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ABSTRACT 

The mathematical dffficulties assocfated 
with a class of mixed systems of different&z1 and 
algebraic equations are presented and an 
algoritFan for dealing with them ie described. 
Two classes of chemical engineering models which 
give rise to such systems, are identified. Also 
sonte problems arising from I-igOt-OUS dynamic 
distillation models are analysed. 

scope 

The mathematical modelling of chemical 
engineering operations under transient conditions 
leads naturally to mixed systems of differential 
and algebraic equations (DAE's). 

DAE systems can be classified according to 
their index. DAR's of index one behave quite 
similarno sets of ordinary differential 
equations (ODE'S), and can be solved using 
similar solution methods. However, the behaviour 
of DAl?'s of index exceeding unity is 
qualitatively different to that of ODE’S, 
presenting special difficulties. In particular, 
consistent initial conditions for such systems 
must satisfy not only the original equations 
themselves. but also the first or hisher-order 
differenti&ls with respect to time of some of 
these eauations. As a result, the n"= of 
variables for which arbitrary initial values may 
be specified is less than the number of 
differential equations in the system. An 
efficient graph-theoretical algorithm for 
detecting the equations, the differentials of 
which must be taken into account, is presented. 

DAR systems of index two or higher arise in 
chemical engineering models of phase equilibrium 
processes; they also occur in dynamic "design- 
problems involving the calculation of a 
time-varying control necessary for achieving a 
desired system behaviour. 

The index of DAE'S describing rigorous 
dynamic distillation models can be shown to be 
strongly dependent on the type of pre*&Wre 
specification imposed on the system. 

coNcl.uSIONs AND SIGNIFICANCE 

Dynamic models of soma chemical engineering 
operations give rise to DAE systems, tRe 
behaviour of which is qualitatively different to 
ODE systems. An algorithm for detecting such 
systems, and overcoming the special problems 
posed by them, is presented. 

1. Introduction 

The mathematical models of chemical 

engineering systems operating under transient 
conditions are usually described by mixed sets of 
differential and algebraic equations (DAK's) of 
the form: 

f(x, *, Y. "* t) = 0 (1) 

g(x. Y, o, t> = 0 (2) 

Here x(t) and y(t) ate unknown vectors referred 
to as the "differential" and "algebraic" 
variables respectively, while u(t) (the "input" 
variables) are known functions of time, t. 
Normally, the differential equations (1) arise 
from dynamic material, energy and momentum 
balances; processes which are much faster (e.g. 
thermodynamic equilibria) yield algebraic 
equations of type (2), snd 80 do equations 
defining auxiliary quantities etc. 

Many DAR systems are very similar to systems 
of ordinary differential equatians (ODE's). In 
fact, ff-the algebraic equations (2) are solvable 
for the algebraic variables, y given values of 
the differential variables, Y, then the DAF: 
system may be converted to the ODE 

f(x, *. y*. "I t) * 0 (3) 

where y* - y*('i, "9 t) is the solution of (2). 
If, furthermore, equations (3) are solvable in *, 
they can be rearranged to the standard ODE form 

* - %x, Sri. ". t> (4) 

Of course the above transformations may not be a 
practical method of solution. This is especially 
true if (2) or (3) are nonlinexrr fn y or t, in 
whfch case sets of nonlinear equations may have 
to be solved numerically every time the ODE 
integrator requires the value of the right hand 
side of (4). HOW.YJ&F, Gear (1971) showed that 
such an approach is quite unnecessary. and that 
DAE's can he solved by an extension of his 
well-known backward-difference formula (BDF) 
class of methods, ori&nally developed for ODE's. 
Briefly. at the kth integration step, 
method uses the BDF formulae rslating t ?w::: 
el.iminate Ack' from equations (1). thus 

essentially algebraic system in x 
;?k>_ 

itcfav:in": 
The tatter ts solved using a modified 

Newton's iteration. Similar ideas can be applied 
using any implicit or semi-implfcit integration 
formula. Gear's ideas have already formed the 
basis of successful DAR codes (Petzold (1982b), 
Morison (1984)). 

