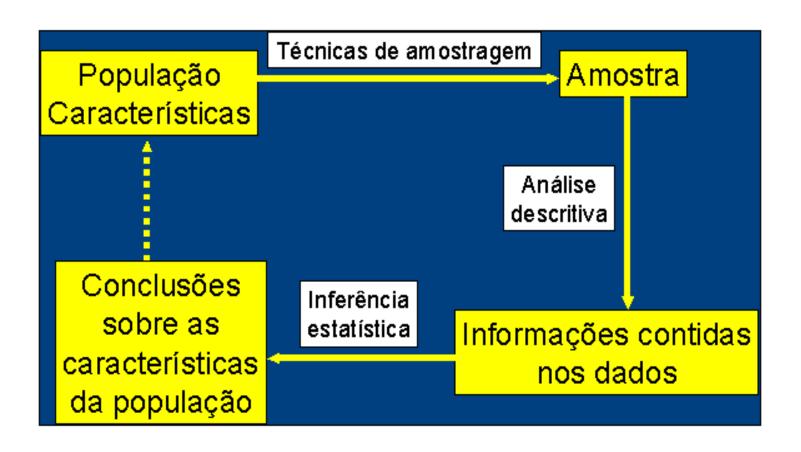
INFERÊNCIA ESTATÍSTICA Teste de Hipóteses

Ana Amélia Benedito Silva

Etapas da Analise Estatística



ANÁLISE DESCRITIVA

- conjunto de técnicas que tem como objetivo descrever uma amostra extraída de uma população.
 - Tabelas
 - Gráficos
 - Medidas-resumo
 - medidas de tendência central
 - média, mediana, moda
 - medidas de dispersão
 - amplitude, desvio-padrão, erro-padrão
 - medidas separatrizes
 - percentis, quartis, decis

INFERÊNCIA ESTATÍSTICA

- Conjunto de técnicas que tem como objetivo estudar uma população através de evidências fornecidas por uma amostra.
 - Teste de hipóteses
 - Estimação por parâmetros ou intervalo de confiança

Permite ao pesquisador ir além da descrição dos dados

Inferência estatística

Estimação

- Qual é a media da altura dos brasileiros?
- Qual é a porcentagem de votos que o candidato A vai receber nas eleições?
- Qual é a porcentagem de adultos que já tomaram as 4 doses de vacina pra COVID-19 no Brasil?

Teste de hipóteses

- Será que a média da altura dos brasileiros é diferente de 1,65m?
- O candidato A vencerá as eleições?

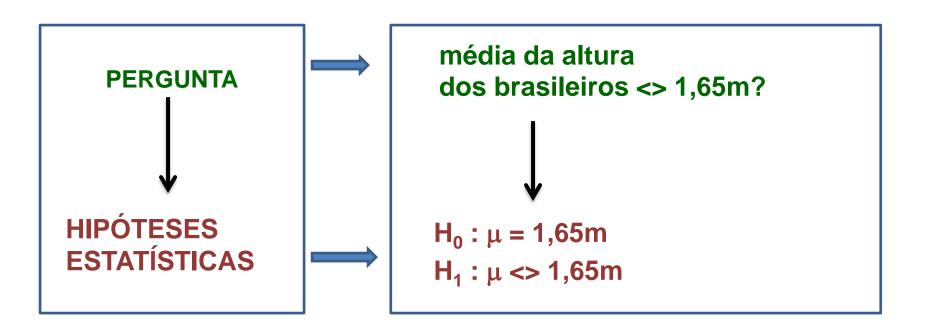
 Será que pelo menos 50% dos adultos já tomou as 4 doses de vacina para COVID-19?

TESTE DE HIPÓTESES

Será que a média da altura dos brasileiros é diferente de 1,65m?

 Para responder a esta questão escolhe-se estrategicamente uma amostra (x₁,x₂,...,x_n) que seja representativa da população de adultos brasileiros e verifica-se se μ<>1,65m, com alta probabilidade.

