Segunda Lista de Física Moderna: 8/Maio/2023

- 1. Mostre que a energia cinética média de translação de um litro do gás O_2 na pressão de 1 atm vale 152 joules. Com qual velocidade um corpo de 1 Kg deve transladar para ter essa energia cinética? Use que 1 atm equivale a 101325 N/m².
- 2. Baseado no princípio de equipartição de energia, mostre que o calor específico de um mol de moléculas diatômicas rígidas vale 5R/2. Exemplos: para CO vale 2,49R, para H_2 vale 2,45R.
- 3. Mostre a relação $e_{\nu}(T) = c u_{\nu}(T)/4$ entre o poder de emissão de um corpo negro e a densidade de energia no interior da cavidade térmica.
- 4. Em 1896 Wien utilizando argumentos termodinâmicos e considerações sobre efeito Doppler da radiação mostrou rigorosamente que a densidade $u_{\nu}(T)$ deveria ser da forma: $u_{\nu}(T) = \nu^3 f(\nu/T)$, com f uma função desconhecida até então. Mostre que essa forma funcional explica
 - (a) a lei do deslocamento de Wien, isto é, que o máximo da densidade $u_{\nu}(T)$ ocorre em $\nu_m = b T$, com b constante;
 - (b) que o valor máximo da densidade de energia, isto é, $u_{\nu_m}(T)$, é proporcional a T^3 ;
 - (c) a lei de Stefan-Boltzmann, $R = \int d\nu \, e_{\nu}(T) = \sigma T^4$, onde $e_{\nu} = c \, u_{\nu}/4$.
- 5. Supondo que a temperatura da superfície do Sol seja 5700°K, seu diametro $1, 4 \cdot 10^9$ m e sua massa $2, 0 \cdot 10^{30}$ kg, determine, usando a lei de Stefan-Boltzmann, a massa perdida por segundo pelo Sol sob forma de radiação. Que fração da massa do Sol é perdida a cada ano sob forma de radiação eletromagnética? Use a relação relativística $E = \Delta mc^2$ para relacionar a perda de massa Δm com a energia liberada.
- 6. Obtenha a expressão de Rayleigh-Jeans para a densidade de energia $u_{\nu}(T)$ para uma cavidade (a) retangular de lados L_x e L_y ; (b) linear de comprimento L.
- 7. Mostre que a <u>densidade</u> de energia por unidade de comprimento de onda, $u_{\lambda}(T)$, pode ser obtida da <u>densidade</u> $u_{\nu}(T)$ através da relação $u_{\lambda} = c \ u_{\nu(\lambda)}/\lambda^2$. Por que simplesmente não trocamos ν por c/λ em $u_{\nu}(T)$?
- 8. Mostre que a função $u_{\lambda}(T)$ tem um máximo no comprimento de onda $\lambda_m = b'/T$, onde b' é uma constante. Importante: não se pode chegar a essa relação substituindo $\lambda = c/\nu$ na lei do deslocamento de Wien $\nu_m = bT$. Por que?
- 9. A quantidade total (para todas as frequências e em todas as direções) de energia emitida por segundo e por unidade de área de um corpo negro é dada por $R = \sigma T^4$.

Determine, então, a quantidade de radiação que chega, por segundo, numa esfera de raio r colocada defronte e a uma distância d de um pequeno orifício de área A feito numa cavidade à temperatura T. Suponha que a esfera só receba radiação proveniente do orifício. Resposta: $0.5 \sigma A T^4 (r/d)^2$.

- 10. A discretização da luz não é facilmente percebida no dia-a-dia. Para ver isso, considere uma lâmpada de 100 watts emitindo em $\lambda = 6000 \text{Å}$. Qual a energia de cada quanta de radiação (em erg e em eV)? Quantos são emitidos por segundo? Resp. $\approx 10^{20}$. Veja que uns milhões a mais ou a menos não faz diferença!
- 11. Mostre que a densidade volumétrica do número total (isto é, para todas as frequências) de fótons em uma cavidade em equilíbrio térmico é proporcional a T^3 . Com isso, estime essa densidade para o Universo, considerando sua temperatura próxima aos 2,4 kelvin. Resp. 10^8 fótons/m³. É pouco ou muito?
- 12. Filmes fotográficos branco-e-preto são expostos a fótons com energia suficente para dissolver as moléculas de AgBr da emulsão. A energia mínima para isso é 0.68 eV. Qual o maior comprimento de onda capaz de impressionar esse filme?
- 13. Luz de frequência 0.85×10^{15} Hz incide numa superfície metálica. Se a energia máxima dos fotoelétrons for 1.7 eV, qual a função trabalho desse metal?
- 14. Para potássio o limiar de fotoemissão é em 5600 \mathring{A} . Qual a função trabalho desse material? Resp.: 2.2 eV, um valor típico para essa grandeza.
- 15. Dois pedaços de um mesmo metal são iluminandos, respectivamente, com luz de comprimento de onda λ_1 e λ_2 . As velocidades máximas dos elétrons fotoemitidos são, respectivamente, v_1^m e $v_2^m = v_1^m/\alpha$. Mostre que a função trabalho é dada por $W = (\alpha^2/\lambda_2 1/\lambda_1)hc/(\alpha^2 1)$ e que a tensão de freamento é expressa por $eV_F^1 = hc \ \alpha^2(1/\lambda_1 1/\lambda_2)/(\alpha^2 1)$. Qual é a expressão para V_F^2 ?
- 16. De que maneira o entendimento do efeito fotoelétrico, por Einstein, explica a relação empírica de Duane-Hunt?

Opcionais

- 17. Na interpretação de Einstein, tanto da radiação de corpo negro, como do efeito fotoelétrico, o fóton é uma partícula. Não deixe de estudar o <u>efeito Compton</u>, onde esse carácter corpuscular da luz se manifesta de forma muito definida!
- 18. Se modelarmos um sólido por um conjunto de osciladores harmônicos em três dimensões, podemos calcular o seu calor específico lembrando a definição: $C_v =$

dU/dT, onde U é a energia térmica total do sólido. Utilizando o princípio de equipartição de energia, expresse U em função da temperatura. Considere um mol desse sólido (isto é, N_A osciladores). Mostre que $C_v = 3R$, onde $R = kN_A \approx 2$ cal/mol ok é a constante dos gases. Esse valor de C_v é válido para temperaturas altas e se chama lei de Dulong-Petit. Somente um formalismo quântico é capaz de calcular $C_v(T)$ em todo intervalo de temperatura.

- 19. Pesquise sobre o modelo de Debye para o calor específico de sólidos. Em particular, mostre que no limite de altas temperaturas ele prevê o resultado de Dulong-Petit e que em baixas temperaturas ele prevê o resultado experimental proporcional a T^3 .
- 20. Se você já fez termodinâmica, pode resolver este: uma cavidade a temperatura T está em equilíbrio térmico com a radiação em seu interior, cuja densidade volumétrica é $U = \int u_{\nu} d\nu$. Pode-se mostrar que essa radiação exerce uma pressão P = U/3 nas paredes da cavidade. Use a primeira lei da termodinâmica TdS = d(VU) + PdV para mostrar que $U = aT^4$. Para isso, expresse $\partial_V S$ e $\partial_U S$ em termos de U, V e T. Lembre-se que a entropia S é uma função de estado (ou uma diferencial exata) e portanto vale que $\partial_U \partial_V S = \partial_V \partial_U S$. Também utilize que U(T = 0) = 0. Relacione $u_{\nu}(T)$ com o poder de emissão $e_{\nu}(T)$ e obtenha $R = \sigma T^4$, a lei de Stefan-Boltzmann.