widehat{\boldsymbol{\beta}}_2^* = \mathbf{X}_2' \mathbf{y}$.

Note que: Para encontrar $\hat{\beta}$ e $\hat{\beta}_2^*$ em modelos balanceados também podemos usar condições marginais (ou restrições nos parâmetros).

Teorema 12.6A. Considere o modelo particionado $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} = \mathbf{X}_1\boldsymbol{\beta}_1 + \mathbf{X}_2\boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$, onde \mathbf{X} é $n \times p$, de posto $k . Se <math>\mathbf{X}_2'\mathbf{X}_1 = \mathbf{0}$ (Seção 12.7.3), a estimativa de $\boldsymbol{\beta}_2^*$ no modelo reduzido $\mathbf{y} = \mathbf{X}_2\boldsymbol{\beta}_2^* + \boldsymbol{\varepsilon}^*$ é a mesma estimativa de $\boldsymbol{\beta}_2$ no modelo completo $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$.

Obs. Como no <u>modelo balanceado de posto incompleto</u>, a ortogonalidade de X_1 e X_2 geralmente se verifica \Rightarrow usaremos β_2 e $\hat{\beta}_2$, ao invés de β_2^* e $\hat{\beta}_2^*$.

Na Tabela 12.3, $\widehat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}$ e $\widehat{\boldsymbol{\beta}}'_2\mathbf{X}'_2\mathbf{y}$ são as SQ's obtidas nos modelos completo $(\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})$ e reduzido $(\mathbf{y} = \mathbf{X}_2\boldsymbol{\beta}_2 + \boldsymbol{\varepsilon})$ pela hipótese $H_0: \beta_1 = \beta_2 = \dots = \beta_q$.

O número de graus de liberdade, t, para $SQ(\beta_1|\beta_2)$ é o mesmo de $SQ(\gamma_1|\gamma_2)$ da Tabela 12.2.

Tabela 12.3 Análise de variância para testar H_0 : $\beta_1=\beta_2=\cdots=\beta_q$ no modelo balanceado de posto incompleto.

F. Variação	g.l.	Somas de quadrados
Devida a $oldsymbol{eta}_1 oldsymbol{eta}_2$	t	$SQ(\boldsymbol{\beta}_1 \boldsymbol{\beta}_2) = \widehat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y} - \widehat{\boldsymbol{\beta}}'_2\mathbf{X}'_2\mathbf{y}$
Resíduo	n-k	$SQResiduo = y'y - \widehat{oldsymbol{eta}}'\mathbf{X}'\mathbf{y}$
Total	n-1	$SQT = \mathbf{y}'\mathbf{y} - n\bar{y}^2$

Neste exemplo, t corresponde ao número de funções estimáveis e linearmente independentes usadas para expressar H_0 .

Para testar H_0 : $\beta_1=\beta_2=\cdots=\beta_q$ são necessárias t=q-1 funções estimáveis e l.i.

12.6.3 Hipótese Linear Geral H_0 : $C\beta = 0$

Teorema 12.6B. Se $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, onde \mathbf{X} é $n \times p$, de *posto* $k , se <math>\mathbf{C}$ é $m \times p$ de *posto* $m \le k$ tal que $\mathbf{C}\boldsymbol{\beta}$ é um conjunto de m funções estimáveis e l.i. e se $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y}$, então:

- i) $C(X'X)^-C'$ é não singular e <u>invariante</u> a escolhas de $(X'X)^-$
- *ii*) $\mathbf{C}\widehat{\boldsymbol{\beta}} \sim N_m(\mathbf{C}\boldsymbol{\beta}, \sigma^2\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}')$
- iii) $SQHip/\sigma^2 = (\mathbf{C}\widehat{\boldsymbol{\beta}})' [\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}']^{-1} (\mathbf{C}\widehat{\boldsymbol{\beta}})/\sigma^2 \sim \chi^2(m,\lambda),$ Onde $\lambda = (\mathbf{C}\boldsymbol{\beta})' [\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}']^{-1} \mathbf{C}\boldsymbol{\beta})/2\sigma^2$
- iv) $SQResiduo/\sigma^2 = y'[\mathbf{I} \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}']y/\sigma^2 \sim \chi^2(n-k)$.
- v) SQHip e SQResiduo são independentes.