HoWeVet, not all DAR systems are similar to 
ODe'a (Petsold (1982a)). For many well-posed 
problems equations (1) and (2) are not solvable 
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for variables ir a"d y for fixed X. This is 
exhibited as the singularity of the Jacobian 
matrix 

- 

I f f 

0* 
Y 

gY 
I J 

for all values of X. Not only does this imply 
that the reduction of the DAE system (1) and (2) 
to the ODF.'S (4) through algebraic 
transformations is not possible, but it also has 
serious consequences regarding the provision of 
correct initial conditions for such systems. 
Furthermore. eve" if the initialisation problems 
are surmounted, controlling the truncation error 
during integration may be problematic. 

Section 2 of this paper demonstrates the 
problems associated with obtaining consistent 
initial conditions for DAE eystmes. The index 
classification of such systems is introduced, and 
a recently developed algorithm for consistent 
initialisatfon is presented. 

Section 3 of the paper shows how DAE systems 
of the type presented in section 2 arise in 
chemical engineering applications. Finally, 
section 4 analyses the special problems presented 
by rigorous dy"aUliC models of distillation 
operations. 

2. The Initialisation of DAE Systems 

Par a given DAE system, a consistent initial 
condition is a set of vectors {x(O); y(O), f(O)} 
which must satisfy the constituent equations (1) 
and (2). Although this requirement is sufficient 
for many systems, there are some DAE's for which 
further requirements on the set of consistent 
initial conditions are imposed by the 
differentials of some of the equations with 
respect to time. This is best illustrated in 
terms of a simple mathematical example. 

Consider the linear DAE system 

fl = x1 + x* + y (5) 

d2 = Xl - x2 - y (6) 

O- Xl + 2x2 - y (7) 

This can be reduced to a" ODE system in x1 
and x2 by using (7) t" eliminate y. I"volvi"g 
the consistency requirement. one can view (5)-(7) 
as a eat of three equations in the five unknovms 
xl(O), x,(O), y(O), *l(O). f2(0); thus two (-5-3) 
variables may be given arbitrary initial values, 
and the values of the other three then determined 
by solving the equations. It should be noted 
that the number of arbitrarily specifiable 
conditions equals the number of differential 
equations in the system, as is always the case 
with ODE systems. 

Consider, however, the DAE system 

*1 = Xl + x2 + Y (5) 

*2 = Xl - x2 - y (6) 

0 - Xl + 2x2 (8) 

Several difficulties are immediately 
apparent. Firer, reduction to ODE's through 
algebraic transformations is not possible, since 
(8) cannot be solved for the algebraic variable, 
Y' Furthermore arbitrary values for xl(O) and 

x2(0) cannot be specified, since the tw" are now 
related through (8). I" fact, the differential 
of (8) with respect ro time, 

0 - Zl + 2+2 (9) 

must also be satisfied by any consistent initial 
condition. Thus equations (S), (6), (8) and (9) 
form a set of four independent equations in the 
five unknowns x (O), 
Consequently, on y one of these variables may be 1_ 

x2(O), y(O), *l(O), a,(O). 

specified arbitrarily despite the fact that there 
are still two differential equations in the 
system! Of coursa, having obtained a consistent 
initial condition, in principle either (8) or (9) 
need be retained for the actual solution process, 
but not both since one implies the other. 
However, numerical considerations involving the 
control of the truncation error during 
integration imply that the differentiated form 
(9) is preferable to (8) (Gear and Petzold 
(19R4)). 

