PQI – 3303 – Fenômenos de Transporte III Aula 04

José Luís de Paiva Departamento de Engenharia Química da EPUSP

Modelo - Prandtl

Modelo - Prandtl

Camada Limite Laminar Hidrodinâmica - Bidimensional

Continuidade

$$\frac{\partial \rho}{\partial t} = -\operatorname{div} \rho \, \vec{v} \quad \Rightarrow \quad \frac{\partial \rho}{\partial t} = 0$$
$$\operatorname{div} \, \vec{v} = 0 \qquad \Rightarrow \quad \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$

Navier Stokes - bidimensional

 $\rho \frac{D\vec{v}}{Dt} = \rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v}.gr\vec{a}d\vec{v} = \rho \vec{g} - gr\vec{a}dp + \mu \ln p \vec{v}$

$$\rho\left(v_{x}\frac{\partial v_{x}}{\partial x}+v_{y}\frac{\partial v_{x}}{\partial y}\right) = -\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} v_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}\right)$$
$$\rho\left(v_{x}\frac{\partial v_{y}}{\partial x}+v_{y}\frac{\partial v_{y}}{\partial y}\right) = -\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial y^{2}}\right)$$

Scaling

Escalas de adimensionalização:

- $x \rightarrow L$, $y \rightarrow \delta$
- $\mathbf{v}_{\mathbf{x}} \rightarrow \mathbf{U}$, $\mathbf{v}_{\mathbf{y}} \rightarrow \mathbf{V}$
- $\delta << L$ (observação experimental)

$$\hat{\mathbf{x}} = \frac{\mathbf{x}}{\mathbf{L}}$$
 $\hat{\mathbf{y}} = \frac{\mathbf{y}}{\delta}$ $\hat{\mathbf{v}}_{\mathbf{x}} = \frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{U}}$ $\hat{\mathbf{v}}_{\mathbf{y}} = \frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{V}}$

SCALING => ordem de grandeza das variáveis e das variações ~ 1

"Scaling"

"Scaling" da Navier- Stokes

 $\hat{p} = \frac{p}{P}$

"Scaling" da Navier- Stokes

 $\delta << L$ (observação experimental)

"Scaling" da Navier- Stokes

Quantidade de movimento na direção x

$$\sim \frac{\rho U^2}{L}$$

$$\frac{\rho U^2}{L} \left(\hat{v}_x \frac{\partial \hat{v}_x}{\partial \hat{x}} + \hat{v}_y \frac{\partial \hat{v}_x}{\partial \hat{y}} \right) = -\frac{P}{L} \frac{\partial \hat{p}}{\partial \hat{x}} + \frac{\mu U}{\delta^2} \left[\frac{\partial^2 \hat{v}_x}{\partial \hat{y}^2} \right]$$

$$Re = \frac{\rho UL}{\mu}$$

Equações – Camada Limite Laminar – Placa Plana

$$p = p(x)$$

$$\rho \left(v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} \right) = \left[-\frac{dp}{dx} + \mu \left(\frac{\partial^2 v_x}{\partial y^2} \right) \right]$$

$$\frac{\partial \, \hat{p}}{\partial \, \hat{y}} \cong 0$$

Borda da camada limite $v_x \approx U$: $\rho \left(U \frac{\partial U}{\partial x} + v_y \frac{\partial U}{\partial y} \right) = -\frac{d p}{d x} + \mu \left(\frac{\partial^2 U}{\partial y^2} \right)$ EULER - INVÍSCIDO $\Rightarrow \rho U \frac{\partial U}{\partial x} = -\frac{d p}{d x}$

Equações – Camada Limite Laminar – Placa Plana

$$\frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{y}} = \mathbf{0}$$

$$\mathbf{v}_{\mathbf{x}} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \mathbf{v}_{\mathbf{y}} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}} = \nu \frac{\partial^2 \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}^2}$$

