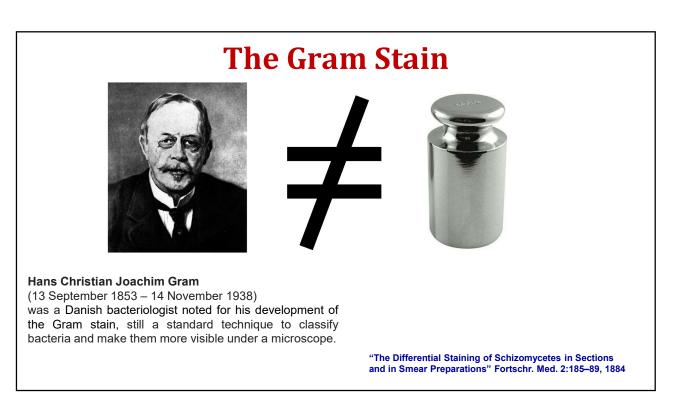
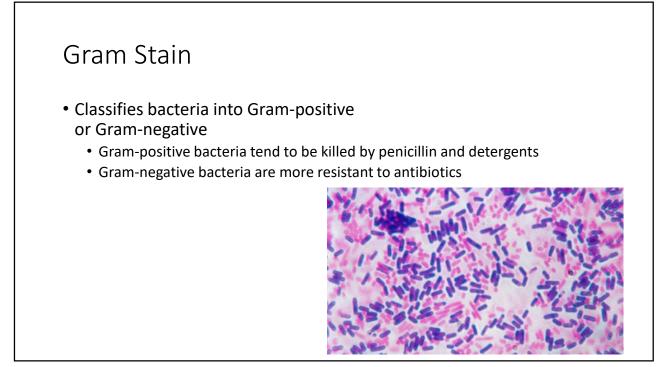
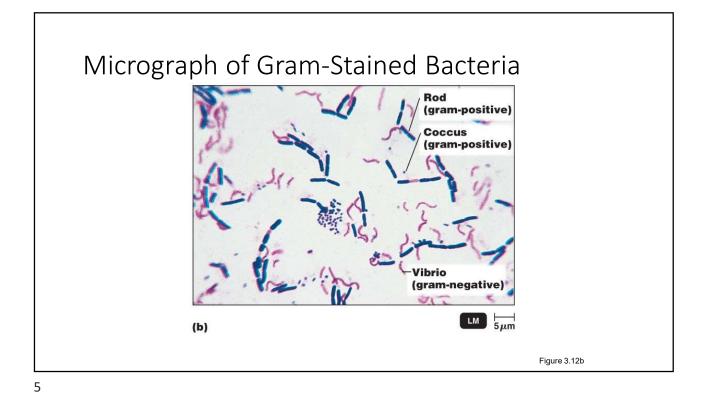
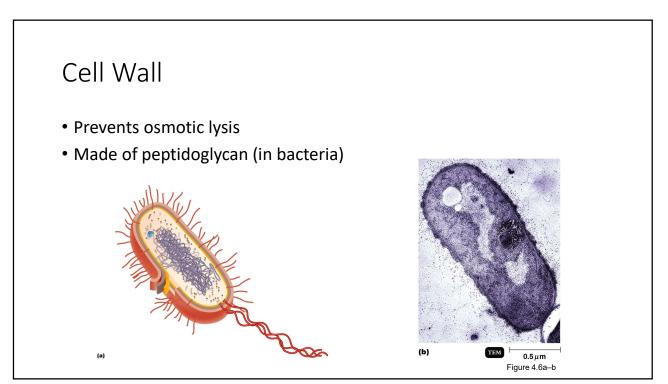
Gram+ Foodborne Pathogens and Toxins Food Biology Fundamentals

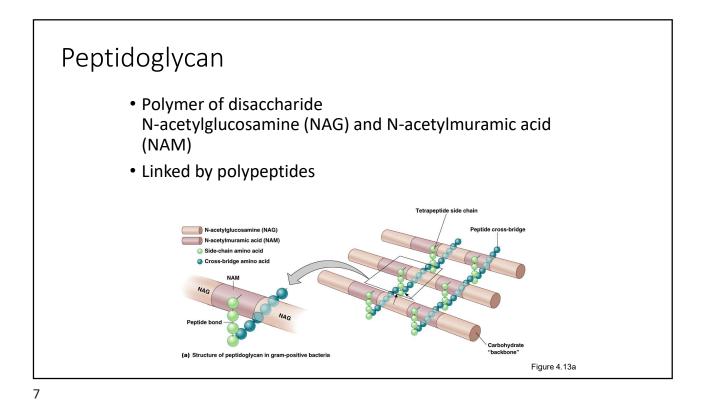
Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus

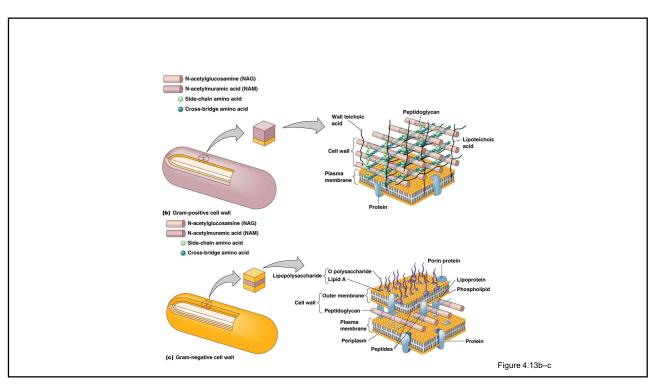

Main Textbook:

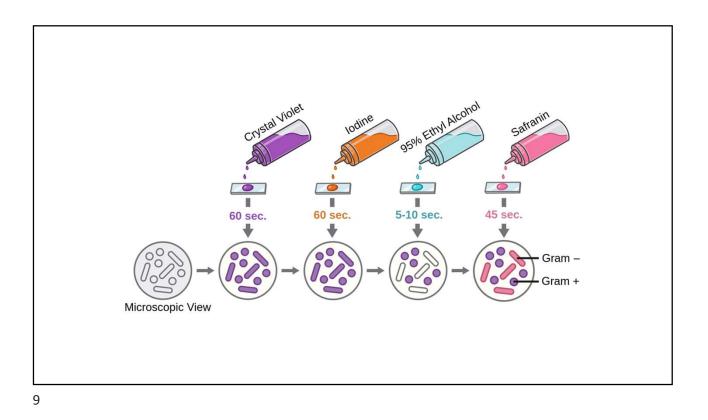

"Food Microbiology: Fundamentals and Frontiers", 4^{th} edition, Chapter III

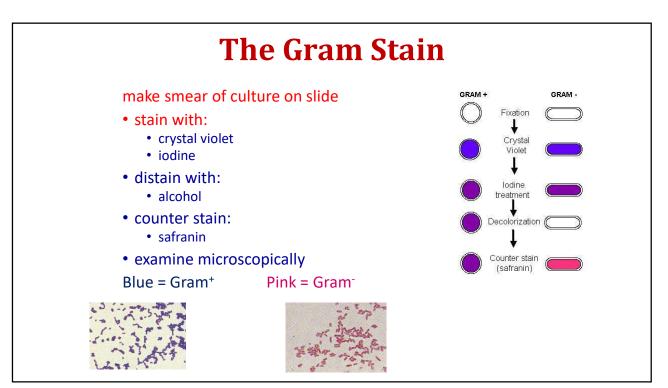

1

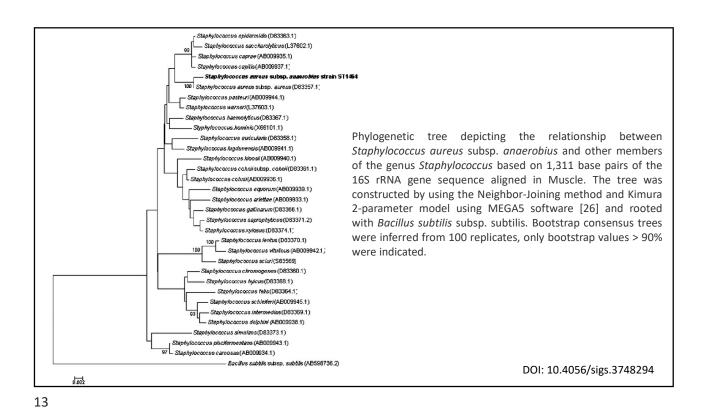

Top Five Pathogens Contributing to Domestically Acquired Foodborne Illnesses Resulting in Death (CDC 2011)

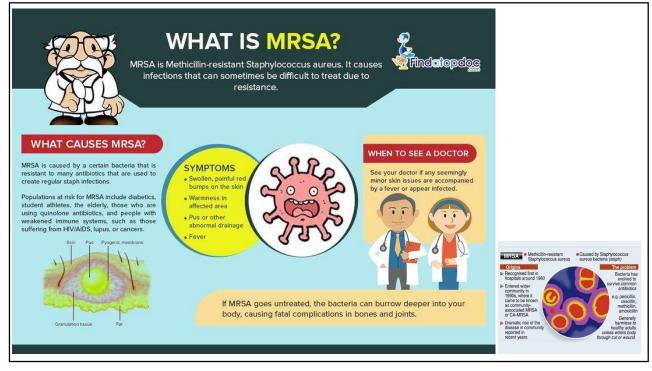

Pathogen	Estimated number of deaths	90% Credible Interval	%	
<u>Salmonella</u> , nontyphoidal	378	0-1,011	28	
<u>Toxoplasma</u> gondii	327	200-482	24	
<u>Listeria</u> monocytogenes	255	0-733	19	
Norovirus	149	84-237	11	
<u>Campylobacter</u> <u>spp.</u>	76	0-332	6	
Subtotal			88	

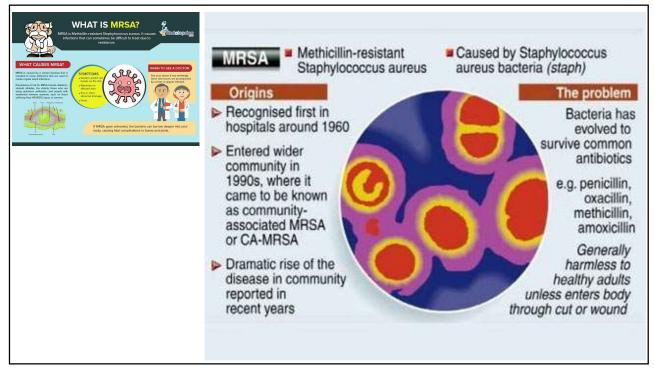


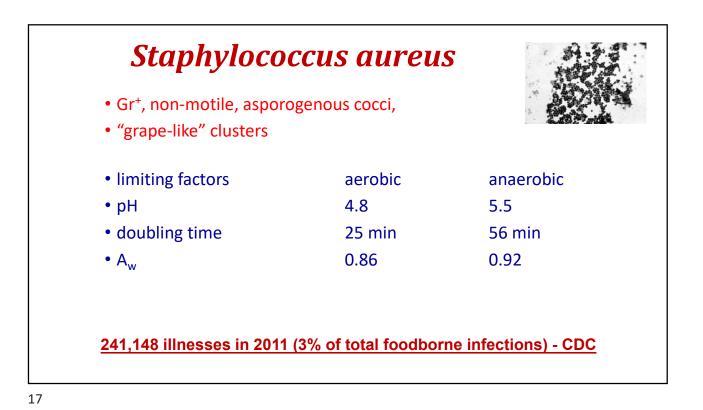






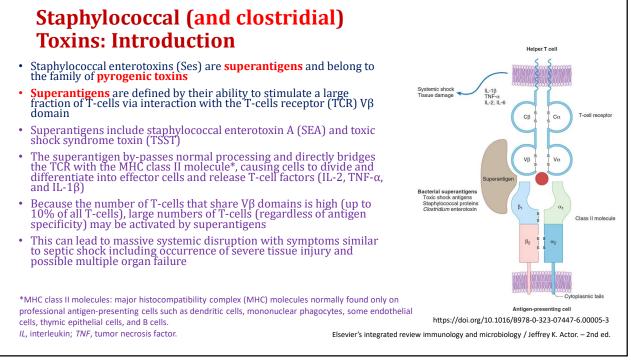

	Gram+	Gram-
 heat resistance 	more	less
• toxins	exo-	endo
 nutrients requirements 	complex	simple
 detergents 	very sensitive	less sensitive
• penicillin	susceptible	resistant
 outer membrane 	no	yes
 peptidoglycan 	thick	thin


Staphylococcus aureus	Gram-positive 19 species in Staphylococcus genera Coagulase and termonuclease positive messofiles	Toxins production A, B, C1, C2, C3, D, E
Growth temperatures: from 7°C up to 47.8°C Enetrotoxins productin 10°C-46°C, with optimum at 40°C-45°C	pH: from 4.0 up to 9.8 With optimum at 6.0-7.0	Water activity: Resistance up to 8.3 Resistance to 10-20% NaCl
Caused by bacteria, toxins. Incubation period: 0.5-8h. Gastro-intestinal desorders, perifer neuro system, blod presure. 0.5-10 ug/100g toxin/food	Stephylococcus aures is present in nature, animals. In humans, <i>S. aureus</i> is part of the normal microbiota present in the upper respiratory tract, and on skin and in the gut mucosa.	* 6 %
	er en	



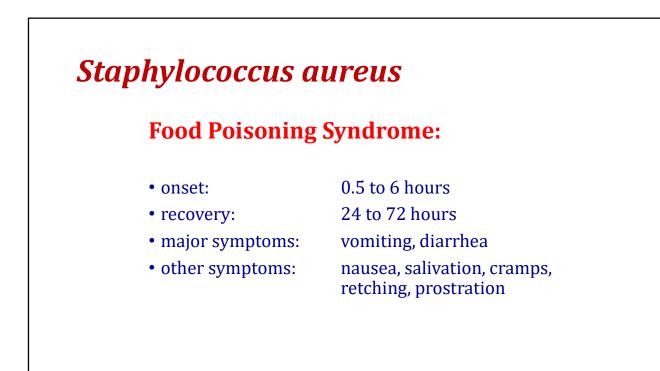
Of significance to humans are various strains of the species *Staphylococcus aureus* and *S. epidermidis*. While *S. epidermidis* is a mild pathogen, opportunistic only in people with lowered resistance, strains of *S. aureus* are major agents of wound infections, boils, and other human skin infections and are one of the most common causes of food poisoning. *S. aureus* also causes meningitis, pneumonia, urinary tract infections, and mastitis, an infection of the breast in women or of the udder in domestic animals. In addition, local staphylococcal infections can lead to toxic shock syndrome, a disease associated with the liberation of a toxin into the bloodstream from the site of infection.