TESTE DE HIPÓTESES



HIPÓTESES ESTATÍSTICAS

H₀: Hipótese de igualdade ou nulidade

H₁: Hipótese alternativa

- Aplicar um teste de hipóteses significa calcular as probabilidades de errar ao se aceitar ou rejeitar a hipótese de nulidade H₀
- A decisão é sempre tomada em relação à H₀:

Aceita-se ou rejeita-se H₀

Orientação para escolha de testes estatísticos

TABELA DE ORIENTAÇÃO NA ESCOLHA DE TESTES ESTATÍSTICOS

	Uma variável						
Tipo da variável dependente	Uma amostra	Duas	amostras	Mais de du	Medidas de		
		relacionadas	independentes	relacionadas	independentes	correlação	
Qualitativa nominal ou ordinal	binomial ou X²	McNemar	X² ou Fischer	Prova Q de Cochran	X ² para várias amostras	coeficiente de contigência C	
Quantitativa discreta ou contínua (dados não seguem curva de Gauss)	Kolmogorov Smirnov	Wilcoxon ou Prova dos sinais	Mann-Whitney Ou Prova da Mediana	Prova de Friedman	Kruskal-Wallis ou Prova da mediana	correlação de Spearman	
Quantitativa discreta ou contínua (dados seguem curva de Gauss)	Teste para média	este t de Student pareado	teste t de Student para amostras independentes	ANOVA para medidas repetidas	ANOVA para grupos independentes	correlação de Pearson	

Teste para média amostral

• Há 2 tipos:

- Utilizando estatística z: quando a <u>variância da população é</u> <u>conhecida</u>, ou seja, existe alguma informação, externa aos dados, sobre a variância da variável em estudo na população
- Utilizando estatística t: quando a <u>variância da população é</u> desconhecida, ou seja, quando não existe nenhuma informação, externa aos dados, sobre a variância da variável em estudo na população

Exemplo 1 – pacotes de café

(variância populacional conhecida)

Exemplo 1 – pacotes de café

Situação

Uma máquina automática enche pacotes de café.

Sabe-se que a distribuição de probabilidade do peso destes pacotes segue uma **normal** com média de 500g e desvio-padrão de 20g.

Deseja-se verificar se a máquina está calibrada sem interromper a produção.

Evidência amostral

Para testá-la um técnico colhe uma amostra com 16 pacotes a cada 30 minutos.

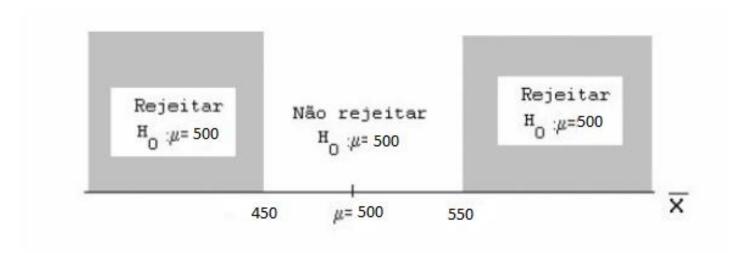
Suponha que as médias das amostras de café sejam iguais à 490g.

A máquina está descalibrada ou a diferença encontrada foi devida ao acaso?

Região crítica

- Suponha que a equipe técnica tenha decidido adotar a seguinte regra: a máquina estará descalibrada se a média amostral \bar{x} for maior que 550g ou menor que 450g.
- $R_{crítica} = {\bar{x} > 550 \text{ ou } \bar{x} < 450}$ \rightarrow Região de rejeição de Ho
- $R_{aceitação} = \{450 <= \bar{x} <= 550\}$ \rightarrow Região de aceitação de Ho
- Se a máquina estiver descalibrada, isto é, se a média for diferente de 500g, espera-se que a média amostral \bar{x} caia na Região Crítica

Região crítica



Procedimento (teste)

Se $\bar{x} \in R_c \Rightarrow \text{Rejeita - se H}_0$ Se $\bar{x} \notin R_c \Rightarrow Aceita - \text{se H}_0$

Tipos de erro num teste estatístico

	Realidade no lote				
DECISÃO DO TÉCNICO	H _o é verdadeira: Máquina está calibrada	H _o é falsa: Máquina não está calibrada			
H _o é verdadeira: Máquina está calibrada	Decisão correta Probabilidade= 1- α	Decisão errada Erro β			
H _o é falsa: Máquina não está calibrada	Decisão errada Erro α	Decisão correta Probabilidade= 1- β			

 α = P (Erro tipo I) = chamado de nível de significância (em geral 5%) risco máximo aceitável de errar ao dizer que H₀ é falsa quando na realidade H₀ é verdadeira.