P cte

Camada Limite Laminar – Placa Plana – Equações Aproximadas e **Condições de Contorno** $\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$ $v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} = v \frac{\partial^2 v_x}{\partial y^2}$ $\begin{cases} Condições de Contorno: parede, y = 0 \rightarrow v_x = 0 \\ v_y = 0 \quad v_y = 0 \\ borda, y = \infty \rightarrow v_x = U \end{cases}$ **Continuidade:** Quantidade de **Movimento:** $\mathbf{v}_{\mathbf{x}} = \frac{\partial \Psi}{\partial \mathbf{v}}$; $\mathbf{v}_{\mathbf{y}} = -\frac{\partial \Psi}{\partial \mathbf{x}}$ Solução de Blasius $\eta = y_{\sqrt{\frac{U}{v x}}} \qquad f(\eta) = \frac{\Psi}{\sqrt{x v U}}$ $f(\eta)\frac{d^{2}f(\eta)}{d\eta^{2}} + 2\frac{d^{3}f(\eta)}{d\eta^{3}} = 0 \quad \forall \quad \textbf{parede, } \eta = 0 \quad \Rightarrow \quad f = 0 \quad e \quad f' = 0$ **borda**, $\eta = \infty \quad \Rightarrow \quad f' = 1$

Solução de Blasius

Solução :
$$v_x = U \frac{df(\eta)}{d\eta}$$
 $v_y = \frac{1}{2} \sqrt{\frac{vU}{x}} \left(\eta \frac{df(\eta)}{d\eta} - f(\eta) \right)$

$$\frac{v_x}{U} = 0.99 = \frac{df}{d\eta} = 0.99 \implies \eta = 5 = \delta \sqrt{\frac{U}{vx}}$$

Fig. 7.9. Velocity distribution in the laminar boundary layer on a flat plate at zero incidence, as measured by Nikuradse [20]

Perfil de Velocidades- Camada Limite

30. Blasius boundary-layer profile on a flat plate. The tangential velocity profile in the laminar boundary layer on a flat plate, discovered by Prandtl and calculated accurately by Blasius, is made visible by tellurium. Water is flowing at 9 cm/s. The Reynolds number is 500 based on distance from the leading edge, and the displacement thickness is about 5 mm. A fine rellurium wire perpendicular to the plate at the left is subjected to an electrical impulse of a few milliseconds duration. A chemical reaction produces a slender colloidal cloud, which drifts with the stream and is photographed a moment later to define the velocity profile. Phoeograph by F. X. Wortmann

Solução de Blasius

Fig. 7.7. Velocity distribution in the boundary layer along a flat plate, after Blasius [2]

Fig. 7.8. The transverse velocity component in the boundary layer along a flat plate

Solução de Blasius

$\eta = y \sqrt{\frac{\overline{U_{\infty}}}{y x}}$	f	$f' = \frac{u}{\overline{U}_{\infty}}$	f″
0	0	0	0-33206
0.2	0.00664	0.06641	0.33199
0.4	0.02656	0.13277	0.33147
0.6	0.05974	0.19894	0.33008
0.8	0.10611	0.26471	0.32739
1.0	0.16557	0.32979	0.32301
1.2	0.23795	0.39378	0.31659
1.4	0.32298	0.45627	0.30787
1.6	0.42032	0.51676	0.29667
1.8	0.52952	0.57477	0.28293
2.0	0.65003	0.62977	0.26675
2.2	0.78120	0.68132	0.24835
2.4	0.92230	0.72899	0.22809
2.6	1.07252	0.77246	0.20646
2.8	1.23099	0.81152	0.18401
3.0	1.39682	0.84605	0.16136
3.2	1.56911	0.87609	0.13913
3.4	1.74696	0.90177	0.11788
3.6	1.92954	0.92333	0.09809
3.8	2.11605	0.94112	0.08013
4-0	2.30576	0.95552	0.06424
4.2	2.49806	0.96696	0.05052
4.4	2.69238	0.97587	0.03897
4.6	2.88826	0.98269	0-02948
4.8	3.08534	0.98779	0-02187
5.0	3.28329	0.99155	0.01591