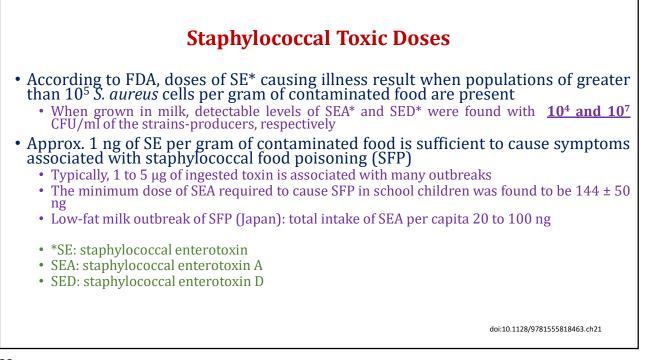
One strain that is of great concern to humans is methicillin-resistant *S. aureus* (MRSA), which is characterized by the presence of a mutation that renders it resistant to methicillin, a semisynthetic penicillin used to treat staphylococcus infections that are resistant to mold-derived penicillin. This strain of *S. aureus* was first isolated in the early 1960s, shortly after methicillin came into wide use as an antibiotic. Today methicillin is no longer used, but the strain of MRSA to which it gave rise is commonly found on the skin, in the nose, and in the blood and urine of humans.

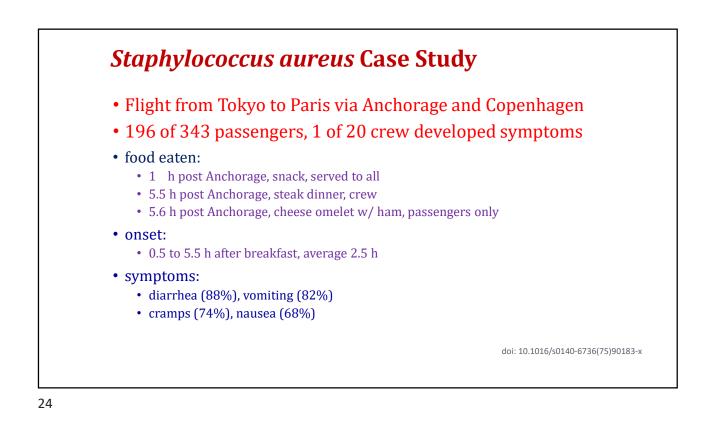


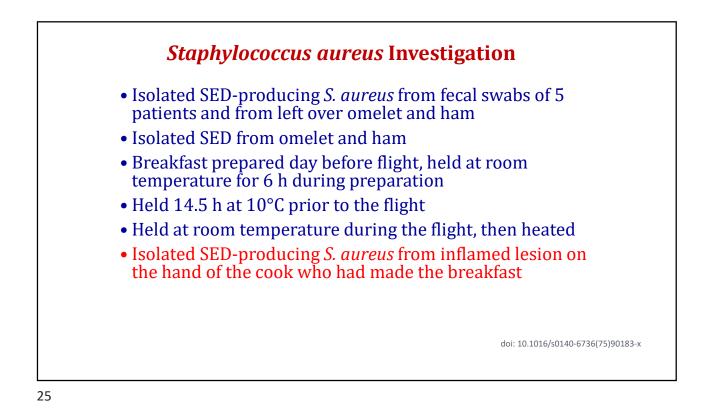
Staphylococcal Food Poisoning

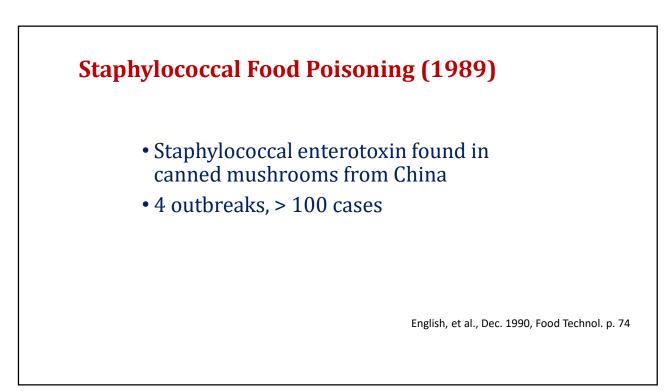
- Staphylococcal food poisoning is caused by the ingestion of an enterotoxin produced in improperly stored foods.
- *S. aureus* is inoculated into foods during preparation.
- The bacteria grow and produce enterotoxin in food stored at room temperature.
- The exotoxin is not denatured by boiling for 30 minutes.
- Foods with high osmotic pressure and those not cooked immediately before consumption are most often the source of staphylococcal enterotoxicosis.
- Diagnosis is based on symptoms. Nausea, vomiting, and diarrhea begin 1~6 hours after eating and last about 24 hours.
- Laboratory identification of *S. aureus* isolated from foods is used to trace the source of contamination.
- Serological tests are available to detect toxins in foods.

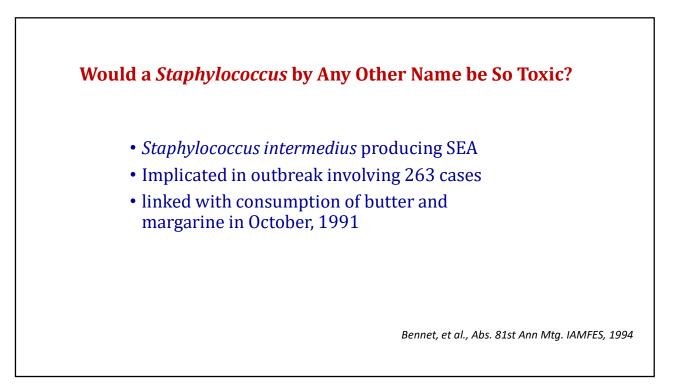

Staphylococcus aureus

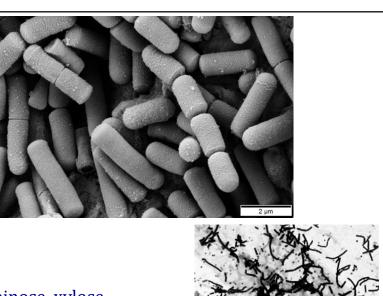

- enterotoxin
- effective at 1 µg/kg
- protein of 239 amino acids
- serological types: A, B, C, D, F
- very compact
- heat resistance:
 - cells: $D_{55^{\circ}C} = 0.95$ to 8.0 min
 - toxin: $D_{121^{\circ}C}$ = 9.9 to 34 min
 - *z*= 30°C