 β = P (Erro tipo II) risco máximo aceitável de errar ao dizer que H_0 é verdadeira quando H_0 for falsa

Tipos de erro num teste estatístico

P(Erro tipo I)= α (nível de significância)

 $\alpha = P(\text{Rejeitar H}_0 \mid H_0 \text{ verdadeira})$

 $P(Erro\ II) = \beta = P(\mbox{N\~ao}\ rejeitar \mbox{H}_0 \mid H_0 \ falso).$ $1 - \beta = P(\mbox{Rejeitar} \mid H_0 \ \mbox{\'e}\ falso).$ $ightarrow \mbox{Poder}\ \mbox{do}\ \mbox{teste}$

α : nível de significância

- A probabilidade α que escolhemos (0,05; 0,01; 0,10...) é conhecida como nível de significância do teste de hipótese.
 - Na maioria das aplicações, utiliza-se α = 0,05.
 - Mais rigorosos, escolhem $\alpha = 0.01$.
 - Menos rigorosos, escolhem $\alpha = 0.10$.
- 0,05 significa que 5 entre 100 testes erroneamente rejeitarão H₀ quando na verdade H₀ é verdadeira.

p-value : nível descritivo

- É a probabilidade de se obter uma média igual ou mais extrema (maior ou menor) do que a média da amostra observada, supondo H₀ verdadeira.
- É chamado de nível descritivo (p-value ou p-valor).
- O <u>p-value</u> é comparado ao α pré-determinado, para decidir se a H_0 deve ser rejeitada ou não.

- Passo 1 Determinar as hipóteses
- Passo 2 Escolha da estatística do teste
- Passo 3 Determinação da Região crítica
- Passo 4 Calcular a estatística do teste para os dados amostrais
- Passo 5 Concluir pela aceitação ou rejeição de H₀, comparando o valor obtido no Passo 4 com a Região de Aceitação ou com a Região Crítica.

Passo 1 - Determinação das hipóteses

 H_0 : μ = 500g μ representa a média do peso da

 $H_1: \mu \neq 500g$ população de pacotes

O técnico obteve médias amostrais, cada uma com 16 pacotes, que pesavam 490g

O técnico deve determinar a probabilidade de se obter ao acaso uma média de 490g se a média populacional da máquina for de fato igual à 500g, ou seja, a máquina está calibrada.

Vamos considerar $\alpha = 5\%$

Passo 2 - Escolha da estatística do teste é:

$$Z = \frac{(\overline{X} - \mu)}{\sigma / \sqrt{n}}$$

Passo 3 - Determinação da Região crítica para α=5% (ver na Tabela)

$$z_{\alpha=0,025} = \pm 1,96$$

$$R_{critica} = \{ z \in Z \mid z \mid \geq 1,96 \}$$

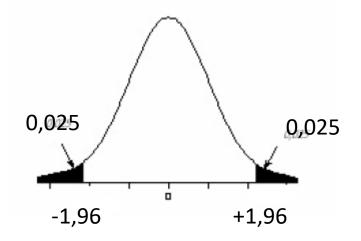


TABELA IV Distribuição normal padrão.

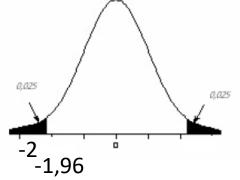


	segunda decimal de z										
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	80,0	0,09	
0,0	0,5000	0,4960	0,4920		0,4840	0,4801		0,4721	0,4681	0,4641	
0,1	0,4602	-,	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247	
0,2		0,4168	0,4129	0,4090	0,4052	0,4013		0,3936	0,3897		
0,3	0,3821		0,3745		0,3669	-,-		0,3557	0,3520		
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121	
0,5					0,2946						
0,6	0,2743	2709, 0	2676, 0	0,2643	2611, 0	2578, 0	2546, 0	2514, 0	0,2483	2451, 0	
0,7					0,2296						
0,8					0 ,2005						
0,9	0,1841	0 ,1814	1788, 0	0 ,1762	0 ,1736	0 ,1711	0 ,1685	0,1660	0 ,1635	0,1611	
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0 ,1446	0 ,1423	0 ,1401	0,1379	
1,1					0,1271						
1,2					0 ,1075						
1,3					0,0901						
1,4	0 ,0808	0 ,0793	0 ,0778	0 ,0764	0 ,0749	0 ,0735	0 ,0722	0,0708	0 ,0694	0 ,0681	
1,5	0 ,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0 ,0582	0 ,0571	0,0559	
1,6					0,0505						
1,7					0,0409						
1,8					0,0329						
1,9	0,0287	0 ,0281	0,0274	0,0268	0 ,0262	0,0256	0,0250	0,0244	0,0239	0,0233	
2,0					0,0207						
2,1					0,0162						
2,2					0 ,0125						
2,3					0,0096						
2,4	0 ,0082	0,0080	0,0078	0,0075	0 ,0073	0,0071	0 ,0069	0 ,0068	0,000	0 ,0064	
2,5					0,0055						
2,6					0 ,0041						
2,7					0,0031						
2,8					0,0023						
2,9	0,0019	8100, 0	0,0017	0 ,0017	0 ,0016	υ ,0016	0,0015	0,0015	0,0014	0 ,0014	
3,0	0,00135										
3,5	0,000 2										
4,0	0,000 0										
4,5	0,000 0										
5,0	0,000 0	00 287									