Teorema 12.6C Seja $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, onde \mathbf{X} é $n \times p$, de *posto* $k , e sejam <math>\mathbf{C}$, $\mathbf{C}\boldsymbol{\beta}$ e $\widehat{\boldsymbol{\beta}}$ como definidos no Teorema 12.6B. Então se H_0 : $\mathbf{C}\boldsymbol{\beta} = \mathbf{0}$ é verdadeira, a estatística

$$F = \frac{SQHip/m}{SQResiduo/(n-k)} = \frac{(\widehat{C}\widehat{\beta})' [C(X'X)^{-}C']^{-1} (\widehat{C}\widehat{\beta})/m}{SQResiduo/(n-k)}$$
(12.46)

Em que $SQHip = (\mathbf{C}\widehat{\boldsymbol{\beta}})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}']^{-1}(\mathbf{C}\widehat{\boldsymbol{\beta}})$ e F é distribuída como F(m, n-k).

12.7. UMA ILUSTRAÇÃO DE ESTIMAÇÃO E TESTE DE HIPÓTESE

Suponha o modelo aditivo (sem interação) com dois fatores:

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$
, para $i = 1, 2, 3$ e $j = 1, 2$

As seis observações podem ser escritas na forma $y = X\beta + \varepsilon$ como

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \\ y_{31} \\ y_{32} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{31} \\ \varepsilon_{32} \end{bmatrix}$$
(12.47)

A matriz **X'X** é dada por: **X'X** =
$$\begin{bmatrix} 6 & 2 & 2 & 2 & 3 & 3 \\ 2 & 2 & 0 & 0 & 1 & 1 \\ 2 & 0 & 2 & 0 & 1 & 1 \\ 2 & 0 & 0 & 2 & 1 & 1 \\ 3 & 1 & 1 & 1 & 3 & 0 \\ 3 & 1 & 1 & 1 & 0 & 3 \end{bmatrix}$$

 $\mathbf{X}'\mathbf{X} \notin 6 \times 6 \text{ e } posto(\mathbf{X}'\mathbf{X}) = posto(\mathbf{X}) = 4.$

12.7.1 Funções Estimáveis

A hipótese H_{01} : $\alpha_1 = \alpha_2 = \alpha_3$ é equivalente a

$$H_{01}$$
: $\alpha_1 - \alpha_2 = \alpha_1 - \alpha_3 = 0$ ou H_{01} : $\begin{bmatrix} \alpha_1 - \alpha_2 \\ \alpha_1 - \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Assim H_{01} é <u>testável</u> porque $\alpha_1 - \alpha_2$ e $\alpha_1 - \alpha_3$ são funções estimáveis (<u>contrastes</u>) l.i. e quando igualadas a zero, reproduzem a hipótese H_{01} : $\alpha_1 = \alpha_2 = \alpha_3$.

12.7.2 Testando uma hipótese

Como são necessárias duas funções estimáveis e l.i. dos α' s para expressar H_{01} : $\alpha_1=\alpha_2=\alpha_3$, a SQH_{01} tem dois graus de liberdade.

De modo similar, H_{02} : $\beta_1 = \beta_2$ também é testável e SQH_{02} tem um grau de liberdade.

O sistema de equações normais $(\mathbf{X}'\mathbf{X})\widehat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$ é dado por:

$$\begin{bmatrix}
6 & 2 & 2 & 2 & 3 & 3 \\
2 & 2 & 0 & 0 & 1 & 1 \\
2 & 0 & 2 & 0 & 1 & 1 \\
2 & 0 & 0 & 2 & 1 & 1 \\
3 & 1 & 1 & 1 & 3 & 0 \\
3 & 1 & 1 & 1 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
\hat{\mu} \\
\hat{\alpha}_1 \\
\hat{\alpha}_2 \\
\hat{\alpha}_3 \\
\hat{\beta}_1 \\
\hat{\beta}_2
\end{bmatrix} = \begin{bmatrix}
y_{\bullet \bullet} \\
y_{1 \bullet} \\
y_{2 \bullet} \\
y_{3 \bullet} \\
y_{\bullet 1} \\
y_{\bullet 2}
\end{bmatrix}$$
(12.48)