$\eta = y \sqrt{\frac{\overline{U_{\infty}}}{v x}}$	ſ	$f' = \frac{u}{U_{\infty}}$	f″
5.2	3-48189	0.99425	0.01134
5.4	3-68094	0.99616	0.00793
5.6	3.88031	0.99748	0.00543
5.8	4.07990	0.99838	0.00365
6.0	4.27964	0-99898	0.00240
6.2	4.47948	0.99937	0.00155
6.4	4-67938	0.99961	0.00098
6.6	4.87931	0.99977	0.00061
6.8	5.07928	0.99987	0.00037
7.0	5.27926	0.99992	0.00022
7.2	5.47925	0-99996	0.00013
7.4	5.67924	0-99998	0.00007
7.6	5.87924	0-99999	0.00004
7.8	6.07923	1.00000	0.00002
8.0	6.27923	1.00000	0.00001
8-2	6.47923	1.00000	0.00001
8.4	6-67923	1.00000	0.00000
8.6	6.87923	1.00000	0.00000
8.8	7.07923	1.00000	0.00000

Fator de atrito

Coeficiente de arraste (fator de atrito) na placa:

$$C_D = \frac{\left(\tau_{yx}\right)_{y=0}}{\frac{1}{2}\rho U^2}$$

$$C_{\rm D} = \frac{\mu}{\frac{1}{2}\rho U^2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)_{y=0} = \frac{\mu}{\frac{1}{2}\rho U^2} U \sqrt{\frac{U}{xv}} \frac{d^2 f}{d\eta^2}(0)$$

Para y = 0 (η=0) = f''(0) = 0,332 resulta:
$$C_{\rm D} = 0,664 \sqrt{\frac{v}{Ux}}$$

Camada Limite Laminar Térmica e Mássica

Equação de Conservação

$$\frac{1}{\mathrm{Sr}} \frac{\partial \hat{\rho} \hat{\phi}}{\partial \hat{t}} + \operatorname{div} \hat{\rho} \left(\hat{\vec{v}} \hat{\phi} - \frac{1}{\mathrm{Pe}} \operatorname{gr} \hat{a} d \hat{\phi} \right) = \frac{\dot{\sigma}_{\forall \phi} L}{\rho_0 \Delta \phi v_0}$$
Regime permanente sem produção

Incompressível

$$\hat{\vec{v}}.$$
grâd $\hat{\phi} - \frac{1}{Pe} \hat{lap} \hat{\phi} = 0$

Re
$$\hat{\vec{v}}$$
.grâd $\hat{\varphi} - \frac{\Gamma_{\varphi}}{v} \hat{lap} \hat{\varphi} = 0$

Camada Limite Laminar Térmica e Mássica

Re
$$\hat{\vec{v}}$$
.grâd $\hat{\varphi} - \frac{\Gamma_{\varphi}}{\nu}$ lâp $\hat{\varphi} = 0$

$$\left(\mathbf{v}_{x}\frac{\partial \varphi}{\partial x} + \mathbf{v}_{y}\frac{\partial \varphi}{\partial y}\right) = \Gamma_{\varphi}\left(\frac{\partial^{2} \varphi}{\partial x^{2}} + \frac{\partial^{2} \varphi}{\partial y^{2}}\right) \implies \mathbf{v}_{x}\frac{\partial \varphi}{\partial x} + \mathbf{v}_{y}\frac{\partial \varphi}{\partial y} = \Gamma_{\varphi}\frac{\partial^{2} \varphi}{\partial y^{2}}$$

Equacionamento generalizado para a propriedade ϕ

$\frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{y}} = 0$	Condições de Contorno: parede, $y = 0 \rightarrow v_x = 0$
$\mathbf{v}_{\mathbf{x}} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \mathbf{v}_{\mathbf{y}} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}} = \mathbf{v} \frac{\partial^2 \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}^2}$	$\mathbf{v}_{\mathbf{y}} = 0$ $\boldsymbol{\phi} = \boldsymbol{\phi}_{\mathbf{w}}$
$\mathbf{v}_{x} \frac{\partial \boldsymbol{\varphi}}{\partial x} + \mathbf{v}_{y} \frac{\partial \boldsymbol{\varphi}}{\partial y} = \Gamma_{\varphi} \frac{\partial^{2} \boldsymbol{\varphi}}{\partial y^{2}}$	$\mathbf{y} = \mathbf{\infty} \stackrel{\bullet}{\rightarrow} \mathbf{v}_{\mathbf{x}} = \mathbf{U}$ $\boldsymbol{\phi} = \boldsymbol{\phi}_0$

$$\frac{d^{2}\hat{\phi}}{d\eta^{2}} + \frac{\nu}{\Gamma_{\phi}} \frac{f(\eta)}{2} \frac{d\hat{\phi}}{d\eta} = 0$$