Product	No. of samples tested	% Positive for S. aureus	No. of S. aureus CFU/g ^a	Reference
Ground beef	74	57	≥100	135
	1,830	8	≥1,000	24
	1,090	9	≥100	107
Big-game meat	112	46	≥10	126
Pork sausage	67	25	100	135
Ground turkey	50	6	≥10	47
	75	80	>3.4	48
Salmon steaks	86	2	>3.6	36
Oysters	59	10	>3.6	36
Blue crabmeat	896	52	≥3	148
Peeled shrimp	1,468	27	≥3	137
Lobster tail	1,315	24	≥3	137
Assorted cream pies	465	1	≥25	141
Tuna pot pie	1,290	2	≥10	149
Delicatessen salads	517	12	≥3	104


doi:10.1128/9781555818463.ch21



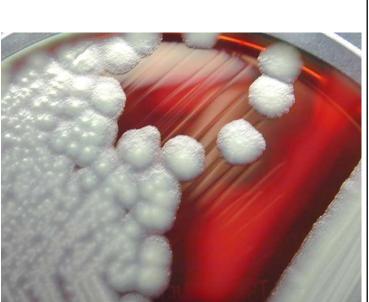


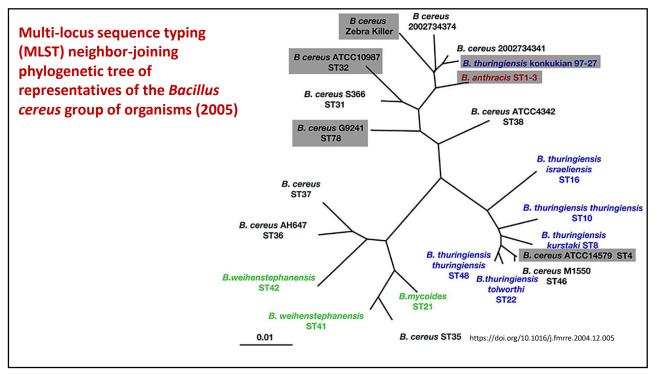


Bacillus cereus	Gram-positive, spore formation,mesofil 48 species of <i>Bacillus</i> Catalase positive, oxidase variable	NB: identification is important tool. 16s rRNA can be not suficient
Growth temperatures: from 10°C up to 48°C Optimal 28°C-35°C	pH: from 4.9 up to 9.3	Water activity: 0.95 7.5% NaCl – inhibition
Caused by bacteria, toxins Gastroenterite Incubation time 12-24h Presence of 10 ⁷ -10 ⁹ CFU Toxin is destroyed after 55°C for 20 min; below pH 4.0	Bacillus cereus is present in nature, soil, water, respiratory tract, vegetables. Can be find in 40% of rice samples	(A)
		PQ' i

Bacillus cereus

- aerobic
- Gram⁺, motile rods
- protoplasm is granular
- acid, no gas from glucose
- acid from sucrose, glycerol
- no acid from mannitol, arrabinose, xylose
- metabolizes citrate


http://vm.cfsan.fda.gov/~mow/chap12.html


29

Colonies of *B. cereus* were originally isolated from a gelatine plate left exposed to the air in a cow shed in 1887.

The specific name, cereus, meaning "waxy" in Latin, refers to the appearance of colonies grown on blood agar.

In the 2010s, examination of warning letters issued by the US Food and Drug Administration issued to pharmaceutical manufacturing facilities addressing facility microbial contamination revealed that the most common contaminant was *B. cereus*.

Because of *B. cereus*' ability to produce lecithinase and its inability to ferment mannitol, there are some proper selective media for its isolation and identification such as mannitol-egg yolk-polymyxin (MYP) and polymyxin-pyruvate-egg yolkmannitol-bromothymol blue agar (PEMBA).

B. cereus colonies on MYP have a violet-red background and are surrounded by a zone of egg-yolk precipitate.

List of differential techniques and results that can help to identify *B. cereus* from other bacteria and *Bacillus* species.

- ✓ Anaerobic growth: Positive
- ✓ Voges Proskauer test: Positive (test used to detect acetoin)
- ✓ Acid produced from
- ✓ d-glucose: Positive
- ✓ I-arabinose: Negative
- ✓ d-xylose: Negative
- ✓ d-mannitol: Negative
- ✓ Starch hydrolysis: Positive
- ✓ Nitrate reduction: Positive
- ✓ Degradation of tyrosine: Positive
- ✓ Growth at above 50 °C: Negative
- ✓ Use of citrate: Positive

The *B. cereus* groups

- Bacillus cereus sensu stricto (strictly speaking)- an opportunistic pathogen
 - *Bacillus cereus* foodborne pathogens
 - Bacillus anthracis the etiological agent of anthrax
 - *Bacillus thuringiensis* entomopathogen

• Bacillus cereus sensu lato (in the broad sense)

- Bacillus mycoides
- Bacillus pseudomycoides
- Bacillus weihenstephanensis
- Bacillus toyonensis
- Bacillus cytotoxicus
- Bacillus manliponensis
- Bacillus gaemokensis

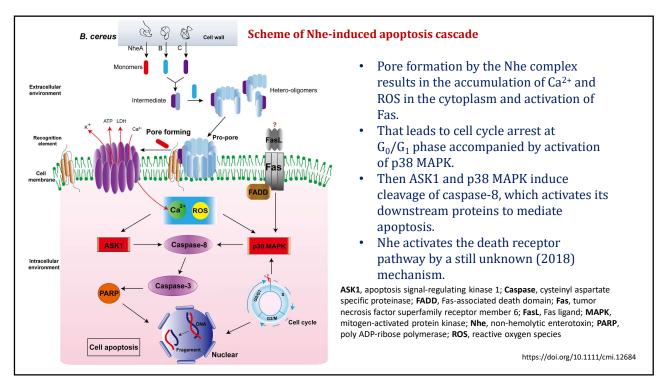
- Bacillus bombysepticus
 Bacillus bingmayongensis
 Bacillus sp. 7_6_55CFAA_CT2
- Bacillus wiedmannii

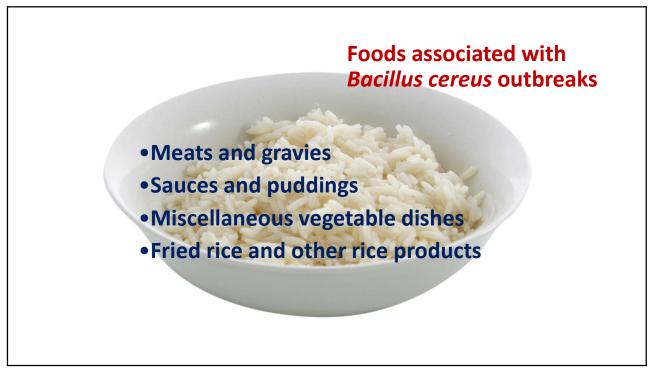
doi: 10.1038/srep46430 https://doi.org/10.1016/j.fmrre.2004.12.005