Passo 4 – Calcular a estatística do teste para os dados amostrais

$$Z = \frac{(\overline{X} - \mu)}{\sigma / \sqrt{n}} = \frac{(490 - 500)}{20 / \sqrt{16}} = -2 < Z_{\alpha = (0,05/2)} = -1,96$$

Passo 5 - Conclusão



z_{obs} = -2 caiu fora da região de aceitação de H₀, caiu na Região Crítica.

A máquina está descalibrada, a um nível de significância de 5%.

Exemplo 2 – teste vocacional teste t de Student

(variância populacional desconhecida)

Exemplo 2

- Os registros dos últimos anos de um colégio atestam para os calouros admitidos uma nota média num teste de QI = 115.
- Para testar a hipótese de que a média de uma nova turma é a mesma das turmas anteriores, retirou-se, ao acaso, uma amostra de 20 notas, obtendo-se média 118 e desvio-padrão 20.
- Dados populacionais:

$$\mu$$
 = 115; σ = desconhecido

Dados amostrais:

$$\bar{x}$$
 = 118; s = 20; n = 20

Passo 1 – Determinar as hipóteses

$$H_0$$
: $\mu = 115$

$$H_1: \mu \neq 115$$

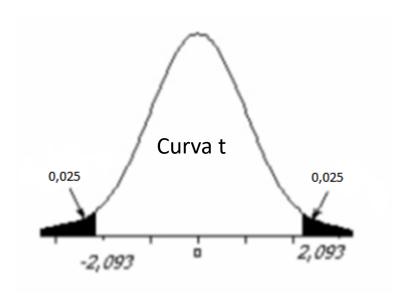
μ representa a média da nota da população dos últimos anos

Passo 2 - Escolha da estatística do teste

Como não conhecemos o desvio padrão populacional, utilizamos uma estatística T ao invés de uma estatística z.

$$T = \frac{\overline{X} - 115}{S / \sqrt{n}} \sum_{sob\ H_0}^{\infty} t(n-1)$$

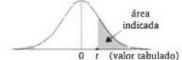
Passo 3 - Determinação da Região crítica para α=5%



$$R_c = \{ t \in T \mid T \mid \ge 2,093 \}$$

graus de liberdade = n - 1

Tabela 4 Distribuição t de Student.



gl		Área na cauda superior									
	0,25	0,10	0,05	0,025	0,01	0,005	0,0025	0,001	0,0005		
1	1,000	3,078	6,314	12,71	31,82	63,66	127,3	318,3	636,6		
2	0,816	1,886	2,920	4,303	6,965	9,925	14,09	22,33	31,60		
3	0,765	1,638	2,353	3,182	4,541	5,841	7,453	10,21	12,92		
4	0,741	1,533	2,132	2,776	3,747	4,604	5,598	7,173	8,610		
5	0,727	1,476	2,015	2,571	3,365	4,032	4,773	5,894	6,869		
6	0,718	1,440	1,943	2,447	3,143	3,707	4,317	5,208	5,959		
7	0,711	1,415	1,895	2,365	2,998	3,499	4,029	4,785	5,408		
8	0,706	1,397	1,860	2,306	2,896	3,355	3,833	4,501	5,041		
9	0,703	1,383	1,833	2,262	2,821	3,250	3,690	4,297	4,781		
10	0,700	1,372	1,812	2,228	2,764	3,169	3,581	4,144	4,587		
11	0,697	1,363	1,796	2,201	2,718	3,106	3,497	4,025	4,437		
12	0,695	1,356	1,782	2,179	2,681	3,055	3,428	3,930	4,318		
13	0,694	1,350	1,771	2,160	2,650	3,012	3,372	3,852	4,221		
14	0,692	1,345	1,761	2,145	2,624	2,977	3,326	3,787	4,140		
15	0,691	1,341	1,753	2,131	2,602	2,947	3,286	3,733	4,073		
16	0,690	1,337	1,746	2,120	2,583	2,921	3,252	3,686	4,015		
17	0,689	1,333	1,740	2,110	2,567	2,898	3,222	3,646	3,965		
18	0,688	1,330	1,734	2,101	2,552	2,878	3,197	3,610	3,922		
19	0,688	1,328	1,722	2,093	2,539	2,861	3,174	3,579	3,883		
20	0,687	1,325	1,725	2,086	2,528	2,845	3,153	3,552	3,850		
21	0,686	1,323	1,721	2,080	2,518	2,831	3,135	3,527	3,819		