Despite their apparent similarity, systems 
(5), (6). (7) and (5). (6). (8) are qualitatively 
different, as show" by the above argument. A 
convenient classification of DAE systems is 
provided by their index. Here we define index as 
the minimum number of differentiations with 
respect to time that the system equations have to 
undergn t" c""vert the system into a set o-f 
ODE'*. Thus, by definition any ODE system has 
index saro. System (S), (61, (8) is of index 
two: one differentiation leads to (9), or. 
equivalently, using (5) and (6) to eliminate il 
and *2, to 

0 - 3x1-x2-y (10) 

A second differentiation applied to (10) yields 
an expression for 9, 

9 = 3S1 - f2 = 2x1 + 4x2 + 4y (11) 

which, together with (5) and (6). forms a set of 
ODE's in x 
show that 1;):2(6a;p ';;> "i'."zaTi','b,,"",': :;:se:: 
a" expression for 9 may he obtained by a single 
differentiation of equation (7). 

While the initialisation of most index one 
problems is vary similar to that of ODE's, come 
index-one and all index-two or higher index 
problems exhibit the type of difficulties 
exemplified by (5), (6). (8), notably the need to 
take the differentials of some of the equations 
into account. It should be noted that not all 
equation differentials are relevant: for 
instance. differentiating equation (5) yields 

. . 
x1 - K1 + t2 + * (12) 

I" principle, equation (12) must be 
satisfied by the solution of system (5), (6). (8) 
at all times. including the initial time t-0. 
However, (12) does not imp0se a"Y actual 
constraint on the set of valid initial 
conditions, since it can always be made true by 
appropriate selection of the newly introduced 
variables xl and 9. 

Pantelides (1986) addressed the problem of 
locating all equations which must be 
differentiated for the purposes of consistent 
initialisation, without performing a"Y 
unnecessary differentiations- In the case of the 
general system (l), (2), It can be shown that a 
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variables, i.e. 

w(t) - $(x* *, Y) (20) 

although in most practical cases w(t) are just a 
subset of {x, 5r, y). 

Dynamic design problems invariably lead to 
higher index DAE's if the form of (20) is such 
that it constrains the differential variables, x 
to the extent of destroying their independence. 

Consider. for instance, a dynamic model of a 
well-stirred reactor in which a first-order. 
exothermic chemical reaction takes place. The 
describing equations are: 

%- K1(co-c) - R (21) 

+I%- K1(To-T) + K2.R - K3(T-Tc) (22) 

0 - R - K3 exp(-K4/T) . c (23) 

where: 

c, T are the reactant concentration and 
temperature in the reactor; 

CO' =o are the reactant concentration and 
temperature in the feed; 

R is the rate of reaction per unit volume; 

Tc is the coolant temperature: 
end RI. R2. K3, K4 are given constrants. 

nor given feed conditions co(t) and To(t), 
the specification of coolant temperature 
variation, T (t) 

% 
yields a system of three 

equations in t e three unknowns c(t), T(t) and 
R(t). since all inputs are give", this is a 
sim"latio" problem, the solution of which is 
completely straightforward. one 
differentiation of equation (2:; ;%s an 
expression for dR/dt thus converting the system 
to a set of ODE's; its index is, therefore, one. 

nowever, 
to determine it 

if Tc(t) is unknown and one wishes 
so that a give" desired variation 

w(t) of the exit concentration, c is achieved, 
i.e. 

0 - c - w(t) (24) 

one is confronted by a high index problem with 
all the associated initialisation difficulties. 
Clearly the differential variable c is not 
independent. and equation (24) must be 
differentiated to yield the additional 
i"formatio". 

0 - $+ - s(t) (25) 

Wowever, further restrictions on the initial 
conditions can be obtained by differentiating the 
three equations (21). (23) and (25), since they 
contain only two distinct members of 
dT/dt, R, Tci. 

{dctdt. 
Again, this introduces three new 

equations but only two new variables, namely 
d2cldt' and dR/dt. These new equations together 
with (21) - (25) form a set of eight equations in 
the eight unknowns c(0). T(O), R(0). T=(O). 
dc/dt(O), dT/dt(O), da/at(O). and dcldt(0). Thus 
no variable may be give" an arbitrary initial 
value, &spite the fact that the original system 
(21) - (24) contains t"o differential equations. 