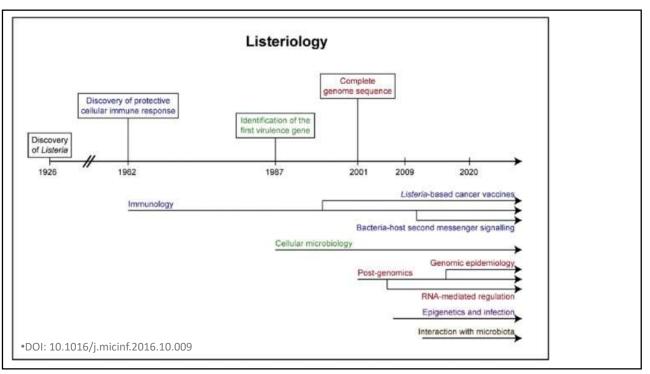
Type of food	Country	No. of people involved	Type(s) of syndrome
Barbecued chicken	Many countries	b	E, D
Cooked noodles	Spain	13	D
Cream cake	Norway	5	D
Eclair (pastry)	Thailand	>400	E (D)
Fish soup	Norway	20	D
Hibachi steak	United States	11	E, D
Lobster pâté	United Kingdom		D
Meat loaf	United States		D
Meat with rice	Denmark	>200	D
Milk	Many countries	_	E, D
Milkshake	United States	36	?
Pea soup	The Netherlands	_	D
Sausages	Ireland, China		D
School lunch	Japan	1,877	E
Scrambled egg	Norway	12	D
Several rice dishes	Many countries		E, D
Stew	Norway	152	D
Turkey	United Kingdom, United States		D
Vanilla sauce	Norway (many countries)	>200	D
Vegetable sprouts	United States	3	E, D
Wheat flour dessert	Bulgaria		D

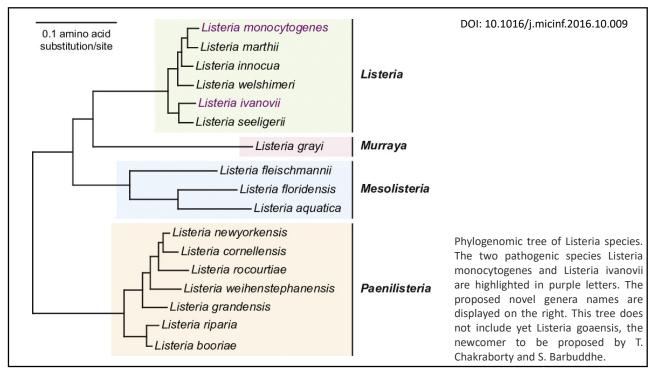
Dose causing illness	10^{5} – 10^{7} cells (total)	10^{5} – 10^{8} cells (per g in foods)
Toxin produced	In the small intestine of the host	Preformed in foods
Type of toxin	Protein; enterotoxin(s)	Cyclic peptide; emetic toxin
Incubation period	8–16 h (occasionally >24 h)	0–5 h
Duration of illness	12–24 h (occasionally several days)	6–24 h
Symptoms	Abdominal pain, watery diarrhea occasionally with nausea	Nausea, vomiting, and malaise (sometimes followed by diarrhea, due to production of enterotoxin)
Foods most frequently implicated	Meat products, soups, vegetables, puddings/sauces, and milk/milk products	Fried and <mark>cooked rice,</mark> pasta, pastry and noodles
^a Based on references 35, 53	3, and 74.	

 Table 19.3
 Characteristics of the two types of illness caused by B. cereus^a

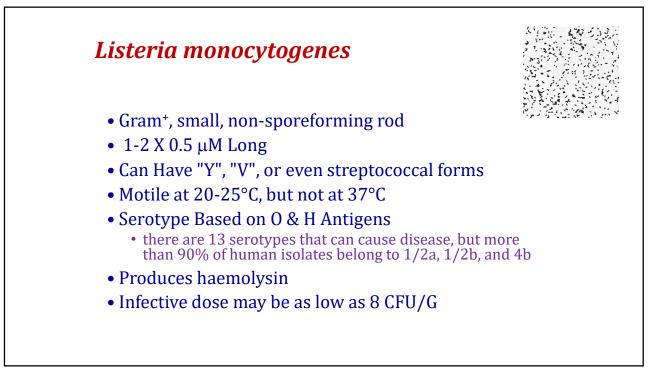

Toxin	Type/size	Food poisoning	
Iemolysin BL (Hbl)	Protein, 3 components	Probably	
Nonhemolytic enterotoxin (Nhe)	Protein, 3 components	Yes	
Cytotoxin K (CytK)	Protein, 1 component, 34 kDa	Yes, 3 deaths	
Emetic toxin (cereulide)	Cyclic peptide, 1.2 kDa	Yes, several deaths	
	4 kDa cytotoxic necrotic and haemolyt ence is 37% identical to that of <i>B. cere</i> olysin from <i>S. aureus</i> .		
From a structural point of view forming toxins.	w, CytK (like HlyII) belongs to the fam	ily of oligomeric β-barrel	
β-barrel, with the hydrophobi lumen of the channel.	nverted into a transmembrane pore by c residues facing the lipids and the hy	drophilic residues facing	
0.17		1 11 11 C 1 11 1	

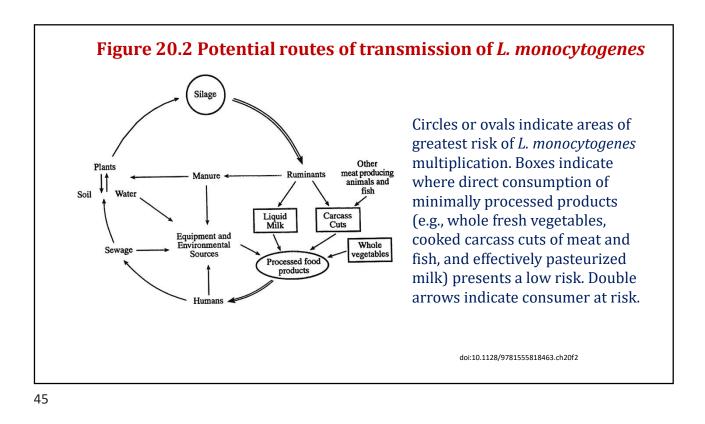

• CytK can spontaneously form oligomers that are resistant to SDS but not boiling (similar to other β -barrel pore-forming toxins).