Passo 4 – Calcular a estatística do teste para os dados amostrais

$$T_{obs} = \frac{118 - 115}{20 / \sqrt{20}} = 0,67$$

 Passo 5 – Concluir pela aceitação ou rejeição de H₀, comparando o valor obtido no Passo 4 com a Região de Aceitação ou Região Crítica.

 $T_{\rm obs}$ = 0,67 valor que pertence à Região de Aceitação de $H_{\rm o}$ Logo concluímos que a média da nova turma é a mesma das turmas anteriores, o QI médio não se alterou na população.

Exercício para fazer na aula

A média da concentração de colesterol no sangue para a população de homens de 20 a 74 anos é 211 mg/100ml e desvio-padrão = 46mg/100ml.

Selecionamos uma amostra de 12 homens de um grupo de fumantes hipertensos e o colesterol foi de 217 mg/100ml.

Será que a média da amostra é compatível com a média populacional de 211 mg/100ml, ou seja, será que o colesterol dos sujeitos deste grupo é diferente do colesterol populacional?

Exercício para fazer na aula

A média da concentração de colesterol no sangue para a população de homens de 20 a 74 anos é 211 mg/100ml.

Suponhamos que a distribuição da concentração de colesterol no sangue para a população de homens fumantes hipertensos é aproximadamente normal (média desconhecida e desvio-padrão = 46mg/100ml)

Selecionamos uma amostra de 12 homens desse grupo de fumantes hipertensos e o colesterol foi de 217 mg/100ml.

Essa média da amostra é compatível com a média populacional de 211 mg/100ml?

Passo 1 - Determinação das hipóteses

 H_0 : μ = 211 mg/100ml

 $H_1: \mu \neq 211 \text{ mg}/100\text{ml}$

 μ representa a média do colesterol na população de homens de 20 a 74 anos é 211 mg/100ml.

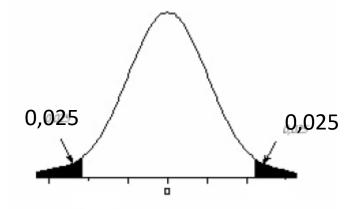
Passo 2 - Escolha da estatística do teste é:

Como conhecemos o desvio padrão populacional, utilizamos a estatística z.

$$Z = \frac{(\overline{X} - \mu)}{\sigma / \sqrt{n}}$$

Passo 3 - Determinação da Região crítica para α=5%

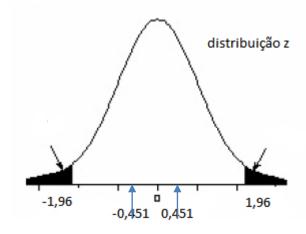
 $z_{\alpha=0,025} = \pm 1,96$ (da tabela da curva normal)



Passo 4 – Calcular a estatística do teste para os dados amostrais

$$Z = \frac{(\overline{X} - \mu)}{\sigma / \sqrt{n}} = \frac{(217 - 211)}{46 / \sqrt{12})}$$

$$z_{\text{observado}} = 0.451$$



Passo 5 – Conclusão

z_{observado} caiu dentro da região de aceitação de H₀

Logo → aceitamos H₀

ou seja, a evidência observada na amostra é insuficiente para concluir que o nível médio de colesterol da população de fumantes hipertensos é diferente de 211 mg/100ml.

obrigada