Condições de Contorno: parede, $\eta = 0 \rightarrow \hat{\phi} = 0$ $\eta = \infty \rightarrow \hat{\phi} = 1$

$$\hat{\phi} = \frac{\int_{\zeta=0}^{\zeta=\eta} exp\left[-\frac{1}{2}\frac{\nu}{\Gamma_{\phi}}\int_{\epsilon=0}^{\epsilon=\zeta} f(\epsilon)d\epsilon\right]d\zeta}{\int_{\zeta=0}^{\zeta=\infty} exp\left[-\frac{1}{2}\frac{\nu}{\Gamma_{\phi}}\int_{\epsilon=0}^{\epsilon=\zeta} f(\epsilon)d\epsilon\right]d\zeta}$$

Número de Prandtl e Schmidt

Fig. 12.8. Comparison between the temperature and velocity fields for boundary layers with very small and with very large values of Prandtl number

Perfil de φ e Fluxo na Parede

Nusselt e Sherwood

$$\varphi = T$$

$$\varphi = T$$

$$\varphi = W_A$$

$$\varphi = W_A$$

$$\frac{v}{\Gamma} = \frac{v}{\alpha} = Pr$$

$$Nu = (gr\hat{a}d \hat{T})_{\hat{r}=0}$$

$$\frac{v}{\Gamma} = \frac{v}{D_{AB}} = Sc$$

$$Sh = (gr\hat{a}d \hat{w}_A)_{\hat{r}=0}$$

$$Sh = 0,332 \text{ Re}_x^{1/2} \text{ Pr}^{1/3}$$

$$Sh = 0,332 \text{ Re}_x^{1/2} \text{ Sc}^{1/3}$$

$$Sh_L = 0,664 \text{Re}_L^{1/2} Sc^{1/3}$$

Camada limite turbulenta

$$\frac{v_x}{U} = \left(\frac{y}{\delta_M}\right)^{1/7}$$
$$\frac{x_A - x_{AW}}{x_{A0} - x_{AW}} = \left(\frac{y}{\delta_M}\right)^{1/7}$$

$$\frac{\delta}{x} = 0.376 \mathrm{Re}_{\mathrm{x}}^{-1/5}$$

$$Sh_L = 0,0292 \text{Re}_x^{4/5} Sc^{1/3}$$

Coeficientes convectivos de TM com injeção/sucção na placa

O fluxo global de A na parede é expresso por:

$$n_{Ay} = J_{Ay} + x_{Ay}n_y = J_{Ay} + \frac{\rho_A}{\rho}\rho v_y = J_{Ay} + \rho_A v_y$$

Para y = 0 adota-se o índice s φ_0 $n_{Avs} = J_{Avs} + \rho_{As} v_{vs}$ Φw φw $n_{Ays} = k_{\rho} (\rho_{Aw} - \rho_{A0}) = J_{Ays} + \rho_{As} v_{ys} = k'_{\rho} (\rho_{Aw} - \rho_{A0}) + \rho_{As} v_{ys}$ $\mathbf{k}_{\rho}' = \frac{-\rho \mathbf{D}_{AB} (\partial \mathbf{x}_{A} / \partial \mathbf{y})_{\mathbf{y}=0}}{\rho (\mathbf{x}_{As} - \mathbf{x}_{A0})}$ 26

Coeficientes convectivos de TM com injeção/sucção na placa

Perfis de velocidade v_x/U em função de $2^{-1/2}\eta$, para diferentes valores do parâmetro $f(0) = -v_Y(2Re_x)^{1/2}/U$.

Coeficientes convectivos de TM com injeção/sucção na placa

Fonte: adaptado de A. F. Mills, Mass Transfer, Prentice Hall, 2001.

Perfis de concentração (adimensionalizada) em função de 2^{-1/2} η , para diferentes valores do parâmetro $f(0) = -v_Y (2Re_x)^{1/2}/U$.

Injeção $f(\theta) > 0$.

Coeficientes convectivos de TM com injeção/sucção na placa

 $n_{\text{Ays}} = k_{\rho} (\rho_{\text{Aw}} - \rho_{\text{A0}})$