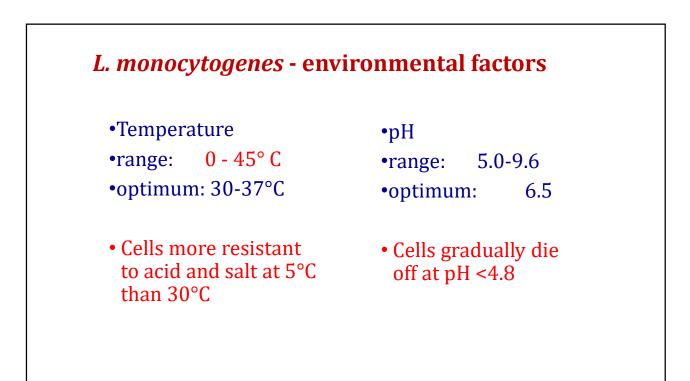

doi:10.3390/toxins5061119


Trait	Property/activity	the potassium ionophore valinomycin.
Molecular mass Structure Isoelectric point Antigenic Biological activity in living primates and Asian house shrew Receptor	1.2 kDa Ring-shaped peptide Uncharged No Vomiting Inhibition of mitochondrial activity (fatty acid oxidation) 5-HT ₃ (stimulation of the vagu	 Cyclic molecule, 36-membered ring with alternating ester and amide bonds and the structure (d-O-Leu-d-Ala-I-O-Val-I-Val)₃. Molecular weight is 1165 Da and predicted pl is 5.52. Very hydrophobic, essentially insoluble in aqueous solution.
lleal loop tests (rabbit, mouse) Cytotoxic HEp-2 cells	afferent) None No Vacuolation activity	 Seven cereulide synthesis genes comprise the <i>ces</i> operon. Cereulide transcription depends on Spo0A and
Stability to heat Stability to pH Effect of proteolysis (trypsin, pepsin) Conditions under which toxin	90 min at 121°C Stable at pH 2–11 None In food (rice and milk at	 AbrB (direct repressor of the main o^A-dependent promoter of the <i>ces</i> operon) regulators. Cereulide production appeared to be independent of late stages of sporulation.
is produced Mechanisms of production	12–32°C)	https://doi.org/10.1016/C2010-1-67744 Non-ribosomal peptide synthetases are modular enzymes that catalyze

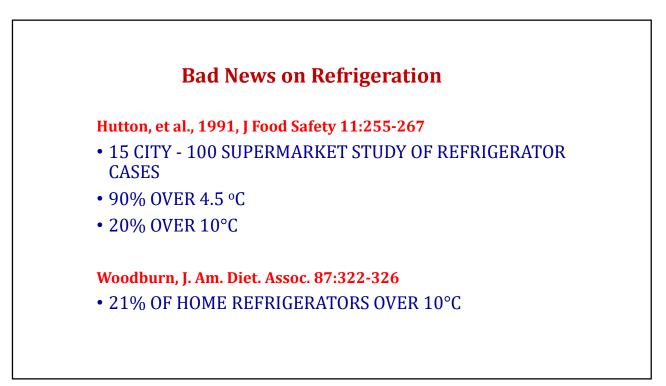


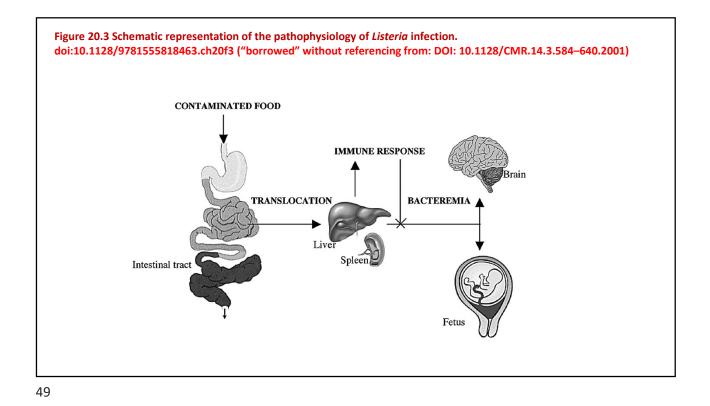


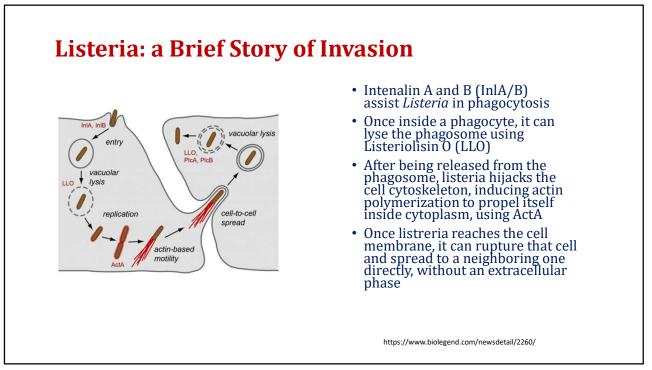


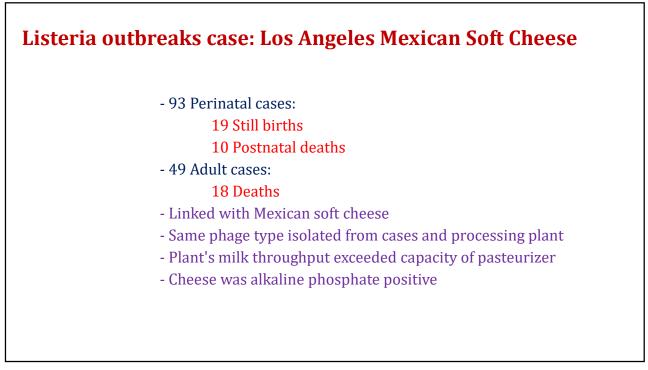


Listeria monocytogenes	Gram-positive, non spore formation, facultative anaerobe	
Growth temperatures: from 2.5°C up to 44°C	pH: from 4.5 up to 9.5	Water activity: Optimal 0.97 Resistance up to 30% NaCl
Pregnant Elderly, Children, Imunocompromised, transplantant Multiplication inside the cells Septimia, entiridic, bacterimia, febre, diarrea GIT disorders	Humans and other animals are reservoir for Listeria. Warm blood animals, birds, fish, larvas, insects	