Impondo duas condições marginais $\hat{\alpha}_1 + \hat{\alpha}_2 + \hat{\alpha}_3 = 0$ e $\hat{\beta}_1 + \hat{\beta}_2 = 0$, nós obtemos as seguintes soluções:

$$\hat{\mu} = \bar{y}_{\bullet \bullet} \qquad \hat{\alpha}_i = \bar{y}_{i \bullet} - \bar{y}_{\bullet \bullet} \qquad \hat{\beta}_j = \bar{y}_{\bullet j} - \bar{y}_{\bullet \bullet} \qquad (12.49)$$

onde $\bar{y}_{\bullet\bullet} = \sum_{ij} y_{ij}/6$, $\bar{y}_{i\bullet} = \sum_j y_{ij}/2$ e $\bar{y}_{\bullet j} = \sum_i y_{ij}/3$, para i=1,2,3 e j=1,2.

Importante:

• Se impusermos as condições sobre os parâmetros e sobre as estimativas as equações (12.49) fornecem <u>estimativas únicas</u> de parâmetros com significado único.

Por exemplo: α_1 passa a ser $\alpha_1^* = \bar{\mu}_{1\bullet} - \bar{\mu}_{\bullet\bullet}$ (desvio esperado da média devido ao tratamento 1) e $\bar{y}_{1\bullet} - \bar{y}_{\bullet\bullet}$ é uma boa estimativa de α_1 .

• Se as condições forem usadas somente para obter estimativas e não forem impostas sobre os parâmetros, então α_i não é único e $\bar{y}_{i\bullet} - \bar{y}_{\bullet\bullet}$ não estima um parâmetro.

Neste caso $\hat{\alpha}_i = \bar{y}_{i\bullet} - \bar{y}_{\bullet\bullet}$ somente pode ser usado com outros elementos em $\hat{\beta}$ para obter estimativas $\lambda'\hat{\beta}$ de funções estimaveis $\lambda'\beta$.

Para testar H_0 : $\alpha_1=\alpha_2=\alpha_3$ precisamos calcular a SQ do modelo completo:

$$SQ(\mu, \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}) = SQ(\mu, \alpha, \beta) = \widehat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}$$

$$SQ(\mu, \alpha, \beta) = \left[\hat{\mu} \ \hat{\alpha}_{1} \ \hat{\alpha}_{2} \ \hat{\alpha}_{3} \ \hat{\beta}_{1} \ \hat{\beta}_{2}\right] \begin{bmatrix} y_{\bullet \bullet} \\ y_{1\bullet} \\ y_{2\bullet} \\ y_{3\bullet} \\ y_{\bullet 1} \\ y_{\bullet 2} \end{bmatrix}$$

$$SQ(\mu, \alpha, \beta) = \frac{y_{\bullet \bullet}^{2\bullet}}{6} + \left(\sum_{i=1}^{3} \frac{y_{i\bullet}^{2\bullet}}{2} - \frac{y_{\bullet \bullet}^{2\bullet}}{6}\right) + \left(\sum_{j=1}^{2} \frac{y_{\bullet j}^{2}}{3} - \frac{y_{\bullet \bullet}^{2\bullet}}{6}\right) \qquad (12.5)$$

$$SQRes = \mathbf{y}'\mathbf{y} - \widehat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}$$

$$= \left(\sum_{ij} y_{ij}^{2} - \frac{y_{\bullet \bullet}^{2\bullet}}{6}\right) - \left(\sum_{i=1}^{3} \frac{y_{i\bullet}^{2\bullet}}{2} - \frac{y_{\bullet \bullet}^{2\bullet}}{6}\right) - \left(\sum_{j=1}^{2} \frac{y_{\bullet j}^{2}}{2} - \frac{y_{\bullet \bullet}^{2\bullet}}{6}\right)$$

Para obter a SQ do modelo reduzido, $\hat{\beta}'_2 X'_2 y$, da Tabela 12.3, nós usamos o modelo:

$$y_{ij} = (\mu + \alpha) + \beta_j + \varepsilon_{ij} = \mu + \beta_j + \varepsilon_{ij}$$

em que $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$ e a constante $(\mu + \alpha)$ é substituída por μ (sem perda de generalidade).