The index of the dynamic design problem (21) 
- (24) can be show" to be three, whereas that of 
the associated simulation problem (21) - (23) is 

only one. The two are. therefore, qualitatively 
different. This situation is in sharp contrast 
to the steady-state case, for which simulation 
and design problems are mathematically very 
similar. The latter fact is exploited by the 
latest generation of steady-state simulators 
which employ equation-oriented ideas (Perkins 
(19R3)) and allow the user almost unlimited 
freedom in specifying and solving design and 
simulation problems. If similar flexibility is 
to be provided by dynamic simulators. automatic 
algorithms for dealing with high index problems, 
such as those described in this paper, must be 
devised and implemented. 

4. Dynamic Distillation Models 

A further, dramatic demonstration of the 
dependence of the index of a DAE system on the 
specifications imposed on a problem, is provided 
by rigorous dynamic distillation models. 

Assuming perfect homogeneity of the liquid 
and vapour phases, thermodynamic equilibrium and 
negligible vepour holdup, the DAE system 
describing stage i of a distillation COlUl@" 
consists of the following equations: 

d"i 
F' Li-l + Vi+l - Li - "i + Fi (26) 

% (MIXiJ) - Li-lXi-1,j + "i+1Yi+1.j - LiXij 

-VIytj + Fizij , j = 1 . . NC (27) 

% (Mihi) - Li-lhi-1 + "i+1%+1 - Lihi 

- ViHi + Q, + Fib; (28) 

Yij/xij = Kij(Ti. Pi' +* 41 (29) 

where 

NC 
z Yij = 1 
j=l 

Li - @(Mi) 

Pi+l - Pi - @(Hi. Vi+l) 

hi = hliq(Ti* Pi' ti 

RI - Hvap(Ti, Pi. 4) 

(30) 

(31) 

(32) 

(33) 

(34) 

Mi is the molar lfquid holdup on stage 
i: 
L S 
ff 

Vi are the molar liquid and vapouf 
owratee leaving stage i; 

Fi is the feed flowrate to stage i; 

Xii* yi** 
"f' 

are the mole fractions of 
coinponeht 
feed at eta-g= 

in the liquid, vapour and 
i; 

:&I%: 
h; are the molar enthalpies of 
vapour and feed at stage i; 

Kij is the K-value of component j at 
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subset of the equations 
and only if the group 
the matrix 

f 

A = 
f 

0 

is such that 

must be differentiated if 
of corresponding rows of 

(13) 

(i) the rows within the group are linearly 
dependent, 

and 
(ii) the rows within any proper subset of 

this group are linearly independent. 

An immediate consequence of these criteria is 
that systems for which matrix A is nonsingular do 
not exhibit any special initlalisation problems. 

Since a system of N equations contains ZN-1 
nonempty groups of rows, examining all of these 
for the above property is not practical for any 
but the smallest N. Furthermore, given the 
numerical rounding errors associated with linear 
algebra operations, such a process is not even 
reliable. In order to overcome these problems, 
Pantelides proposed a graph-theoretical algorithm 
which analyses the nonzero structure of matrix A. 
The algorithm is based on the observation that a 
group of k rows is linearly dependent if they 
contain nonzero entries in fewer than k columns. 
Equivalently, a subset of k equations must be 
differentiated if it contains fewer than k 
distinct members of the set of variables I?.. y}. 
Thus, for instance, equation (8) must be 
differentiated since it forms a subset of 1 
equation containing 0 members of I*,, f2, y}. 
Locating such subsets may be done quite 
efficiently using concepts developed for solving 
the assignment problem on bipartite graphs (see 
e.g. Duff (1981)). 

Of course, as soon as a suitable equation 
subset is located, it is first differentiated and 
then replaced by its differential; the algorithm 
is then applied to this modified system in order 
to locate further subsets. Termination of this 
process for all well-posed problems is proved by 
Pantelides. Overall, the algorithm can be shown 
to be of low computational complexity, and can 
therefore be used to analyse large DAE systems. 
However, it should be noted that, Sil-KX? the 
algorithm is based on purely structural 
information, some groups of linearly dependent 
rows of A may escape detection. 