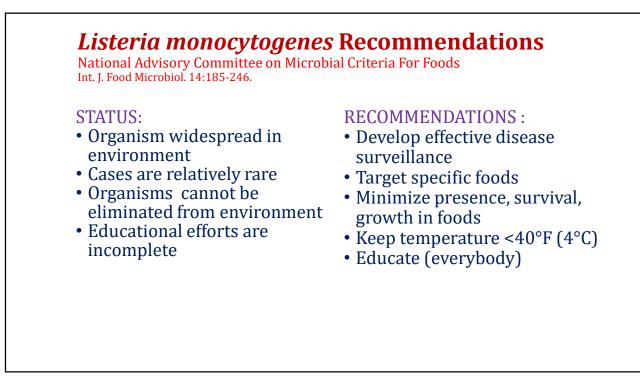




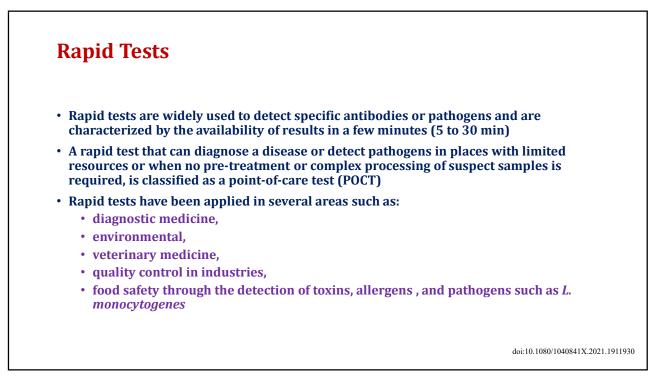




a a		Predicted med	ian no. of cases	of listeriosis for 23	food categories		
elative sk		Per serving basis ^b			Per annum basis ^e		-
nking		Food	Cases		Food	Cases	
1	High risk	Deli meats	7.7×10^{-8}	Very high risk	Deli meats	1,598.7	
2		Frankfurters, not reheated	6.5×10^{-8}	High risk	Pasteurized fluid milk	90.8	
3		Pâté and meat spreads	3.2 × 10 ⁻⁸		High fat and other dairy products	56.4	and the take-
4		Unpasteurized fluid milk	7.1×10^{-9}		Frankfurters, not reheated	30.5	and the take-
5		Smoked seafood	6.2×10^{-9}	Moderate risk	Soft unripened cheese	7.7	
6		Cooked ready-to-eat crustaceans	5.1×10^{-9}		Pâté and meat spreads	3.8	home message is?
7	Moderate risk	High fat and other dairy products	2.7 × 10-9		Unpasteurized fluid milk	3.1	0
8		Soft unripened cheese	1.8×10^{-9}		Cooked ready-to-eat crustaceans	2.8	
9		Pasteurized fluid milk	1.0×10^{-9}		Smoked seafood	1.3	
10	Low risk	Fresh soft cheese	1.7×10^{-10}	Low risk	Fruits	0.9	
11		Frankfurters, reheated	6.3×10^{-11}		Frankfurters, reheated	0.4	
12		Preserved fish	2.3×10^{-11}		Vegetables	0.2	
13		Raw seafood	2.0 × 10-11		Dry/semidry fermented sausages	<0.1	
14		Fruits	1.9×10^{-11}		Fresh soft cheese	<0.1	
15		Dry/semidry fermented sausages	1.7 × 10 ⁻¹¹		Semisoft cheese	<0.1	
16		Semisoft cheese	6.5×10^{-12}		Soft ripened cheese	<0.1	
17		Soft ripened cheese	5.1×10^{-12}		Deli-type salads	<0.1	
18		Vegetables	2.8×10^{-12}		Raw seafood	<0.1	
19		Deli-type salads	5.6 × 10 ⁻¹ 3		Preserved fish	<0.1	
20		Ice cream and other frozen dairy products	4.9 × 10 ⁻¹⁴		Ice cream and other frozen dairy products	<0.1	
21		Processed cheese	4.2×10^{-14}		Processed cheese	<0.1	
22		Cultured milk products	3.2 × 10-14		Cultured milk products	<0.1	
23		Hard cheese	4.5×10^{-15}		Hard cheese	<0.1	2




Listeria outbreaks case: Canadian Maritime Provinces (1979-1981)

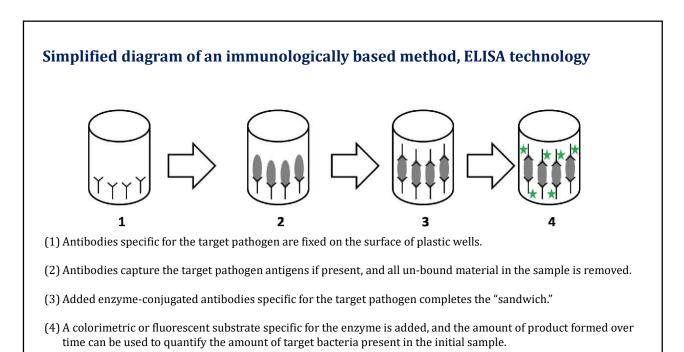

- Peaked in summer of each year
 - 34 Perinatal cases:
 - 5 Abortions
 - 4 Stillborn
 - 23 Live birth but critically ill, 27% mortality
 - 2 "well babies"
 - 33 % Fatality in adult cases
 - Probable cause: coleslaw
 - Cabbage was "organically" grown on farm with active cases of ovine enteritis

<i>L. monocytogenes</i> strain Scott A, FREE CELLS			
T (°C)	D (SEC)	COMPARE WITH 71.7°C	D (SEC) AT
57.8	290	Pseudomonas fraggi	1.17
66.1	7.3	E. coli	1.17
68.9	3.0	Yersinia	1.17
71.7 (161°F)	0.9	Staphylococcus aureus	1.20
71.1 °C FOR 15 SEC	PRODUCES 15 LOG KI	LL	
CURRENT PASTEURIZ SEC) APPEARS ADEQ	ZATION (72°C OR 161°F -	15	

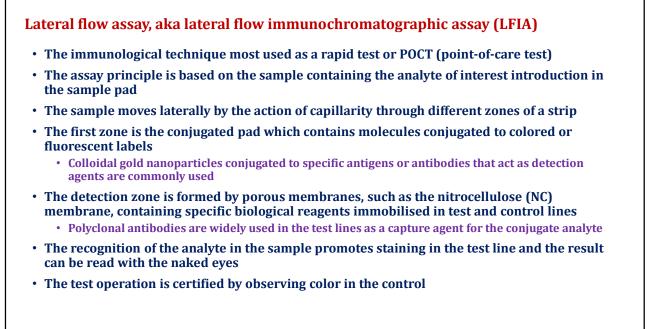
Methods for detection of listeria

Method	Working Principles	Advantages	Disadvantages
Molecular Methods			
Multiplex PCR	Simultaneously amplifies multiple target DNA sequences and quantifies by detecting fluorescent probes attached to the DNA fragments	Rapid and high-throughput analysis	High cost, complex, and difficult in optimization
Real-time nucleic acid sequence-based amplification (NASBA)	Amplifies nucleic acid (generally by converting single-stranded RNA into cDNA) under isothermal condition and detects fluorescent probes attached to the target fragment	Operates without thermal cycling equipment and can detect viable microbial cells	Complexity in handling RNA
Loop-mediated isothermal amplification (LAMP)	Six primers target eight specific regions of target DNA, producing cauliflower-like structure of DNA bearing multiple loops. Assay performed under isothermal conditions, amplification products detected by agarose gel electrophoresis or fluorescent dye	Greater yield, lower detection limit, operates without thermal cycling equipment	Requires complex primer designing system, which can limit specificity
Oligonucleotide-based microarray	A glass slide coated with chemically synthesized oligonucleotide probes detects target DNA or RNA labeled with fluorescent dye.	Simultaneous identification and typing of microbial strain	Require high amount of target DNA or RNA