O sistema de equações normais fica:

$$\mathbf{X}_{2}'\mathbf{X}_{2}\widehat{\boldsymbol{\beta}}_{2} = \mathbf{X}_{2}'\mathbf{y} \quad \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \begin{vmatrix} \mu \\ \hat{\beta}_{1} \\ \hat{\beta}_{2} \end{vmatrix} = \begin{bmatrix} y_{\bullet \bullet} \\ y_{\bullet 1} \\ y_{\bullet 2} \end{bmatrix} \quad (12.51)$$

Usando a condição $\hat{\beta}_1 + \hat{\beta}_2 = 0$, a solução (única) para o sistema é obtida como:

$$\hat{\mu} = \bar{y}_{\bullet \bullet} \qquad \hat{\beta}_j = \bar{y}_{\bullet j} - \bar{y}_{\bullet \bullet} \tag{12.52}$$

Observe que essa solução é a mesma obtida no modelo completo em (12.49).

A soma de quadrados do modelo reduzido é calculada por

$$SQ(\mu, \beta) = \widehat{\boldsymbol{\beta}}_{2}' \mathbf{X}_{2}' \mathbf{y} = \frac{y_{\bullet \bullet}^{2}}{6} + \left(\sum_{j=1}^{2} \frac{y_{\bullet j}^{2}}{3} - \frac{y_{\bullet \bullet}^{2}}{6} \right)$$
(12.53)

A soma de quadrados associada à hipótese H_{01} : $\alpha_1 = \alpha_2 = \alpha_3$ é definida como:

$$SQ(\alpha|\mu,\beta) = \widehat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y} - \widehat{\boldsymbol{\beta}}'_2\mathbf{X}'_2\mathbf{y} = \sum_{i=1}^3 \frac{y_{i\bullet}^2}{2} - \frac{y_{\bullet\bullet}^2}{6}$$
 (12.54)

Esses resultados estão resumidos na Tabela 12.4, observando que não foi incluída a soma de quadrados $SQ(\beta|\mu,\alpha)$.

Tabela 12.4 Análise de variância para testar H_{01} : $\alpha_1=\alpha_2=\alpha_3$

Fonte de Variação	g.l.	Somas de quadrados
Devida a α ajust. μ , β	2	$SQ(\alpha \mu,\beta) = \sum_{i=1}^{3} \frac{y_{i\bullet}^2}{2} - \frac{y_{\bullet\bullet}^2}{6}$
Resíduo	2	$SQRes = \sum_{ij} y_{ij}^2 - \widehat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y}$
Total	5	$SQT = \sum_{ij} y_{ij}^2 - \frac{y_{\bullet\bullet}^2}{6}$

Note que $SQ(\alpha|\mu,\beta)$ é a mesma fórmula algébrica usada na Estatística Experimental para calcular $SQ(\alpha)$.

12.7.3 Ortogonalidade das Colunas de X

- As estimativas de μ , β_1 e β_2 dadas em (12.52) no modelo reduzido são as mesmas de μ , β_1 e β_2 em (12.49) no modelo completo.
- A soma de quadrados $\hat{\beta}_2' \mathbf{X}_2' \mathbf{y}$ em (12.53) é <u>claramente</u> uma parte de $\hat{\beta}' \mathbf{X}' \mathbf{y}$ em (12.50). De fato,

$$SQ(\alpha|\mu,\beta) = SQ(\alpha)$$

$$SQ(\mu,\alpha,\beta) = SQ(\mu) + SQ(\alpha) + SQ(\beta)$$

Esses resultados simplificados são devidos à <u>ortogonalidade</u> dos <u>blocos de colunas</u> na matriz **X** em (12.47), como comentado no Teorema 12.6A.