3. Higher Index DAB Systems in Chemical 
Engineering 

DAR systems of index exceeding unity occur 
in many areas of chemical engineering rnodelling. 
Two such areas are presented in this section 
through representative examples. 

The modelling of dynamic equilibrium 
processes often results in index two or higher 
systems. This usually happens because the 
differential variables introduced by the material 
and energy balances are not independent, but are 
related through the phase equilibrium 
relationships. 

Consider, for instance, the dynamic model of 
a fixed-volume condenser with nealinible liquid - - 
hold-up. For a sfngle component vapour, -the 
relevant equations are: 

g = F-L 

N.Cp. g - F.Cp.(To-T) + A-L - 

p.v - N.R.T 

and 

(14) 

U.S.(T-Tc) (15) 

(16) 

P = A.exp(-B/T) (17) 
where 

N is the number of moles of vapour in the 
condenser; 

T, P are the temperature and pressure in 
the condenser; 

F, To are the feed vapour flowrate and 
temperature (given); 

L is the exit liquid flowrate; 
V is the condenser volume (fixed); 
u, s are the heat transfer coefficient and 

area (fixed); 

Tc is the coolant temperature (given); 

CPs 
h are the vapour heat capacity, and 

enthalpy of condensation, assumed 
conetant; 

R, A, B are given constants. 

For simplicity the perfect gas equation of 
state, (16) is used for the vapour, and a simple 
Antoine-type vapour pressure correlation, (17) is 
employed. No subcooling of the liquid is 
allowed. 

Equations (14) - (17) form a DAE system in 
the four Variables N(t), T(t), p(t) and L(t). 
HOWeVer, the two differential variables are not 
independent, as is easily show" by eliminating p 
from (16) and (17). Applying Pantelides (1986) 
algorithm, one detects that subset (16) and (17) 
must be differentiated, since the two equations 
contain only one member of the variable set 
{dN/dt, dT/dt, p, L}, namely p. Thus, a 
consistent initial condition must satisfy 
equations (14) - (17). and also the 
differentials, 

VS=E .R.T + N.R. g (18) 

Since (14) - (19) are six equations in the seven 
variables N(O), T(O). P(O). L(O), dN/dt(O), 
dT/dt(O) and dp/dt(O), only one arbitrary initial 
value must be supplied. Note that the 
ilifferentiation of (16) and (17) was indeed 
"profitable", in the sense that it yielded two 
extra equations while introducing only one new 
variable, dp/dt. 

System (14) - (17) can be shown to be an 
index two DAF. problem: by using (14), (15) and 
(1R) to eliminate variables dN/dt, dT/dt and 
dp/dt from (19). and SQQlying a second 
differentiation to the resulting algebraic 
equation. one obtains an expression for dL/dt; 
this together with (14), (15) and (18) forms a 
system of four ODE equations in N. T, p and L. 

A second category of chemical engineering 
problems giving rise to high index DAE systems is 
formed by "dynamic design" problems, so called by 
analogy to their steady-state counterparts. In 
such problems one or more input variables u(t) 
are unknown, and one seeks to determine them so 
that a given desired variation in one or more 
OUtQUt variables, w(t) is achieved. In general, 
the OUtpUtS can be known functions of the SyStSm 
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stage i; 

Ti’ Pi are the temperature and pressure 
at stage i: 
Qi is the external heat input to stage 
i: 
N'= is the number of components in the 
mixture being distilled. 