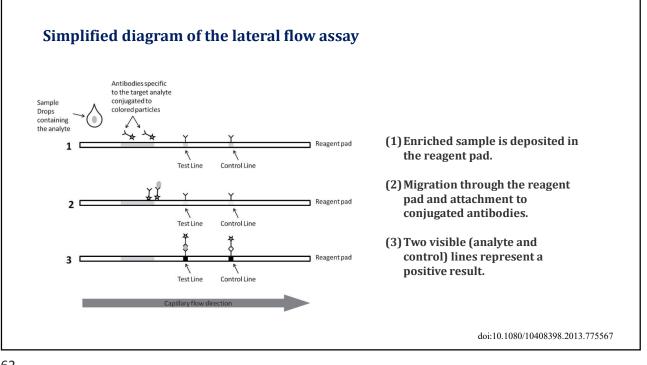
57

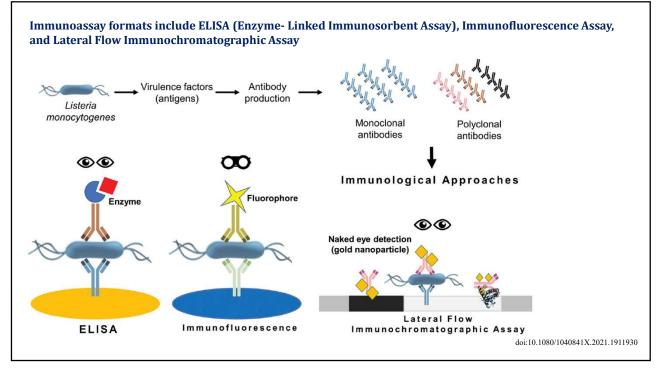

Methods for detection of listeria

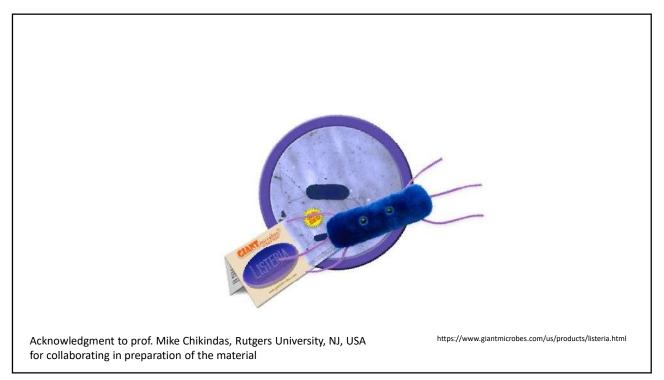
Method	Working Principles	Advantages	Disadvantages	
Microfluidic Systems				
Microfluidics lab-on-a-chip	Microchip with integrated microprocessor, pumps, valves, thermocycler, fluorescence detection module, to purify <i>L. monocytogenes</i> cells, and detect using real time-PCR	Fully automated purification and detection method	Lower sensitivity	
	Phage-Based Method	ls		
Phage protein	Listeria cells incubated with GFP-tagged phage protein and fluorescence measured after removal of unbound protein	Rapid and precise glycotype determination	Requires validation and further development	
Phage amplification	Phages replicate inside viable target cells and lyse the cells to release progeny cells along with host DNA and intracellular components which can be detected using qPCR, ELISA, or enzyme assays	Rapid and detects viable cells	Complex and low throughput	

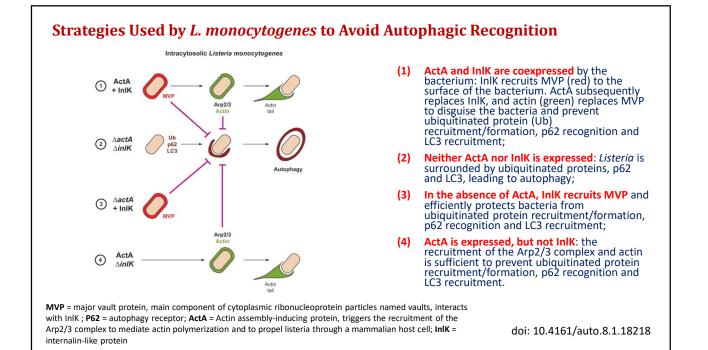

Methods for detection of listeria

Method	Working Principles	Advantages	Disadvantages
	Immunological Metho	ods	
Immunomagnetic capture	Labelled Immunoglobulin G and aptamer- conjugated magnetic nanoparticles form sandwich-type immuno-complex in the presence of <i>L. monocytogenes</i> , detects fluorescence	Can detect <i>L. monocytogenes</i> without pre-enrichment	Requires validation and further development
Lateral flow immunoassay	Sample flows through four sections of immunoassay strip: sample pad, conjugate pad (target binds with antibody labeled by color particles), nitrocellulose pad (captures target and conjugate), and absorbent pad; detects target as presence or absence of line colors	Low cost, rapid, and easy to operate	Low sensitivity and may require pre-treatment of samples; the potential for false positives due to the interference from sample matrix, these assays often need to be optimized for detection of bacteria from a specific food matrix
Spectroscopy-based	and biosensors-based methods are also und	er development	oi:10.1080/10408398.2013.77
			doi:10.3390/foods1112

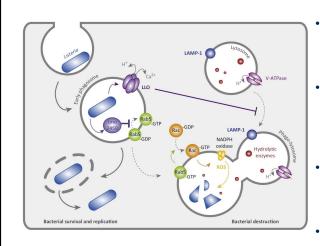

59

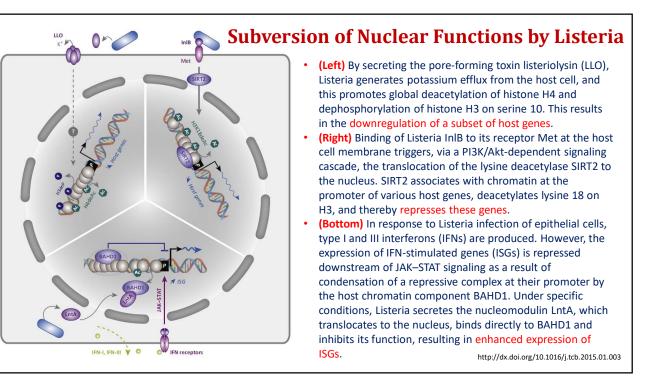



doi:10.1080/10408398.2013.775567



doi:10.1080/1040841X.2021.1911930




 Low grade "flu-like" infection - not serious, except in pregnant woman (who abort) Up to 16% women carry <i>L. monocytogenes</i> without illness (Larmont and Postlethwaite, 1986, J. Infection 13:187-193) Listeric meningitis- headache, drowsiness, coma 50% fatality rate; if very young and old are excluded, this drops to 30% Perinatal infection 0.15% to 2.0% of all perinatal mortality Encephalitis Psychosis Infectious mononucleosis Septicemia 	 Organelle manipulation by <i>Listeria</i> determines the outcome of infection Disruption of mitochondrial dynamics affects the efficiency of <i>Listeria</i> infection Bacteria secrete nucleomodulins to reprogram host cell transcription <i>Listeria</i>-induced perturbations in ion homeostasis impact on all organelles DOI: https://doi.org/10.1016/j.tcb.2015.01.003
---	--

Inhibition of Phago-Lysosomal Maturation by Listeria

- After phagocytosis by macrophages, the bacteriacontaining phagosome may fuse with LAMP-1 (lysosomal-associated membrane protein 1)positive lysosomes to generate a phago-lysosome.
- Reactive oxygen species (ROS) produced by NADPH oxidase and the action of hydrolytic enzymes exert toxicity which is enhanced by the acidification of the organelle, resulting in bacterial killing and degradation.
- The secretion of listeriolysin (LLO) by *Listeria* decreases phagosomal calcium concentration and increases pH, which impedes phago-lysosomal fusion.
- Another secreted effector, Lmo2459, blocks the maturation of the phagosome via the inhibition of Rab5.

http://dx.doi.org/10.1016/j.tcb.2015.01.003