As colunas de **X** em (12.47) <u>não são ortogonais a todas as outras colunas</u>, mas nós podemos identificar <u>três grupos de colunas ortogonais</u> se cada coluna depois da primeira for centrada na média da coluna.

$$\mathbf{X}_{c} = \left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)\mathbf{X}_{1} = \begin{bmatrix} x_{11} - \bar{x}_{1} & x_{12} - \bar{x}_{2} & \dots & x_{1k} - \bar{x}_{k} \\ x_{21} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \dots & x_{2k} - \bar{x}_{k} \\ \vdots & & \vdots & & \vdots \\ x_{n1} - \bar{x}_{1} & x_{n2} - \bar{x}_{2} & \dots & x_{nk} - \bar{x}_{k} \end{bmatrix}$$

onde \mathbf{X}_1 é a matriz formada pelas colunas de \mathbf{X} , com exceção da primeira.

No exemplo em questão (modelo aditivo com dois fatores) temos

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Matriz centrada:

$$[\mathbf{j} \ \mathbf{X}_c] = [\mathbf{j} \ \mathbf{X}_{\alpha} \ \mathbf{X}_{\beta}] = \begin{bmatrix} 1 & \vdots & 2/3 & -1/3 & -1/3 & \vdots & 1/2 & -1/2 \\ 1 & \vdots & 2/3 & -1/3 & -1/3 & \vdots & -1/2 & 1/2 \\ 1 & \vdots & -1/3 & 2/3 & -1/3 & \vdots & 1/2 & -1/2 \\ 1 & \vdots & -1/3 & 2/3 & -1/3 & \vdots & -1/2 & 1/2 \\ 1 & \vdots & -1/3 & -1/3 & 2/3 & \vdots & 1/2 & -1/2 \\ 1 & \vdots & -1/3 & -1/3 & 2/3 & \vdots & -1/2 & 1/2 \end{bmatrix}$$

(12.55)

Os três grupos de colunas $[\mathbf{j} \ \mathbf{X}_{\alpha} \ \mathbf{X}_{\beta}]$ em (12.55) são ortogonais. Por exemplo: cada uma das colunas 2, 3 e 4 é ortogonal a cada uma das colunas 5 e 6, mas as colunas 2, 3 e 4 não são ortogonais entre si.

Vale lembrar que $posto(\mathbf{X})=4$ e que os estimadores dos parâmetros $\boldsymbol{\beta}_1$ no modelo centrado $\boldsymbol{y}=[\mathbf{j}\ \mathbf{X}_c]\begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta}_1 \end{bmatrix}+\boldsymbol{\varepsilon}$ são os mesmos estimadores de $\boldsymbol{\beta}_1$ do modelo não centrado, $\boldsymbol{y}=\mathbf{X}\boldsymbol{\beta}+\boldsymbol{\varepsilon}$.

Ilustraremos o uso de condições marginais para obter uma ortogonalização que é de posto completo. Para tanto, considere o modelo com dois fatores e com interação:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$
 (12.56)

para i=1,2,j=1,2 e k=1,2 (duas repetições). Matricialmente o modelo fica:

$$\begin{bmatrix}
y_{111} \\
y_{112} \\
y_{121} \\
y_{211} \\
y_{212} \\
y_{221} \\
y_{222}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\mu \\
\alpha_1 \\
\alpha_2 \\
\beta_1 \\
\beta_2 \\
\gamma_{11} \\
\gamma_{12} \\
\gamma_{21} \\
\gamma_{22}
\end{bmatrix} + \begin{bmatrix}
\varepsilon_{111} \\
\varepsilon_{112} \\
\varepsilon_{121} \\
\varepsilon_{122} \\
\varepsilon_{211} \\
\varepsilon_{222} \\
\varepsilon_{221} \\
\varepsilon_{221} \\
\varepsilon_{222}
\end{bmatrix} (12.57)$$

