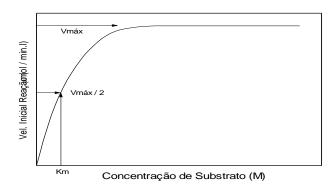
I. FUNDAMENTOS

A Cinética Enzimática estuda os mecanismos de reações químicas catalisadas por enzimas. Há na estrutura da enzima, uma determinada região diretamente responsável pela ação catalítica. Essa região é denominada **sítio ativo** e a sua conformação correta é fundamental para a atividade enzimática. Ali se localizam diversos resíduos de aminoácidos que podem desempenhar funções de orientação do substrato e de interação com este, fazendo com que haja diminuição da energia de ativação necessária para que a reação ocorra.


Em 1913, L. **Michaelis** e M. L. **Menten**, desenvolveram estudos considerando as principais propriedades das enzimas e aplicando as teorias conhecidas de Cinética Química para um modelo simplificado, o qual envolvia a **enzima livre** (**E**), o **substrato** (**S**), o **complexo enzima-substrato** (**ES**) e o **produto** (**P**). Esse modelo pode ser expresso pela equação química abaixo, onde k_1 e k_{-1} são as constantes de formação e quebra de ES, respectivamente; e k_2 (também conhecido como k_{cat}) é a constante da etapa limitante da reação.

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

Michaelis e Menten, com essas considerações, desenvolveram a expressão de velocidade para uma reação catalisada enzimaticamente, onde V_0 (velocidade inicial) é função de [S] e V_{max} e K_m são constantes (figura 1):

$$Vo = \frac{Vmax. [S]}{Km + [S]}$$

Na figura 1 está apresentada a curva de **velocidade inicial** (V₀) de reação em função da **concentração de substrato** ([S]) para uma enzima que siga o modelo proposto por Michaelis e Menten. Essa enzima é dita de características michaelianas e obedece à expressão de velocidade apresentada acima.

Figura 2 – Velocidade de reação em função da concentração de substrato para uma enzima michaeliana.

Nestas circunstâncias, o sistema tende a adquirir **velocidade de reação máxima (V** $_{m\acute{a}x}$ **)**, grandeza que é função da concentração inicial da **enzima livre (E)**. Podemos também definir uma concentração de substrato na qual se obtém **metade de V** $_{m\acute{a}x}$ (1/2 Vmax). Esse valor de [S] é numericamente igual ao K_m , parâmetro que dentro de certos limites mede a afinidade da enzima pelo substrato.

O método mais preciso para determinação gráfica dessas grandezas num experimento de Cinética Enzimática é através do **gráfico de duplo-recíproco ou de Lineweaver-Burk**. Para tanto se deve plotar 1/V em função de 1/[S].

A enzima escolhida para este estudo é a **invertase** de levedura que catalisa a hidrólise da sacarose para produzir glicose e frutose:

$$C_{12}H_{22}O_{11} + H_2O \longrightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$
Sacarose

Glicose

Frutose

A determinação da velocidade da reação (ou da atividade enzimática) pode ser feita através da **dosagem dos açúcares redutores formados (frutose e glicose)**. A dosagem baseia-se na reação entre o **ácido 3,5-dinitro-salicílico (DNS)** e os açúcares redutores. Estes monossacarídeos reduzem o DNS fornecendo um produto de cor característica, cuja formação pode ser acompanhada a 540 nm.

Conhecendo-se por colorimetria a quantidade (µmols) de açúcares redutores formada, por um cálculo estequiométrico simples, pode-se determinar a quantidade correspondente (µmols) de sacarose hidrolisada. Nestas experiências as velocidades da reação serão expressas em µmols de sacarose hidrolisada por minuto.

ATENÇÃO! Para estudos de velocidade, o tempo de reação deve ser medido com a maior exatidão possível. Para isso, o grupo deverá organizar-se de maneira a não permitir que a reação se inicie em tempos diferentes nos vários tubos. Para tal, é importante manter os tubos em gelo durante a adição dos reagentes. Esses devem ser adicionados na ordem em que aparecem nos protocolos, com a enzima sendo adicionada por último. Leva-se então os tubos, todos juntos, ao banho a 37°C para reagir. Transcorrido o tempo determinado, os tubos devem voltar, todos juntos e simultaneamente, para o gelo. Neste ponto a reação para.

A atividade enzimática é medida em unidade (U), sendo que 1 U é a quantidade de enzima necessária para a formação de 1 μmol de produto por minuto.

II. OBJETIVOS

Estudar as influências das concentrações de enzima e substrato nas velocidades de uma reação enzimática, examinar as curvas obtidas experimentalmente, calcular os parâmetros cinéticos e discutir seus valores e importância.

III. PROCEDIMENTO EXPERIMENTAL

1. Construção da curva padrão

- Adicionar a seis tubos volumes crescentes de solução padrão redutora (esta solução contem glicose 6 mM e frutose 6 mM), conforme indicado na tabela 1. Complete o volume em cada tubo para 1,0 mL com tampão. Adicionar em seguida 1 mL do reagente DNS. As guantidades estão indicadas na tabela 1.