Rere equation (26) is a total material 
balance, while (27) are individual component mass 
balances; one of the latter could be replaced by 
the algebraic relation 

.+= 
L. 

j3 xij = 1 (35) 

but this substitution does not affect the 
arguments to be presented here. Equation (28) is 
a total enthalpy balance, with the liquid and 
vapour enthalpies defined by (33) and (34). 
Thermodynamic equilibrium is ensured by equations 
(29) and (30). Equation (31) relates the flow of 
the liquid leaving the stage to the holdup on the 
stage (as, for instance, in the case of liquid 
flowing over a weir). Similarly, (32) expresses 
the pressure drop between two stages in terms of 
resistance incurred by the vapour flowing through 
the holes (or valves) in the tray, and also 
through the liquid on the tray. In general, the 
exact form of functions ip and + depends on the 
type and geometry of the trays used. 

First, the case of an isolated equilibrium 
stage is considered. It is assumed that the 
input stream flowrates 
compositions {r,_, 

Vi+l. Fi], 

' 4+1* and enthalpies 

{hi-l. %+1* h";} are known functions of time, and 
so is the external heat inout. 0.. Furthermore. 
one of the two pressure's {Pi: Pf+l) is also 
specified. Although these specifications lead to 
a valid DAg system, problems with consistent 
initialisation do occur, since the differential 
variables {Mi, gi, h ] are not inde endent. 
P is fixed, then the kc+2 equations 
(33)) 

P 
If 

contain one,r=~~~.di~~~:(~~~~~: 
variables, namely 
if P +1 
elge raic variables are {(29), (30), (32), (33)} & 

is fixed, the corresponding equations ani 

and 14, T 
respective y. t ’ 

Pi) with cardinalitles ++3 and NC+2 
In either case, the differentials 

of the relevant equations must be taken into 
account during initialisation, reducing the 
number of arbitrarily specifiable initial values 
by one. Note that this conclusion is not 
affected if equation (35) is used to replace one 
of equations (27): the only difference in this 
case is that (35) itself must be differentiated 
together with all the other equations listed 
above. 

The interesting question here is how the 
problems associated with single equilibrium 
stages propagate in column sections of N stages. 
Again it is assumed that all material and 
enthalpy inputs to the system are completely 
specified 
[Pl' I 

together with one of the two pressures 

PWl . 

If one applies the consistent initialisation 
algorithm (see section 2) to the system resulting 
from the specification of Pl, it is shown that it 

is sufficient to differentiate equations {(29), 
(30), (33)) in each stage once only. The DAE 
system has index two. 

However. if the bottom pressure PN+l is 
the algorithm reveals that equations 

;%ffie::O) (32). 
diff;renti:ted i 

(33)] in stage i must be 
times1 Under such a 

specification, the index of the DAR system is 
N+l. 

In order to comprehend the above results, 
one must observe that if the differential of 
equation (32) must be taken into account during 
initialisation. the value of Vi(O) depends not 
only on Vi+l(0) but also on dVi+l/dt(O). 
Consequently, the vapour flowrate leaving the top 
stage, Vl(0) depends on the vapour flowrate 
entering the bottom stage and its first N time 
derivatives. It is this dependence that leads to 
the high index of the system resulting from the 
specification of PN+l. 

Clearly, the number of differentiations 
requfred render the specification of pres*ure 
P +1 
g 

highly undesirable. The specification of 
t e top pres*ure Pl is much mare practical, since 
in this case, equations must be differentiated at 
most once. However, even these differentiations 
may be avoided if the requirement for "perfect 
control" of this pressure is relaxed. This can 
be achieved by providing an extra equation 
linking Pl to other variables in the first stage, 
such ss Vl. This relation may reflect a control 
law, for instance: 

"1 - Vi,** * = * (Pl - P1.W) (36) 

where the subscript -8~~ refers to steady-state 
values. Alternatively, it may be a pressure drop 
equation, governing the flow of vapour between 
the top stage and the surroundings (or another 
unit, such as a total condenser), of the form 

Pl - Po = f(V1) (37) 

It may be shown that the addition of either (36) 
or (37) to the stage equations leads to a DAE 
system of index one. Of course, the proportional 
control law (36) could be extended to a PI 
controller; however, it should be emphasised that 
a PID controller would re-introduce the 
initialisation difficulties by rendering Pl a 
differential variable. 
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