Condições marginais úteis ficam evidentes no sistema de equações normais (12.58):

$$8\hat{\mu} + 4(\hat{\alpha}_{1} + \hat{\alpha}_{2}) + 4(\hat{\beta}_{1} + \hat{\beta}_{2}) + 2(\hat{\gamma}_{11} + \hat{\gamma}_{12} + \hat{\gamma}_{21} + \hat{\gamma}_{22}) = y_{\bullet\bullet\bullet}$$

$$4\hat{\mu} + 4\hat{\alpha}_{i} + 2(\hat{\beta}_{1} + \hat{\beta}_{2}) + 2(\hat{\gamma}_{i1} + \hat{\gamma}_{i2}) = y_{i\bullet\bullet} \qquad i = 1, 2$$

$$4\hat{\mu} + 2(\hat{\alpha}_{1} + \hat{\alpha}_{2}) + 4\hat{\beta}_{j} + 2(\hat{\gamma}_{1j} + \hat{\gamma}_{2j}) = y_{\bullet j\bullet} \qquad j = 1, 2$$

$$2\hat{\mu} + 2\hat{\alpha}_{i} + 2\hat{\beta}_{j} + 2\hat{\gamma}_{ij} = y_{ij\bullet} \qquad i = 1, 2, j = 1, 2$$

A solução das equações em (12.58) será simplificada impondo as seis condições marginais:

$$\hat{\alpha}_1 + \hat{\alpha}_2 = 0, \ \hat{\beta}_1 + \hat{\beta}_2 = 0,$$

$$\hat{\gamma}_{i1} + \hat{\gamma}_{i2} = 0 \quad \text{para } i = 1, 2$$

$$\hat{\gamma}_{1j} + \hat{\gamma}_{2j} = 0 \quad \text{para } j = 1, 2$$
(12.59)

- A matriz $\mathbf{X} \in 8 \times 9$ e $posto(\mathbf{X}) = 4$, porque as cinco primeiras colunas podem ser expressas como combinações lineares das quatro últimas colunas, que são l.i.
- Assim, X'X é 9×9 e tem uma deficiência de *posto* 9 4 = 5. Entretanto, existem seis condições marginais em (12.59).
- Esta discrepância é resolvida notando-se que entre as quatro últimas equações em (12.59) existem somente três restrições *l. i.* (uma das quatro equações é redundante).

Podemos obter uma <u>ortogonalização de posto completo</u> impondo as condições marginais apresentadas em (12.59) sobre os parâmetros do modelo e usando essas relações para expressar os parâmetros redundantes em termos dos quatro parâmetros μ , α_1 , β_1 e γ_{11} , pois:

$$\alpha_2 = -\alpha_1, \quad \beta_2 = -\beta_1,$$
 (12.60)
$$\gamma_{12} = -\gamma_{11}, \gamma_{21} = -\gamma_{11} \quad \text{e} \quad \gamma_{22} = \gamma_{11}$$

Usando (12.60), nós podemos expressar as oito observações y_{ijk} em (12.56) em termos de μ , α_1 , β_1 e γ_{11} .

Para $k = \{1, 2\}$ tem-se:

$$y_{11k} = \mu + \alpha_1 + \beta_1 + \gamma_{11} + \varepsilon_{11k}$$

$$y_{12k} = \mu + \alpha_1 + \beta_2 + \gamma_{12} + \varepsilon_{12k} = \mu + \alpha_1 - \beta_1 - \gamma_{11} + \varepsilon_{12k}$$

$$y_{21k} = \mu + \alpha_2 + \beta_1 + \gamma_{21} + \varepsilon_{21k} = \mu - \alpha_1 + \beta_1 - \gamma_{11} + \varepsilon_{21k}$$

$$y_{22k} = \mu + \alpha_2 + \beta_2 + \gamma_{22} + \varepsilon_{22k} = \mu - \alpha_1 - \beta_1 + \gamma_{11} + \varepsilon_{21k}$$

A "nova" matriz X fica:

Que é uma matriz de posto completo com colunas ortogonais \Rightarrow os métodos apresentados nos Capítulos 7 e 8 podem ser usados na estimação dos parâmetros e em testes de hipóteses.

Exercícios: ver pág. 336-338 do livro do Rencher.