Tabela 1 – Volume dos reagentes para a construção da curva padrão

tubos	solução padrão redutora (mL)	tampão (mL)	reagente DNS (mL)	Abs. (540 nm)	sacarose hidrolisada(µmols)
branco	-	1	1,0		
1	0,1	0,9	1,0		
2	0,2	0,8	1,0		
3	0,3	0,7	1,0		
4	0,4	0,6	1,0		
5	0,5	0,5	1,0		

Anotar aqui a concentração da solução padrão: _____

- Após a adição do DNS (ácido 3,5-dinitro-salicílico), colocar os tubos em banho-maria fervente por 10 min.
- Após este tempo, esfriar em água corrente e adicionar 8 mL de água destilada. Agitar com inversão da posição na vertical (3x).
- Adicionar 200 μL de cada solução em um poço da placa de ELISA e ler a 540 nm. Nos cálculos, descontar valor do branco.
- Construir o gráfico absorbância *versus* concentração de sacarose hidrolisada. Este gráfico será a **curva padrão**.

2. Efeito da concentração da enzima

-Numerar sete tubos de ensaio e adicionar os reagentes conforme tabela 2.

Importante: Manter todos os tubos no gelo.

Tabela 2 – Estudo da concentração de enzima x velocidade de reação.

tubos	Substrato Sacarose 5% em tampão (mL)	tampão pH 4,77 (mL)	Solução enzima (mL)	[Enzima] (μM)	Abs. 540 nm	sacarose hidrolisada por min. (µmol/min)
branco	0,500	0,500	ı			
1	0,500	0,450	0,050			
2	0,500	0,400	0,100			
3	0,500	0,300	0,200			
4	0,500	0,200	0,300			
5	0,500	0,100	0,400			
6	0,500	-	0,500			

- Após a adição da enzima, agitar suavemente.
- Retirar os tubos do gelo e colocá-los imediatamente (e simultaneamente) em banhomaria a 37°C por 5 min.
- Transcorrido este tempo, os tubos devem retornar imediatamente para o gelo. Assumese que nesse instante a reação para.

- Ainda no gelo, adicionar a cada tubo 1 mL de DNS. Na presença de DNS, devido à alcalinidade do reagente, a enzima para de funcionar.
- Transferir os tubos para banho-maria fervente e esperar 10 min.
- Findo este tempo, esfriar em água corrente e adicionar 8 mL de água destilada em cada tubo. Agitar com inversão da posição na vertical (3x).
- Adicionar 200 μL de cada solução em um poço da placa de ELISA e ler a 540 nm. Nos cálculos, descontar valor do branco.
- Fazer o gráfico colocando a concentração da enzima (μM) nas abscissas e a velocidade de hidrólise expressa em μmols de sacarose hidrolisada por minuto nas ordenadas. Durante a aula de laboratório será fornecido o valor da concentração da enzima na solução estoque.

3. Efeito da concentração de substrato

- Numerar sete tubos de ensaio e adicionar os reagentes segundo a tabela 3.

Manter todos os tubos no gelo.

Tabela 3 – Estudo da concentração de substrato x velocidade de reação.

tubos	sacarose 5% em tampão (mL)	tampão pH 4,77 (mL)	solução enzima (mL)	Conc. sacarose (µM)	Abs. 540 nm	sacarose hidrolisada por min. (µmol/min)
branco	0,500	0,500	-			
1	0,050	0,700	0,250			
2	0,150	0,600	0,250			
3	0,250	0,500	0,250			
4	0,350	0,400	0,250			
5	0,550	0,200	0,250			
6	0,750	0,000	0,250			

- Proceder exatamente como no caso do estudo da concentração da enzima (item anterior).
- Após a adição da enzima, agitar suavemente. Retirar os tubos do gelo e colocá-los imediatamente (e simultaneamente) em banho-maria a 37°C por 5 min.

- Transcorrido este tempo, os tubos devem retornar imediatamente para o gelo. Assumese que nesse instante a reação para.
- Ainda no gelo, adicionar a cada tubo 1 mL de DNS. Na presença de DNS, devido à alcalinidade do reagente, a enzima (valor elevado de pH) pára de funcionar.
- Transferir os tubos para banho-maria fervente e esperar 10 min.
- Findo este tempo, esfriar em água corrente e adicionar 8 mL de água destilada em cada tubo. Agitar com inversão da posição na vertical (3x).
- Adicionar 200 μL de cada solução em um poço da placa de ELISA e ler a 540 nm. Nos cálculos, descontar valor do branco.
- Fazer o gráfico da velocidade "versus" concentração inicial do substrato.
- Estimar os valores de $V_{m\acute{a}x}$ e K_m .
- Fazer o gráfico de Lineweaver-Burk e calcular os valores de V_{máx} e K_m.

SOLUÇÕES UTILIZADAS PARA CINÉTICA ENZIMÁTICA INVERTASE

(atualizar as informações caso seja necessário)

(1) Tampão Acetato 0,02M pH 4,77 para 1 litro

Em um béquer de 1 litro pipetar 11,5 ml de ácido acético glacial (pa)

Colocar 0,4g de hidróxido de sódio

Dissolver juntos, acertar o pH para 4,77

Completar o volume para um litro.

(2) Sacarose 5% para 1 litro

Dissolver em Tampão Acetato 0,02M pH 4,77

Completar o volume para um litro.

(3) Solução Padrão Redutora para 1 litro

(A) 6.0 mM de Glicose

(B) 6.0 mM de Frutose

Dissolver a solução (A) e (B) com H₂O destilada

Completar o volume para um litro.

(4) DNS Ácido 3,5 Dinitrosalicílico para 1 litro

Em um béquer colocar

10g de DNS

200ml de hidróxido de sódio 2M

300g de tartarato de sódio e potássio

500ml de água destilada

Dissolver em banho fervente e completar o volume para 1 litro.

(5) Enzima Invertase

10mg/500ml para a concentração da enzima. ($20\mu g/ml$)

20mg/500ml para a concentração do substrato. (40µg/ml)